
USENIX Association

Proceedings of the
10th USENIX Security

Symposium

Washington, D.C., USA
August 13–17, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Capability File Names: Separating Authorisation
from User Management in an Internet File System

Jude T. Regan
�

Christian D. Jensen
Department of Computer Science

Trinity College Dublin
juderegan@consultant.com Christian.Jensen@cs.tcd.ie

Abstract

The ability to access and share information over the In-
ternet has introduced the need for new flexible, dynamic
and fine-grained access control mechanisms. None of
the current mechanisms for sharing information – dis-
tributed file systems and the web – offer adequate sup-
port for sharing in a large and highly dynamic group
of users. Distributed file systems lack the ability to
share information with unauthenticated users, and the
web lacks fine grained access controls, i.e. the ability
to grant individual users access to selected files.

In this paper we present Capability File Names, a new
access control mechanism, in which self-certifying file
names are used as sparse capabilities that allow a user
ubiquitous access to his files and enables him to delegate
this right to a dynamic group of remote users. Encoding
the capaility in the file name has two major advantages:
it is self-supporting and it ensures full compatablity with
existing programs.

Capability file names have been implemented in a new
file system called CapaFS. CapaFS separates user identi-
fication from authorisation, thus allowing users to share
selected files with remote users without the intervention
of a system administrator. The implementation of Ca-
paFS is described and evaluated in this paper.

1 Introduction

The current suite of Internet protocols and applica-
tions [24, 28, 11] allows individuals and organizations
convenient access to stored data from every corner of the

�

Jude Regan is currently employed as a Java Developer for Pfizer
in Brussels, Belgium.

globe. However, access to such data is typically read-
only unless the user is identified on the server on which
the data are stored. This prevents users from sharing se-
lected files across organizational boundaries.

A distributed file system allows users read/write access
to files stored on remote machines as if they were stored
locally. This is a convenient abstraction because it hides
the distribution of data from the user in the same way
that remote procedure calls hide the distribution of pro-
cessing. Moreover, most applications accept input from
files, which makes distributed file systems the perfect
medium for sharing among a heterogenous group of
users on the Internet. A distributed file system must
implement a flexible and scalable access control mech-
anism in order to serve different applications. Exam-
ples of such applications are mobile users, business-to-
business (B2B) commerce and open software develop-
ment projects.

Most distributed file systems [35, 5, 29, 34, 25, 22, 31, 2]
allow users to share files using discretionary access con-
trol, which means that the specification of access rights
is left to the discretion of the user who “owns” the
file. However, in order to allow sharing and enforce ac-
cess control, the file system generally relies on a local
database or password file of users in the system. More-
over, file systems are normally only “exported” to a des-
ignated set of machines.

Managing the sets of users that are authorized to access
a set of files or the machines that the file system is ex-
ported to, is normally a privileged task performed by a
small group of system administrators. This means that a
third party has to intervene in order for two parties to col-
laborate. Inflexible local policies, encumbering mecha-
nisms and overworked system administrators are often a
major hindrance to collaboration.

As stated above, existing “discretionary” access control

mechanisms limit the discretion of the user by impos-
ing restrictions on what users are defined locally, what
machines files can be exported to and what common au-
thentication framework is required. We wish to extend
discretionary access control mechanisms to the Internet,
so that users may share their files with any remote user
on any remote system without any limitation imposed by
local system configuration.

The web provides a convenient medium for sharing of
mainly read-only information among a large set of users.
Access to information in a particular directory can be
protected by passwords [6], thus providing a coarse
grained access control mechanism. However, manag-
ing several groups with dynamic and overlapping ac-
cess rights requires the owner to constantly copy, link,
or move files among directories; this is not convenient.

We have thus identified the following four properties for
a flexible and dynamic access control mechanism for
sharing files on the Internet.

No Local Identification Users from different organiza-
tions must be able to collaborate, so the access con-
trol mechanism cannot rely on user identification
in the local domain, e.g., a local data base of regis-
tered users.

User Autonomy Collaboration should be immediate,
without the delays and hassle of asking a system ad-
ministrator to define a new user, set up a new group
or either export or import a particular file system.

Granularity The current mechanisms for sharing infor-
mation on the Internet often require the information
to be located in particular directories that are “ex-
ported” to the remote machines. Different directo-
ries may be exported to different sets of machines
and with different access rights. Managing these
different groups and access rights often requires a
complex hierarchy of directories, which makes it
difficult to maintain the information. It would be
preferred if the user could leave the files where they
are and share individual files directly with remote
users.

Read/Write Sharing In order to support full collabo-
ration, the access control mechanism must provide
equally convenient read and write access to the
shared information, although some files could be
shared read-only.

Capability file names encode the access rights of the user
into the name used by the client to access the file; the

file name effectively becomes a capability for that file.
The ability to present the capability file name to the file
server is enough to allow the user to access the file with
the rights encoded in the filename, so no identification is
required. We have implemented a proto-type file server,
called CapaFS, that acts as a proxy for a particular user
and allows him to share his files with everybody on the
Internet. The CapaFS server runs entirely in user space,
so no intervention is required from the system adminis-
trators to set-up or run this service. Each capability file
name encodes the access rights for a particular file on the
server, this means that individual files are easily shared.
The access rights encoded into the file name corresponds
to the access rights of the server file system, which nor-
mally include both read and write access. An evaluation
of the CapaFS proto-type shows that it meets all of the
requirements listed above.

