
USENIX Association

Proceedings of the
10th USENIX Security

Symposium

Washington, D.C., USA
August 13–17, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Method for Fast Revocation of

Public Key Certi�cates and Security Capabilities�

Dan Bonehy Xuhua Dingz Gene Tsudikz Chi Ming Wongy

dabo@cs.stanford.edu xhding@isi.edu gts@ics.uci.edu bc@cs.stanford.edu

Abstract

We present a new approach to fast certi�cate re-
vocation centered around the concept of an on-line
semi-trusted mediator (SEM). The use of a SEM in
conjunction with a simple threshold variant of the
RSA cryptosystem (mediated RSA) o�ers a num-
ber of practical advantages over current revocation
techniques. Our approach simpli�es validation of
digital signatures and enables certi�cate revocation
within legacy systems. It also provides immediate
revocation of all security capabilities. This paper
discusses both the architecture and implementation
of our approach as well as performance and compat-
ibility with the existing infrastructure. Our results
show that threshold cryptography is practical for
certi�cate revocation.

1 Introduction

We begin this paper with an example to illustrate
the premise for this work. Consider an organization
{ industrial, government or military { where all em-
ployees (referred to as users) have certain authori-
ties and authorizations. We assume that a modern
Public Key Infrastructure (PKI) is available and all
users have digital signature, as well as encryption,
capabilities. In the course of performing routine ev-
eryday tasks users take advantage of secure applica-
tions such as email, �le transfer, remote log-in and
web browsing.

Now suppose that a trusted user (Alice) does some-
thing that warrants immediate revocation of her se-

�This work is supported by the Defense Advanced Project
Agency (DARPA) under contract F30602-99-1-0530.

yComputer Science Department, Stanford University.
zDepartment of Information and Computer Science, Uni-

versity of California, Irvine.

curity privileges. For example, Alice might be �red,
or she may suspect that her private key has been
compromised. Ideally, immediately following revo-
cation, Alice should be unable to perform any se-
curity operations and use any secure applications.
Speci�cally, this means:

{ Alice cannot read secure (private) email. This
includes encrypted email that is already resid-
ing on Alice's email server. Although encrypted
email may be basically delivered (to Alice's email
server), she cannot decrypt it.

{ Alice cannot generate valid digital signatures on
any further messages. (However, signatures gen-
erated by Alice prior to revocation may need to
remain valid.)

{ Alice cannot authenticate herself to corporate
servers.

In Section 7, we discuss current revocation tech-
niques and demonstrate that the above require-
ments are impossible to satisfy with these tech-
niques. Most importantly, current techniques do not
provide immediate revocation.

1.1 The SEM architecture.

Our approach to immediate revocation of security
capabilities is called the SEM architecture. It is easy
to use and its presence is transparent to peer users
(those that encrypt messages and verify signatures).
The basic idea is as follows:

We introduce a new entity, referred to as a SEM

(SEcurity Mediator). A SEM is an online semi-
trusted server. To sign or decrypt a message, Al-
ice must �rst obtain a message-speci�c token from
the SEM. Without this token Alice cannot use her
private key.1 To revoke Alice's ability to sign or de-

1The exact description of the token is in Section 2.

crypt, the security administrator instructs the SEM
to stop issuing tokens for Alice's public key. At that
instant, Alice's signature and/or decryption capa-
bilities are revoked. For scalability reasons, a SEM
serves many users.

We emphasize that the SEM architecture is trans-
parent to peer users: with SEM's help, Alice can
generate a standard RSA signature, and decrypt
standard messages encrypted with her RSA public
key. Without SEM's help, she cannot perform ei-
ther of these operations. The SEM architecture is
implemented using threshold RSA [3] as described
in section 2.

To experiment with this architecture we imple-
mented it using OpenSSL [12]. SEM is implemented
as a daemon process running on a server. We de-
scribe our implementation, the protocols used to
communicate with the SEM, and give performance
results in Sections 5 and 6.

We also built a plug-in for the Eudora client en-
abling users to send signed email. All signatures are
generated with SEM's help (see [15]). Consequently,
signing capabilities can be easily revoked.