The rest of this paper is organized as follows: We start
by examining related work on sharing in distributed file
systems in section 2. Section 3 describes the principle
behind capability filenames. Section 4 describes the de-
sign of CapaFS. We evaluate the implementation of Ca-
paFS in Section 5. Some directions for future work are
outlined in Section 6 and our conclusions are presented
in Section 7.

2 Related Work

In the following, we examine a number of networked or
distributed file systems that address some of the issues
that we are trying to solve.

We present a short survey of existing access control
mechanisms, before examining the distributed file sys-
tems.

2.1 Access Control Mechanisms

The access rights of all principals in the system are nor-
mally encoded in an access control matrix [20], either in
the form of access control lists (ACLs) or capabilities.

An ACL is associated with every resource in the system.
It lists all the users who are authorized to access the re-
source along with their access rights. Strong authentica-
tion mechanisms, such as Kerberos [18] or X.509 [27],
allow ACLs to be used in a networked environment.
The ACL relies on the authenticated identity of the user,

which requires the identity of the user to be known be-
fore access can be granted. Moreover, ACLs do not scale
very well, because it is difficult to delegate the right to
delegate, i.e., the right to modify the ACL. This means
that ACLs in large organizations have to be organized
into a hierarchy where the right to delegate access rights,
within a part of the organization, corresponds to the right
to modify the ACL in the corresponding branch of the
ACL hierarchy. Thus, the hierarchy of ACLs mustre-
flect the structure of the organization in which they are
used. [9]

A capability is an unforgeable token that identifies a re-
source and lists the access rights granted to the holder
of the capability. Anyone holding a copy of the capabil-
ity may access the resource with the access rights speci-
fied by the capability. Capabilities can be stored in data
structures in user space and copied or transferred among
users. This makes it easy for users to create new ad-
hoc work groups and to distribute access rights to that
group. Because knowledge of a capability conveys right
to access the specified object or file, capabilities must be
protected from theft and disclosure, e.g., by encrypting
part of the capability.

2.2 Amoeba File Server

Amoeba is a distributed object oriented operating system
designed for a network of closely connected machines.
Amoeba uses sparse capabilities to protect all objects in
the system including files [38]. Capabilities are stored
in data structures in a process’ address space and can be
exchanged freely among processes.

The Amoeba file service consists of two distinct servers:
the directory server and the Bullet file server [32]. The
directory server maps human-chosen ASCII names to
capabilities used by the system. The Bullet file server
implements the required functionality to create, read and
write files. The create operation returns a capability that
must be used by subsequent read and write operations.
This capability can be stored in the directory service for
later retrieval.

The sparse capability model implemented by the
Amoeba file service has inspired the access control
model used in capability file names. An important dif-
ference between the two systems is that capability file
names are designed to ensure compatibility with exist-
ing applications, while Amoeba is not.

2.3 NFS

In NFS [34, 37], the server trusts the identification per-
formed by the client. Clients and servers coordinate their
user identifiers. File systems are explicitly exported to a
designated set of clients. In order to access a file on the
server, the user must be defined as a user on the server
machine and the client machine must be added to the
export list of the server. Both of these operations are
privileged, i.e., require the intervention of a system ad-
ministrator.

2.4 AFS

AFS [16, 35, 36, 10] is probably the most widely used
wide-area file system. AFS mounts all remote file sys-
tems under a single directory (/afs). The set of re-
mote directories available under the global mount point
is managed locally and changes require the privileges of
a system administrator.

AFS uses Kerberos [18] to authenticate users, which pe-
nalizes use across administrative boundaries. To facili-
tate collaboration, users of such systems form inconve-
niently large administrative realms, so anyone they may
want to collaborate with will be in the same realm. Ker-
beros authentication suffers from this problem [4]. Sys-
tem administrators responsible for setting up user ac-
counts often could not do so without the intervention
of the Kerberos administrator. Administrators of AFS
client machines must enumerate every single file server
the client can talk to. A user of an AFS client cannot
access a server the administrator did not include.

2.5 SFS

SFS [12, 22, 21] is a global decentralized file system.
Like AFS it uses a global mount point to provide a sin-
gle name space across all machines in the world while
avoiding centralized control. Public-key cryptography
is used to authenticate all entities in the system.

SFS introduces self-certifying pathnames to name files
in this global name space. A self-certifying pathname
consists of the file server’s location, e.g., a host name
or an IP address, and a HostID that tells the client how
to certify a secure channel to the server.1 The self-

1The HostID is actually a cryptographic hash of the server’s loca-
tion and its public key.

No Local User Autonomy Granularity Read/Write
Identification Sharing

Amoeba YES YES FILE YES
NFS NO NO FILE YES
AFS NO NO DIRECTORY YES
SFS NO NO FILE YES
Truffles NO YES/NO VOLUME YES
WebFS NO YES/NO FILE YES

Table 1: Comparison of the surveyed file systems

certifying pathname entirely suffices to name and certify
the file server.

SFS relies on a trusted third party to authenticate the user
and the client machine. This means that collaboration is
only possible if client and server have a common root for
their certification authorities.