1.2 Decryption and signing in the SEM
architecture

We now describe in more detail how decryption and
signing is done in the SEM architecture:

{ Decryption: suppose Alice wishes to decrypt an
email message using her private key. Recall that en-
crypted email is composed of two parts: (1) a short
header containing a message-key encrypted using
Alice's public key, and (2) the body contains the
email message encrypted using the message-key. To
decrypt, Alice �rst sends the short header to her
SEM. SEM responds with a short token. This to-
ken enables Alice to read her email. However, it
contains no useful information to anyone but Alice.
Hence, communication with the SEM does not have
to be protected or authenticated. We note that in-
teraction with the SEM is fully managed by Alice's
email reader and does not require any intervention
on Alice's part. This interaction does not use Al-
ice's private key. If Alice wants to read her email
o�ine, the interaction with the SEM takes places at
the time Alice's email client downloads Alice's email
from the email server.

{ Signatures: suppose Alice wishes to sign a mes-
sage using her private key. She sends a hash of the
message to the SEM which, in turn, responds with
a short token enabling Alice to generate the signa-
ture. As with decryption, this token contains no
useful information to anyone but Alice; therefore,
the interaction with the SEM is not encrypted or
authenticated.

Note that all interaction with the SEM involves very
short messages.

1.3 Other bene�ts of using a SEM

Our initial motivation for introducing a SEM is to
enable immediate revocation of Alice's key. We
point out that the SEM architecture provides two
additional bene�ts over standard revocation tech-
niques: (1) simpli�ed signature validation, and (2)
enabling revocation in legacy systems. These bene-
�ts apply when the following semantics for validat-
ing digital signatures are used:

Binding signature semantics: a digital signature
is considered valid if the certi�cate associated with
the signature was valid at the time the signature
was issued.

A consequence of binding signature semantics is
that all signatures issued prior to certi�cate revo-
cation are valid. Binding semantics are natural in
business contracts. For example, suppose Alice and
Bob enter into a contract. They both sign the con-
tract at time T . Bob begins to ful�ll the contract
and incurs certain costs in the process. Now, sup-
pose at time T 0 > T , Alice revokes her own certi�-
cate. Is the contract valid at time T 0? Using binding
semantics, Alice is still bound to the contract since
it was signed at time T when her certi�cate was still
valid. In other words, Alice cannot nullify the con-
tract by causing her own certi�cate to be revoked.

(We note that binding semantics are inappropriate
in some scenarios. For example, if a certi�cate is
obtained from a CA under false pretense, e.g., Alice
masquerading as Bob, the CA should be allowed to
declare at any time that all signatures ever issued
under that certi�cate are invalid.)

Implementing binding signature semantics with ex-
isting revocation techniques is complicated, as dis-
cussed in Section 7. Whenever Bob veri�es a signa-

ture generated by Alice, Bob must also verify that
Alice's certi�cate was valid at the time the signature
was issued. In fact, every veri�er of Alice's signa-
ture must perform this certi�cate validation step.
However, unless a trusted timestamping service is
involved in generating all of Alice's signatures, Bob
cannot trust the timestamp provided by Alice in her
signatures.

Implementing binding semantics with the SEM ar-
chitecture is trivial. To validate Alice's signature, a
veri�er need only verify the signature itself. There
is no need to check the status of Alice's certi�cate.2

Indeed, once Alice's certi�cate is revoked she can
no longer generate valid signatures. Therefore, the
mere existence of the signature implies that Alices's
certi�cate was valid at the time the signature was
issued.

The above discussion brings out two additional ben-
e�ts of a SEM over existing revocation techniques,
assuming binding semantics are su�cient.

{ Simpli�ed signature validation. Veri�ers need not
validate the signer's certi�cate. The existence of a
(veri�able) signature is, in itself, a proof of signa-
ture's validity.

{ Enabling revocation in legacy systems. Consider
legacy systems doing signature veri�cation. Often,
such systems have no certi�cate validation capa-
bilities. For example, old browsers (e.g., Netscape
3.0) verify server certi�cates without any means for
checking certi�cate revocation status. In SEM ar-
chitecture, certi�cate revocation is provided with-
out any change to the veri�cation process in these
legacy systems. (The only aspect that needs chang-
ing is the signature generation process. However,
we note that, often, only a few entities generate sig-
natures, e.g., CAs and servers.)

2 Mediated RSA

We now describe in detail how the SEM interacts
with users to generate tokens. The proposed SEM
architecture is based on a variant of RSA which
we call Mediated RSA (mRSA). The main idea in

2We are assuming here that revocation of Alice's key is
equavalent to revocation of Alice's certi�cate. In general,
however, Alice's certi�cate may encode many rights, not just
the right to use her key(s). It is then possible to revoke only
some of these rights while not revoking the entire certi�cate.

mRSA is to split each RSA private key into two
parts using threshold RSA [3]. One part is given to
a user while the other is given to a SEM. If the user
and the SEM cooperate, they employ their respec-
tive half-keys in a way that is functionally equivalent
to (and indistinguishable from) standard RSA. The
fact that the private key is not held in its entirety by
any one party is transparent to the outside world,
i.e., to the those who use the corresponding public
key. Also, knowledge of a half-key cannot be used
to derive the entire private key. Therefore, neither
the user nor the SEM can decrypt or sign a mes-
sage without mutual consent. (A single SEM serves
a multitude of users.)

2.1 mRSA in detail

Public Key. As in RSA, each user (Ui) has a pub-
lic key EKi = (ni; ei) where the modulus ni is prod-
uct of two large primes pi and qi and ei is an integer
relatively prime to �(ni).

Secret Key. As in RSA, there exists a corre-
sponding secret key DKi = (ni; di) where di�ei = 1
(mod �(ni)). However, as mentioned above, no one
has possession of di. Instead, di is e�ectively split
into two parts du

i
and dsem

i
which are held by the

user Ui and a SEM, respectively. The relationship
among them is:

di = dsemi + dui mod �(n)

mRSA Key Setup. Recall that, in RSA,
each user generates its own modulus ni and
a public/secret key-pair. In mRSA, a trusted
party (most likely, a CA) takes care of all key
setup. In particular, it generates a distinct set:
fpi; qi; ei; and di; d

sem

i
g for each user. The �rst

four are generated in the same manner as in stan-
dard RSA. The �fth value, dsem

i
, is a random inte-

ger in the interval [1; ni]. The last value is set as:
du
i
= di � dsem

i
.

After CA computes the above values, dsemi is se-
curely communicated to a SEM and du

i
{ to the user

Ui. The details of this step are elaborated in Sec-
tion 5.

mRSA Signatures. A user generates a signature
on a message m as follows:

1. The user Ui �rst sends a hash of the message m
to the appropriate SEM.

{ SEM checks that Ui is not revoked and, if
so, computes a partial signature PSsem =
md

sem

i (mod ni) and replies with it to the user.
This PSsem is the token enabling signature
generation.

{ concurrently, Ui computes PSu = md
u

i (mod
ni)

2. Ui receives PSsem and computes m0 = (PSsem �
PSu)ei (modni). If m0 = m, the signature is set
to: (PSsem � PSu) = mdi (mod ni).

Note that in Step 2 the user Ui validates the re-
sponse from the SEM. Signature veri�cation is iden-
tical to that in standard RSA.

mRSA Encryption. The encryption process is
identical to that in standard RSA. (In other words,
ciphertext is computed as c = mei (modni) where
m is an appropriately padded plaintext, e.g., using
oaep.) Decryption, on the other hand, is very sim-
ilar to signature generation above.

1. upon obtaining an encrypted message c, user Ui
sends it to the appropriate SEM.

{ SEM checks that Ui is not revoked and, if
so, computes a partial cleartext PCsem =
cd

sem

i (modni) and replies to the user.

{ concurrently, Ui computes PCu = cd
u

i (mod
ni).

2. Ui receives PCsem and computes c0 = (PCsem �
PCu)ei (modni). If c0 = c, the cleartext mes-
sage is: (PCsem � PCu) = cd

u

i .

2.2 Notable Features

As mentioned earlier, mRSA is only a slight mod-
i�cation of the RSA cryptosystem. However, at a
higher, more systems level, mRSA a�ords some in-
teresting features.

CA-based Key Generation. Recall that, in
RSA, a private/public key-pair is typically gener-
ated by its intended owner. In mRSA the key-pair is
typically generated by a CA, implying that the CA
knows the private keys belonging to all users. In the
global Internet this is clearly undesirable. However,
in a medium-sized organization this \feature" pro-

vides key escrow. For example, if Alice is �red, the
organization can still access her work-related �les
by obtaining her private key from the CA.

If key escrow is undesirable, it is easy to extend the
system in a way that no entity ever knows Alice's
private key (not even Alice or the CA). To do so, we
can use a technique due to Boneh and Franklin [2]
to generate an RSA key-pair so that the private key
is shared by a number of parties since its creation
(see also [4]). This technique has been implemented
in [8]. It can be used to generate a shared RSA key
between Alice and the SEM so that no one knows
the full private key. Our initial implementation does
not use this method. Instead, the CA does the full
key setup.