It is important to note that SFS self-certifying file names
are used for authentication, not for authorization. Access
control in SFS relies on user and group IDs, so the inter-
vention of a system administrator with special privileges
is required to create an account before a remote user can
access files on the server. The authentication framework
introduced with self-certifying file names is complemen-
tary to the authorization framework introduced with ca-
pability file names.

2.6 Truffles

Truffles [31] is a distributed file system that attempts to
make file sharing between users in different administra-
tive domains both simple and secure. It uses the Ficus
file system [15] to offer replication and sharing of files
and Privacy Enhanced Mail (PEM) as a secure trans-
port mechanism. Truffles allows users to share volumes
(subsets of the entire file system) with little intervention
from the system administrators once the volumes have
been defined. Ficus replicates volumes using an opti-
mistic one-copy policy and all systems sharing the vol-
ume may hold their own replica. However, file sharing
relationships and file data transfer rely on Privacy En-
hanced Mail (PEM) which requires a nonempty intersec-
tion between the public key infrastructures that each user
belongs to; the slow adaptation of secure HTTP shows
how this limits collaboration among users.

2.7 WebFS

WebFS [39, 2] is a global file system that uses
HTTP [11] as the transport protocol between client and
file server. The advantage of this approach is that ex-
isting URLs can be used as file names and accessed
through the file system.

Authentication of both clients and servers are based on
X.509 certificates [3]. WebFS maintains an ACL for
each file consisting of the X.509 certificate and per-
missions for each authorised user. Users may therefore
share their files with anyone who has a certificate from a
certification authority (CA) trusted by the local domain.
Managing the set of trusted CAs requires special privi-
leges. Thus, authorisation in WebFS relies on the hier-
archy of certification authorities, which places the users
of WebFS under the control of these certification author-
ities.

2.8 Summary

A summary the surveyed systems is presented in Table 1.

NFS and AFS are very similar. System administrators
are required to enumerate all exported file systems and
all machines with remote access. With NFS, all ma-
chines form part of the trusted computing base, while
AFS supports sharing among machines in different ad-
ministrative domains. SFS allows free choice of au-
thentication mechanism, but authorization relies on local
ACLs. Both Truffles and WebFS allows dynamic shar-
ing of files among users who trust the same certification
authority, but it is impossible to share files with users
without a recognized certificate. All the surveyed file
systems provide read/write access and fine granularity,
so they appear not to be real issues. However, one of the
most popular media for information sharing, the web,
provides little support for either.

K
host name {path name, access rights}port number/capafs/ / /

client part server part

Figure 1: Basic capability file name

3 Capability File Names

The goal of capability file names is to allow users be-
longing to one or more organizations, to set up ad-hoc
work groups without limitations imposed by the system
or the intervention of their system administrators. Each
user in the group should be allowed to share selected
files with other members of the group, without compro-
mising his remaining files, nor the files of other users on
his system.

3.1 Basic Capability File Names

The basic capability file name consists of two parts, the
“client part” that allows the client machine to identify
the server and the “server part” which allows the server
to identify the file and encodes the access rights. The
server part is encrypted by the server to protect it from
tampering. The structure of a capability file name is
shown in Figure 1.

The client part of the capability file name consists of a
prefix (“/capafs/”) that identifies it as a capability
file name. It also contains the host name of the ma-
chine running the server and the port number used by
the server.

The server part consists of the absolute path name of the
file on the server and the permissions (-rwx) granted to
the client presenting the capability filename. The server
part is encrypted (with key K) to protect it from tamper-
ing.

This design is similar to the sparse capabilities used in
Amoeba (cf. 2.2). However, sparse capabilities are phys-
ical objects that are supported by the system and ma-
nipulated explicitly by programs. Capability files names
are virtual objects that require no special support from
the underlying system and they are manipulated as or-
dinary file names by programs. This difference is best
illustrated by analogy with plane tickets. Traditional ca-
pabilities are equivalent to paper tickets (data structures)
that have to be acquired and presented at the check-in
desk (the file server) in order to grant access to the flight
(the file). Capability file names are equivalent to con-

firmation numbers used when tickets are bought on the
Web. Knowledge of a valid confirmation number (capa-
bility file name) is proven to the check-in desk in order
to grant access to the flight.2

3.1.1 Creation of a Capability File Name

Capability file names are created on the server using a
separate program. This program takes the host name
and the port number that the server is using, the path
name of the file and the permissions to be encoded into
the capability file name as parameters. It then reads the
encryption key from a file stored in the user’s home di-
rectory and encrypts the server part with this key. It then
creates a string by concatenating the prefix with the host
name, the port number and the server part and returns
it in a string to the remote user. Only the server needs
the ability to decrypt the server part of the capability file
name, so a fast symmetric cipher may be used. How-
ever, a number of possible extensions rely on public-key
cryptography, so the server part could also be encrypted
using the server’s private-key. This reduces the number
of keys that the server has to maintain, but it also reveals
the contents of the server part of the capability file name.

3.1.2 Using Capability File Names

Each user, who wishes to share his files, must start a
server to act as a proxy for remote file operations. This
server is described in greater detail in section 4.4.

In order to prevent disclosure of the capability file names
and to ensure the confidentiality and integrity of trans-
ferred file data, all communication between client and
server must use a secure channel. This channel must en-
crypt all communication, but need not authenticate the
end-points to each other, e.g., a fast symmetric encryp-
tion algorithm may be used with the Diffie-Hellman key
exchange [7]. This solution is vulnerable to the man-in-
the-middle attack, an extension that solves this problem
is proposed in Section 3.2.

2This analogy breaks if two people present the same confirmation
number to the check-in desk. The file server grants both users access
to the file, while only one person can physically board the plane.

3.1.3 Delegation of a Capability File Name

Secure delegation of capability file names is orthogonal
to the mechanism described in this paper, however it is
important that the capability file name is protected from
disclosure while in transit.

3.1.4 Persistence of a Capability File Name

Capability file names are not persistent in themselves;
they are simply names (i.e., character strings) that are
lost when the client terminates or if the client fails;
server failure does not affect the validity of a capabil-
ity file name. However, a capability file name can be
stored on stable storage or serve as the source of a sym-
bolic link, thus making it persistent. Using a symbolic
link to point to a capability file name allows its holder
to assign a meaningful name to the remote file, although
this name only has local significance.

3.1.5 Revocation of a Capability File Name

In order to allow revocation of capability file names, the
server must maintain a capability revocation list (CRL)
of all capability file names that have been revoked. The
CRL grows with time and searching through it may be-
come prohibitive. One solution is to limit the time that a
capability file name is valid (i.e., include a timeout value
in the server part). As the timeout is only used on the
server, client and server clocks do not have to be syn-
chronized. However, new versions of the capability file
names must be acquired when the capability file name
expires.

Another solution is to mark files that have a revoked
capability file name associated with them (e.g., chang-
ing the files meta-data, such as the inode number), the
CRL is only searched if the file is marked. The CRL is
still needed because there may be number of valid op-
erations that change the meta data, e.g., restoring a file
from backups changes the inode number.

3.2 Capability File Names with Server Authen-
tication

The secure communication channel discussed in the ba-
sic scheme above suffers from the man-in-the-middle at-
tack, where a third party intercepts the initial message

from the client and sets up connections to both client and
server. The man-in-the-middle relays all messages be-
tween client and server and knows both keys. We there-
fore need an authentication mechanism that escapes the
problems of centralized control. In order to authenticate
the server, its public-key (SPuK) is added to the client
part of the capability file name. In this case the server’s
private-key (SPrK) is used to encrypt the server part of
the capability file name. The structure of a capability file
name with server authentication is shown in Figure 2(a).

The server is authenticated in the following way before
the client sends the capability file name to the server.
The client selects a session key to be used by the se-
cure channel. The session key is encrypted with the
server’s public-key and sent to the server. The server
responds with a message encoded with the session key,
which proves its possession of the server’s secret key and
thereby authenticates the server. The client is implic-
itly authenticated as belonging to the set of authorized
user, when the server receives the capability file name.
This authentication protocol is very similar to the proto-
col used in SFS [23].

3.3 Capability File Names with Client Authen-
tication

As mentioned above, the client is implicitly authenti-
cated through the possession of the capability file name.
However, knowing the identity of the client “enables
the monitoring, mediating, and recording of capability
propagations to enforce security policies including the
� -property in the Bell-LaPadula model” [14]. Moreover,
it introduces accountability into the system. The struc-
ture of a capability file name with client (and server) au-
thentication is shown in Figure 2(b).

The identity of the client is used on the server side and
should be included in the server part before the capabil-
ity file name is given to the client.

The authentication of the client follows the scheme de-
scribed in Section 3.2. After the client has received the
first message with the session key from the server, it
signs the capability file name with his private-key and
sends it to the server. It is important to note that the au-
thentication of the client does not necessarily depend on
his physical identity; the key-pair used could be created
explicitly for this capability file name.

/capafs/ / / /
SPrK

host name port number SPuK {path name, access rights}

client part server part

(a) Capability file name with server authentication

SPrK
SPuK/capafs/ / / / CPuK{path name, access rights, }host name port number

client part server part

(b) Capability file name with client authentication

SPrK
C PuK/capafs/ / / / .{ }

CPrK1SPuKhost name port number CPuK{path name, access rights, }

client part server part

(c) Capability file name propagation chain

Figure 2: Extensions to the basic capability file names

3.4 Capability File Names with Propagation
Limitation

The introduction of client authentication above, allows
us to monitor the use of capability file names. The addi-
tion of delegation chains [1], allows the server to impose
restrictions on the further delegation of a capability file
name, e.g., restricting further delegation to a known set
of recipients, restricting the right to delegate the capabil-
ity file name to the original recipient or preventing del-
egation altogether. Moreover, it allows the server to im-
plement different delegation policies for different files.
This approach is similar to transfer certificates in CRI-
SIS [3] or authorization proxies implemented on top of
Kerberos [26].

The structure of a capability file name with propagation
limitation is shown in Figure 2(c).

A user (C) who wish to further delegate a capability file
name to another user (C �), encodes the public-key of
the recipient (C � PuK) with his own private-key (CPrK)
and appends it as an extension to the filename. Further
delegation of this capability file name will add another
extension, so a long delegation chain means that the file-
name will have many extensions. When the server re-
ceives the delegated capability filename, it first retrieves
the public-key of the original recipient (CPuK). It uses
this key to decrypt the public-key included in the first ex-
tension, this process is repeated until the final public-key
is retrieved. This final key is then used to authenticate
the requesting client, as described in Section 3.2.