Immediate Revocation. The notoriously dif-
�cult revocation problem is greatly simpli�ed in
mRSA. In order to revoke a user's public key, it suf-
�ces to notify that user's SEM. Each SEM merely
maintains a list of revoked users which is consulted
upon every service request. Our implementation
uses standard X.509 Certi�cate Revocation Lists
(CRL's) for this purpose.

Transparency. mRSA is completely transparent
to those who encrypt data for mRSA users and
those who verify signatures produced by mRSA
users. To them, mRSA appears indistinguishable
from standard RSA. Furthermore, mRSA certi�-
cates are identical to standard RSA certi�cates.

Coexistence. mRSA's built-in revocation ap-
proach can co-exist with the traditional, explicit
revocation approaches. For example, a CRL- or a
CRT-based scheme can be used in conjunction with
mRSA in order to accommodate existing implemen-
tations that require veri�ers (and encryptors) to
perform certi�cate revocation checks.

CA Communication. CA remains an o�-line en-
tity. mRSA certi�cates, along with private half-keys
are distributed to the user and SEM-s in an o�-
line manner. This follows the common certi�cate
issuance and distribution paradigm. In fact, in our
implementation (Section 5) there is no need for the
CA and the SEM to ever communicate directly.

No Authentication. mRSA does not require any
explicit authentication between a SEM and a user.
Instead, a user implicitly authenticates a SEM by
verifying its own signature (or encryption) as de-
scribed in Section 2.1. In fact, signature and en-
cryption veri�cation steps assure the user of the in-
tegrity of the communication with the SEM.

3 Architecture

The overall architecture is made up of three compo-
nents: CA, SEM, and user.

A single CA governs a (small) number of SEMs.
Each SEM, in turn, serves many users. The assign-
ment of users to SEMs is assumed to be handled
o�-line by a security administrator. A user may be
served by multiple SEM's.

Our CA component is a simple add-on to the exist-
ing CA and is thus considered an o�-line entity. For
each user, the CA component takes care of generat-
ing an RSA public key, a corresponding RSA public
key certi�cate and a pair of half-keys (one for the
user and one for the SEM) which, when combined,
form the RSA private key. The respective half-keys
are then delivered, out-of-band, to the interested
parties.

The user component consists of the client library
that provides the mRSA sign and mRSA decrypt
operations. (As mentioned earlier, the verify and
encrypt operations are identical to standard RSA.)
It also handles the installation of the user's creden-
tials at the local host.

The SEM component is the critical part of the ar-
chitecture. Since a single SEM serves many users,
performance, fault-tolerance and physical security
are of paramount concern. The SEM is basically a
daemon process that processes requests from its con-
stituent users. For each request, SEM consults its
revocation list and refuses to help sign (or decrypt)
for any revoked users. A SEM can be con�gured to
operate in a stateful or stateless model. The former
involves storing per user state (half-key and certi�-
cate) while, in the latter, no per user state is kept,
however, some extra processing is incurred for each
user request. The tradeo� is fairly clear: per user
state and fast request handling versus no state and
somewhat slower request handling.

We now describe the SEM architecture in more de-
tail. A user's request is initially handled by the SEM
controller where the packet format is checked. Next,
the request is passed on to the client manager which
performs a revocation check. If the requesting user
is not revoked, the request is handled depending on
the SEM state model. If the SEM is stateless, it
expects to �nd the so-called SEM bundle in the re-
quest. This bundle, as discussed in more detail later,
contains the mRSA half-key, dSEM

i
, encrypted (for

the SEM, using its public key) and signed (by the
CA). The bundle also contains the RSA public key
certi�cate for the requesting user. Once the bun-
dle is veri�ed, the request is handled by either the
mRSAsign or mRSAdecrypt component. In case of the
appropriate signature request, the optional times-
tamping service is invoked. If the SEM maintains
user state, the bundle is expected only in the ini-
tial request. The same process as above is followed,
however, the SEM's half-key and the user's certi�-
cate are stored locally. In subsequent user requests,
the bundle (if present) is ignored and local state is
used instead.

The administrator communicates with the SEM via
the admin interface. The interface enables the ad-
ministrator to manipulate the revocation list.

4 Security of the SEM architecture

We now brie
y summarize the security features of
mRSA and the SEM architecture.