3.5 Summary

Capability file names allow flexible and dynamic shar-
ing of files among users in different organizations, with-
out the intervention of system administrators in either
organization. A number of extensions to the basic capa-
bility file name allow clients and servers to authenticate
each other. This authentication does not rely on digital
certificates to prove the physical identity of either party.
Instead, the knowledge of a private-key is used to au-
thenticate users. This allows collaboration without com-
promising the semi-anonymous nature of the Internet,
i.e., a user may assume a virtual identity and associate
it with a public/private key pair. The user may then use
a grassroots mechanism, such as the PGP web of trust,
to distribute the public-key associated with this virtual
identity.

4 CapaFS

CapaFS [30] is a userlevel file system that implements
basic capability file names. CapaFS uses AES [17, 8]
for symmetric encryption and RSA [33] for asymmetric
encryption of the server part of the capability file name.
AES is also used to establish a secure channel between
client and server. We currently use PGP [13] to pro-
vide confidentiality and authentication of capability file
names distributed per email, i.e., we do not require a tra-
ditional hierarchical public key infrastructure.

Client Machine
User Space

System SpaceCapaFSLIB

1 2 3Server

CapaFS

Server Machine

Figure 3: The CapaFS architecture

4.1 Overview

CapaFS consists of two parts: a shared library that re-
places libc on the client machine and a user level file
server. The architecture of CapaFS is illustrated in Fig-
ure 3.

The library intercepts all operations on files under
/capafs (1) and redirects them to the designated
server (2). If the operation is open(), the server ver-
ifies the capability file name and returns a file handle
or an error to the client. All other operations use this
file handle to access the file, 3 so the server only has to
decrypt the secret part of the capability file name once.
Clients with valid file handles can perform remote file
operations using standard NFS semantics (3).

4.2 Creating Capability File Names

Two programs are used to create a capability file name:
CapaFSKeys creates an encryption key, either a sym-
metric key or the private-key of a public/private key pair,
and CapaFSFile produces a capability file name from
the file’s location, the server’s port number, the remote
user’s access rights, and the encryption key created by
CapaFSKeys.

It is important to note that CapaFS is not a distributed
file system, i.e., all files are created locally, it simply
provides remote users with access to locally stored files.
The symbolic link mechanism described in Section 3.1.4
can be used to create the illusion of local and remote files
stored in the same directory.

3The file handle is a large randomly chosen integer, thus effectively
a sparse capability.

4.3 Capability File System Wrapper Library

The CapaFS shared library CapaFSLIB is used by a
client to add the necessary functionality to handle Ca-
paFS capability filename to the operating system. The
CapaFS shared library replaces the standard shared C li-
brary, libc. The following file operations are wrapped:
open, close, read, write, lseek and fcntl.

CapaFSLIB can be installed in any directory as long as
the shared library loader knows where to find it; this is
normally achieved by setting a variable in the user’s en-
vironment. This means that Capability File Names can
be installed without any intervention from the system ad-
ministrators, thus promoting user-to-user collaboration.

4.4 Capability File Server

CapaFS servers can be set up easily without any system
administrator intervention. The CapaFS server runs in
user space and can be started by any user in the system.
The server runs with the privileges of the user who starts
it to ensure that the server is restricted to only the files
that this user can access. This means the server has ac-
cess to exactly those services and files that are necessary
for its operation, following the principle of least privi-
lege. The underlying operating system enforces this re-
striction. This maintains the integrity of the system, and
ensures a CapaFS server cannot be hijacked to gain ac-
cess to another user’s or system files, thus providing no
extra threat to systems.

A user who wants to share his files with others simply
starts the CapaFS server. Once a user has created capa-
bility filenames and given them to parties they trust, they
can start a CapaFS server which will handle requests
from remote clients and allow sharing of the specified
files with the allowed permissions.

4.5 Granularity

The CapaFS server effectively acts as a proxy between
the remote user and the local file system. Capability
file names can be used to grant access to both individ-
ual files, and to all files in a directory.

Standard file system semantics apply to the remote op-
erations on both files and directories with the following
exceptions: file operations are executed with the inter-
section of the access rights of the user who started the
server and the permissions encoded in the capability file
name, and the right to access a file in a particular direc-
tory implies the right to search all higher level directo-
ries.

5 Evaluation

In the following we present an evaluation of the func-
tionality, security and performance of the developed pro-
totype.

5.1 Functionality

The functionality of CapaFS has been evaluated through
the following scenario. Two researchers are writing a
paper for a scientific conference; one author is located
in Belgium, the other in Ireland. The security policies of
their respective organizations prevent either from easily
obtaining an account on the other’s system.

With CapaFS, any user can start a server on a machine
with access to the Internet, thus allowing him to share his
files with anybody without the intervention of the system
administrator of his machine.

They decide to format the paper with the LaTeX [19]
text preparation system. The first author writes an initial
draft of the paper, creating all the required LaTeX source
files in the process; a listing of the source directory is
shown in Figure 4(a).4 He then starts the CapaFS server,
creates capability filenames, with read/write permission,
for all LaTeX files and sends them to the second author
over a secure channel.

4Non-essential details have been deleted from the directory listings.
In order to protect the local system, the host name and port number
have been changed and the server part of the capability file name is
truncated after 8 characters.

The second author then creates a new local directory and
symbolic links in that directory that point to the received
capability file names. A listing of the second author’s
source directory is shown in Figure 4(b). The second
author can now edit the source files directly and process
them with LaTeX locally.

A separate capability file name is used for each file –
instead of a directory capability file name – to improve
the speed of formatting the document. A directory capa-
bility file name would mean that temporary files created
by LaTeX would be created on the server. Instead, these
files are created locally. The directory of the second au-
thor – after processing the source files with LaTeX – is
shown in Figure 4(c).

In our example one author created all the files and dis-
tributed the required capability filenames to the other,
but the system allows both users to start CapaFS servers
and thus both users to create new files.

5.2 Security

We assume that an attacker has control over the network
between client and server, but that the security of neither
client nor server machine has been compromised.

An attacker who controls the network may attack a sys-
tem by interception, interruption, modification and fab-
rication of messages.

Interception An eavesdropper reads the message as it
passes on the network, thus compromising the con-
fidentiality of the message. CapaFS ensures con-
fidentiality by encrypting the communication be-
tween client and server.

Interruption Preventing the message from reaching its
destination results in denial of service. This type of
attack cannot be prevented without complete con-
trol over the network.

Fabrication Creation of new messages allows an at-
tacker to masquerade as either client or server.
Masquerading as the client requires him to know
a capability file name, but they are only sent over
secure channels which means that they cannot be
known by outsiders. Masquerading as the server
allows the attacker to learn capability file names
as clients connect to it and send erroneous data to
the client. In Section 3.2 we proposed a mecha-
nism similar to the self certifying file names in SFS;

-rw-r--r-- [...deleted...] paper.bib
-rw-r--r-- [...deleted...] paper.tex

(a) Directory on the server

lrwxr-xr-x [...deleted...] paper.bib -> /capafs/fs.dsg.cs.tcd.ie/9999/5be34dd[...deleted...]
lrwxr-xr-x [...deleted...] paper.tex -> /capafs/fs.dsg.cs.tcd.ie/9999/715a9f3[...deleted...]

(b) Directory on the client

-rw-r--r-- [...deleted...] paper.aux
-rw-r--r-- [...deleted...] paper.bbl
lrwxr-xr-x [...deleted...] paper.bib -> /capafs/fs.dsg.cs.tcd.ie/9999/5be34dd[...deleted...]
-rw-r--r-- [...deleted...] paper.blg
-rw-r--r-- [...deleted...] paper.dvi
-rw-r--r-- [...deleted...] paper.log
lrwxr-xr-x [...deleted...] paper.tex -> /capafs/fs.dsg.cs.tcd.ie/9999/715a9f3[...deleted...]

(c) Directory on the client after processing the files

Figure 4: Typesetting a paper on a remote machine

this mechanism is not yet implemented. Adding the
servers public key to the client part of the capabil-
ity file name allows the client to authenticate the
server.

Modification The integrity of file data is compromised
if the message is modified between the client and
the server. However, modified messages cannot go
undetected because the client and the server com-
municate over an encrypted link.

Encryption of communication between client and server
ensures confidentiality and integrity. Clients are explic-
itly not authenticated, because requests may arrive from
any node, and knowledge of the capability file name is
enough to grant access to the file. Authentication of the
server is easily achieved by including the public key of
the server in the capability file name as described in Sec-
tion 3.2.

5.3 Performance

Performance was not of primary concern to us, but the
capability file name mechanism is unlikely to be widely
adopted if it introduces a very large overhead. We there-
fore decide to evaluate the performance of CapaFS. The
performance of CapaFS is compared to NFS, a widely
used networked file system. However, it is important
to note that CapaFS is designed to provide functional-

ity which NFS cannot provide, so the comparison should
only be taken as an indication of the usability of CapaFS.

There are several factors, which might differentiate Ca-
paFS performance from NFS performance. First of all
CapaFS runs entirely in userspace, while NFS has been
integrated into the operating system kernel. Second, Ca-
paFS is more CPU intensive than NFS because of the
RSA public key encryption and integrity checks per-
formed on CapaFS capability filenames. The open oper-
ation requires the user-level server to decrypt the server
part of the capability file name, in order to reveal the file-
name and permissions. The overhead of decrypting the
capability is proportional to the bit-size of the encryption
used. Finally, NFS has been fine-tuned for more than a
decade, while CapaFS is a recent prototype implemen-
tation, e.g., none of the caching strategies used by NFS
have currently been implemented in CapaFS.

The performance of CapaFS and NFS is now compared
and discussed. The tests of both CapaFS and NFS
were performed using two 1GHz Pentium III machines
running RedHat Linux with 256MB of memory. The
two machines were connected with 100Mbit Ethernet
through a 100Mbit switch.

The client and server were set up on different machines
running in standard multi-user mode. The tests cov-
ered the following operations for both CapaFS and NFS:
Opening or lookup of a remote file, reading a 1KB from

a remote file, and writing a 1KB to a remote file.5

All tests are timed from the point the operation is in-
voked, until the point when a result is returned. In addi-
tion to this, all measurements are performed on the client
side, accessing files on the server side as usual. The per-
formance results of these tests are given in Table 2.

File operation CapaFS NFS
open() 1292 � s 159 � s
read() 117 � s 94 � s
write() 987 � s 8 � s

Table 2: Performance comparison of CapaFS and NFS

Our measurements show that CapaFS has an accept-
able absolute performance, the most expensive opera-
tion (open()) costs little over a millisecond, so the cost
of file system operations are dominated by communica-
tions costs in a wide area network.