First, consider an attacker trying to subvert a user
(Alice). The attacker's goal is to decrypt a message
sent to Alice or to forge Alice's signature on a cer-
tain message. Recall that the token sent back to
Alice is t = xd

sem

mod N for some value of x. The
attacker sees both x and the token t. In fact, since
there is no authentication of the user's request to the
SEM, the attacker can obtain this t for any x of its
choice. We claim that this information is of no use
to an attacker. After all, dsem is just a random num-
ber in [1; n] independent of the rest of the attacker's
view. More precisely, we argue that any attack pos-
sible with the SEM architecture is also possible when
the user uses standard RSA. This statement can be
proven using a simulation argument. In attacking
standard RSA one can simulate the SEM (by pick-
ing a random integer dsem in [1; n]) and thus use the
attack on the SEM to mount an attack on standard

RSA. Furthermore, the attacker cannot masquerade
as the SEM since Alice checks all responses from the
SEM as described in Section 2.1.

Suppose the attacker is able to compromise the SEM
and expose the secret key dsem. This enables the at-
tacker to \unrevoke" revoked, or block possible fu-
ture revocation of currently valid, certi�cates. How-
ever, knowledge of dsem does not enable the attacker
to decrypt messages or sign messages on behalf of
users. Nevertheless, it is desirable to protect the
SEM's key. A standard approach is to distribute
the key among a number of SEM servers using se-
cret sharing. Furthermore, the key should never be
reconstructed at a single location. To extract the
SEM's key an attacker would need to break into mul-
tiple SEM servers. When using mRSA, it is possible
to distribute the SEM's secret in this way using stan-
dard techniques from threshold cryptography [3].

Once Alice's key is revoked, she cannot decrypt or
sign messages using her private key. To show this,
we argue that, if Alice could sign or decrypt mes-
sages using only her share of private key, then RSA
is insecure.

Finally, note that each user is given her own ran-
dom RSA modulus ni. This means that if a number
of users are compromised (or a number of users col-
lude) there is no danger to other users. The private
keys of the compromised users will be exposed, but
private keys of all other users will remain una�ected.

5 Implementation

We implemented the entire SEM architecture for the
purposes of experimentation and validation. The
reference implementation is publicly available. Fol-
lowing the architecture described earlier, the imple-
mentation is composed of three parts:

1. CA and Admin Utilities:
includes certi�cate issuance and revocation in-
terface.

2. SEM daemon:
SEM architecture as described in Section 3

3. Client libraries:
mRSA user functions accessible via an API.

Our reference implementation uses the popular
OpenSSL [12] library as the low-level cryptographic
platform. OpenSSL incorporates a multitude of
cryptographic functions and large-number arith-
metic primitives. In addition to being e�cient and
available on many common hardware and software
platforms, OpenSSL adheres to the common PKCS
standards and is in the public domain.

The SEM daemon and the CA/Admin utilities are
implemented on Linux and Solaris while the client
libraries are available on both Linux andWindows98
platforms.

In the initialization phase, CA utilities are used to
set up the RSA public key-pair for each client (user).
The set up process follows the description in Section
2. Once the mRSA parameters are generated, two
structures are exported: 1) SEM bundle, which in-
cludes the SEM's half-key dSEM

i
, and 2) user bundle,

which includes du
i
and the entire server bundle. The

format of both SEM and user bundles conforms to
the PKCS#7 standard.

The server bundle is basically an RSA envelope
signed by the CA and encrypted with the SEM's
public key. The client bundle is a shared-key en-
velope also signed by the CA and encrypted with
the user-supplied key which can be a password or a
passphrase. (A user cannot be assumed to have a
pre-existing public key.)

After issuance, the user bundle is distributed in an
out-of-band manner to the appropriate user. Before
attempting any mRSA transactions, the user must
�rst decrypt and verify the bundle. A separate util-
ity program is provided for this purpose. With it,
the bundle is decrypted with the user-supplied key,
the CA's signature is veri�ed, and, �nally, the user's
new certi�cate and half-key are extracted and stored
locally.

To sign or decrypt a message, the user starts with
sending an mRSA request with the SEM bundle pig-
gybacked. The SEM processes the request and the
bundle contained therein as described in Section 3.
(Recall that the SEM bundle is processed based on
the state model of the particular SEM.) All mRSA
packets have a common packet header; the payload
format depends on the packet type. The packet
header is de�ned in Figure 1.