CapaFS takes significantly longer than NFS to open a
file (x10), but it is only called once when the file is
initially opened (subsequent read and write operations
use a file handle returned by the open call). The higher
cost of the open command is to be expected, because
the server part of the capability file name has to be de-
crypted. The cost of reading data is roughly equivalent
in the two systems, while the cost of writing data to a
remote file is significantly higher in CapaFS (x100). We
attribute the big difference in write performance of NFS
and CapaFS to NFS’s use of asynchronous writes, which
makes NFS significantly faster when writing data to a re-
mote file. The asynchronous write strategy is acceptable
on local area networks, where the probability of errors
and partitions is low, but we do not believe that such op-
timizations are appropriate in a file system designed for
use in wide area networks.

5.4 Summary

We have shown that CapaFS meets all of the require-
ments defined in Section 1.

No Identification CapaFS allows dynamic sharing of
selected files, without identification of the remote
user; the knowledge of the capability file name is

5Link-level encryption has been disabled in CapaFS in order to pro-
vide comparability with NFS.

enough to grant access. Neither of the users de-
scribed in Section 5.1 holds an account on the other
user’s machine.

No Intervention Both CapaFSLIB and the CapaFS
server runs in user space and were setup without the
intervention of the system administrator. However,
if every user is to run a CapaFS server, some sup-
port from system administrators would be needed
to coordinate the local use of port numbers. We
didn’t experience problems with port number allo-
cation during these experiments.

Fine Granularity Capability file names can be used to
grant access to individual files, as well as directo-
ries.

Read/Write Access The measurements presented in
Section 5.3 successfully read and wrote files across
the Internet.

6 Future Work

The current implementation of CapaFS relies on a wrap-
per library on the client’s machine. We would like to
extend this with a file system implemented as a loadable
kernel module. This allows us to implement efficient
caching policies for remote files and decreases the over-
head of context-switching between the user library and
the kernel. Installation of the loadable kernel module
for the file system requires the intervention of the sys-
tem administrator, but this installation can be performed
once for all users.

The propagation limitation mechanism outlined in Sec-
tion 3.4 should also be implemented. This reduces the
risk of sharing files by limiting the number of users au-
thorized to delegate the capability file names.

7 Conclusions

In this paper we addressed the issue of sharing informa-
tion in large open (Internet) distributed file systems.

We presented a new access control mechanism designed
to facilitate sharing among dynamic groups of non-
authenticated users. This design is implemented in Ca-
paFS, a global and decentralized file system that allows

users to collaborate with other users regardless of lo-
cation and with no prior arrangements or intervention
by system administrators. The system uses filenames as
sparse capabilities to name and grant access to files on
remote servers. Users can share files without the inter-
vention of system administrators, by exchanging capa-
bility filenames with parties that they trust. Unlike other
systems, CapaFS has no need to authenticate the client
machine to the server. A client must simply prove pos-
session of a valid capability filename; this is necessary
and sufficient proof of authority to perform the opera-
tions – encoded in the capability – on the file it names.
CapaFS does not need to establish trust between client
and server, it only needs to verify the validity of the Ca-
paFS filename.

Capability file names may be used successfully in many
different environments to provide previously unavailable
functionality. Roaming mobile users who share files
from their home site with the people they are visiting
is one setting. CapaFS may also be used in large busi-
nesses, to cross administrative boundaries or company
boundaries in a virtual enterprise. People who work with
semi-anonymous users over the Internet and collaborate
on projects, may use CapaFS to facilitate and promote
sharing.

A decentralized file system with global authentication
and flexible authorization can free users from many of
the problems that have developed due to increased secu-
rity and centralized control.

Acknowledgements

The authors would like to thank our colleague Stefan
Weber for his help with the performance evaluation pre-
sented in this paper, and also the paper’s anonymous re-
viewers for their comments, which have helped us to im-
prove the paper.

References

[1] T. Aura. Distributed access-rights management with del-
egation certificates. In J. Vitek and C.D. Jensen, edi-
tors, Secure Internet Programming, number 1603 in Lec-
ture Notes in Computer Science LNCS, pages 211–235.
Springer Verlag, 1999.

[2] E. Belani, A. Thornton, and M. Zhou. Authentication and
security in WebFS, January 1997.

[3] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The
crisis wide area security architecture. In Proceedings of
the 7th USENIX Security Symposium, pages 15–29, San
Antonio, Texas, U.S.A., January 1998.

[4] S. M. Bellovin and M. Merrit. Limitations of the Ker-
beros authentication system. Computer Communications
Review, 20(5):119–132, October 1990.

[5] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo distributed file system. Technical Report
111, Digital Equipment Corp. Systems Research Center,
1993.

[6] K. Coar. Using .htaccess Files with Apache, 2000.

[7] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT–
22(6):644–654, November 1976.

[8] Federal Information Processing Standard Draft. Ad-
vanced Encryption Standard (AES). National Institute
of Standards and Technology, 2001.

[9] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI certificate theory. Technical Report
2693, Network Working Group, IETF, September 1999.

[10] C. F. Everhart. Conventions for names in the service di-
rectory in the AFS distributed file system. Technical re-
port, Transarc Corporation, March 1990.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer pro-
tocol – HTTP/1.1. Request for Comments (RFC) 2616,
Network Working Group, IETF, 1999.

[12] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. In Proceedigs of the 4th
Symposium on Operating Systems Design and Implemen-
tation, pages 181–196, San Diego, California, U.S.A.,
October 2000.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly &
Associates, Inc., 1994.

[14] L. Gong. A secure identity–based capability system. In
Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 56–63, Oakland, California, U.S.A., May
1989.

[15] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr.,
G.J.Popek, and D. Rothmeier. Implementation of the Fi-
cus replicated file system. In Proceedings of the Summer
USENIX Conference, pages 63–71, June 1990.

[16] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
m. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, 1988.

[17] V. Rijmen J. Daemen. The block cipher rijndael. In
J.-J. Quisquater and B. Schneier, editors, Smart Card
Research and Applications, Lecture Notes in Computer
Science (LNCS) 1820, pages 288–296. Springer-Verlag,
2000.

[18] J. Kohl and C. Neuman. The Kerberos network authenti-
cation service (v5). Request for Comments (RFC) 1510,
Network Working Group, IETF, September 1993.

[19] L. Lamport. LaTeX – A Document Preparation System –
User’s Guide. Addison-Wesley, 1985.

[20] B. W. Lampson. Protection. In Proceedings of the 5th
Princeton Symposium on Information Sciences and Sys-
tems, pages 437–443, March 1971. reprinted in Operat-
ing Systems Review, 8, 1 January 1974 pages 18–24.

[21] D. Mazières. Security and decentralised control in the
SFS distributed file system. Master’s thesis, MIT Labo-
ratory of Computer Science, 1997.

[22] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file sys-
tem security. In Proceedings of the 17th Symposium on
Operating Systems Principles, pages 124–139, Kiawah
Island, S.C., U.S.A., 1999.

[23] David Mazières and M. Frans Kaashoek. Escaping
the evils of centralized control with self-certifying path-
names. In Proceedings of the 8th ACM SIGOPS Euro-
pean workshop: Support for composing distributed ap-
plications, pages 118–125, Sintra, Portugal, September
1998.

[24] N. J. Neigus. File transfer protocol for the ARPA net-
work. Request for Comments (RFC) 542, Bolt Beranek
and Newman, Inc., August 1973.

[25] B. C. Neuman. Prospero: A tool for organizing internet
resources. Electronic Networking: Research, Applica-
tions and Policy, 5(4):30–37, 1992.

[26] B. C. Neuman. Proxy-based authorization and account-
ing for distributed systems. In Proceedings of the 13th
International Conference on Distributed Computing Sys-
tems, pages 283–291, Pittsburgh, Pennsylvania, U.S.A.,
May 1993.

[27] Telecommunication Standardization Sector of ITU. In-
formation Technology — Opens Systems Interconnection
— The Directory: Authentication Framework. Number
X.509 in ITU–T Recomandation. International Teleco-
munication Union, November 1993. Standard interna-
tional ISO/IEC 9594–8 : 1995 (E).

[28] J. B. Postel. Simple mail transfer protocol. Request for
Comments (RFC) 821, Information Sciences Institute,
University of Southern California, August 1982.

[29] H. C. Rao and L. L. Peterson. Accessing files in an inter-
net: The JADE file system. IEEE Transactions on Soft-
ware Engineering, 19(6):613–624, June 1993.

[30] J. Regan. Capafs: A globally accessible file system.
Department Technical Report TCD-CS-1999-70, Depart-
ment of Computer Science, Trinity College Dublin, 1999.

[31] P. Reiner, T. Page Jr., G. Popek, J. Cook, and S. Crocker.
Truffles – a secure service for widespread file sharing. In
Proceedings of the Privacy and Security Research Group
Workshop on Network and Distributed System Security,
1994.

[32] R. van Renesse, A. S. Tanenbaum, and A. Wilschut. The
design of a high-performance file server. In Proceedings
of the 9th International Conference on Distributed Com-
puting Systems, pages 22–27, Newport Beach, california,
U.S.A., June 1989.

[33] R. L. Rivest, A. Shamir, and L. Adleman. On a method
for obtaining digital signatures and public key cryptosys-
tems. Communications of the ACM, 21(2):120–126,
February 1978.

[34] R. Sandberg, D. Goldberg, Kleinman S, D. Walsh, and
B. Lyon. Design and implementation of the Sun Net-
work File System. In Proceedings of the Summer 1985
USENIX Conference, pages 119–130, Portland, Oregon,
U.S.A., June 1985.

[35] M. Satyanarayanan. Integrating security in a large dis-
tributed system. ACM Transactions on Computer Sys-
tems, 7(3):247–280, 1989.

[36] M. Satyanarayanan. Scalable, secure and highly avail-
able file access in a distributed workstation environment.
IEEE Computer, pages 9–21, May 1990.

[37] Sun Microsystems Inc. NFS: Network file system pro-
tocol specification. Request for Comments (RFC) 1094,
Network Working Group, March 1989.

[38] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating sys-
tem. In Proceedings of the 6th International Conference
in Computing Systems, pages 558–563, June 1986.

[39] A. Vahdat, P. Eastham, and T. Anderson. Webfs: A global
cache coherent file system. Department of Computer Sci-
ence, UC Berkeley, Technical Draft, 1996.