0 8 16 24 32

+--------------+----------------+--------------+---------------+

| PROTOCOL | PACKET_TYPE | DATA_LENGTH |

+--------------+----------------+--------------+---------------+

PROTOCOL : protocol identifier. Set to MRSA(=1) in current code

PACKET_TYPE: one of the following:

1) REG_REQ_T : register request

2) REG_RLY_T : register reply

3) SIG_REQ_T : signature request

4) SIG_RLY_T : signature reply

5) DEC_REQ_T : decrypt request

6) DEC_RLY_T : decrypt reply

Figure 1: mRSA Packet Header

5.1 Email client plug-in

To demonstrate the ease of using the SEM architec-
ture we implemented a plug-in for the Eudora email
reader [15]. When sending signed email the plug-in
reads the user bundle described in the previous sec-
tion. It obtains the SEM address from the bundle
and then communicates with the SEM to sign the
email. The resulting signed email can be veri�ed
using any S/MIME capable email client such as Mi-
crosoft Outlook. In other words, the email recipient
is oblivious to the fact that a SEM is used to control
the sender's signing capabilities.

Figure 2 shows a screen snap shot of trying to send
signed email using a revoked key. In this exam-
ple, the plug-in contacts the SEM and is told that
the SEM will not supply the token for a revoked
key. Consequently, the plug-in displays a message
informing the user that the email cannot be signed.

6 Experimental Results

We conducted a number of experiments in order to
evaluate the practicality of the proposed architec-
ture and our implementation.

We ran the SEM daemon on a Linux PC equipped
with an 800 Mhz Pentium III processor. Two di�er-
ent clients were used. The fast client was on another
Linux PC with a 930 MHz Pentium III. Both SEM
and fast client PC-s had 256M of RAM. The slow
client was on a Linux PC with 466 MHz Pentium II

and 128M of RAM. Although an 800 Mhz processor
is not exactly state-of-the-art, we opted to err on the
side of safety and assume a relatively conservative
(i.e., slow) SEM platform. In practice, a SEM might
reside on much faster hardware and is likely to be
assisted by an RSA hardware acceleration card.

Each experiment involved one thousand iterations.
All reported timings are in milliseconds (rounded to
the nearest 0:1 ms). The SEM and client PCs were
located in di�erent sites interconnected by a high-
speed regional network. All protocol messages are
transmitted over UDP.

Client RSA key (modulus) sizes were varied among
512, 1024 and 2048 bits. (Though it is clear that
512 is not a realistic RSA key size any longer.) The
timings are only for the mRSA sign operation since
mRSA decrypt is operationally almost identical.

6.1 Communication Overhead

In order to gain precise understanding of our results,
we �rst provide separate measurements for commu-
nication latency in mRSA. Recall that both mRSA
operations involve a request from a client followed
by a reply from a SEM. As mentioned above, the
test PCs were connected by a high-speed regional
network. We measured communication latency by
varying the key size which directly in
uences mes-
sage sizes. The results are shown in Table 1 (mes-
sage sizes are in bytes). Latency is calculated as the
round-trip delay between the client and the SEM.
The numbers are identical for both client types.

Figure 2: Screen snapshot of SEM email plug-in

Keysize Message Size Comm. latency
(bits) (bytes) (ms)
512 102 4.0
1024 167 4.5
2048 296 5.5

Table 1: Communication latency

6.2 Standard RSA

As a point of comparison, we initially timed the
standard RSA sign operation in OpenSSL (Version
0.9.6) with three di�erent key sizes on each of our
three test PCs. The results are shown in Tables
2 and 3. Each timing includes a message hash
computation followed by an exponentiation. Ta-
ble 2 re
ects optimized RSA computation where
the Chinese Remainder Theorem (CRT) is used to
speed up exponentiation (essentially exponentiation
is done modulo the prime factors rather than mod-
ulo N). Table 3 re
ects unoptimized RSA computa-
tion without the bene�t of the CRT. Taking advan-
tage of the CRT requires knowledge of the factors (p
and q) of the modulus n. Recall that, in mRSA, nei-

ther the SEM nor the user know the factorization of
the modulus, hence, with regard to its computation
cost, mRSA is more akin to unoptimized RSA.

As evident from the two tables, the optimized RSA
performs a factor of 3-3.5 faster for the 1024- and
2048-bit moduli than the unoptimized version. For
512-bit keys, the di�erence is slightly less marked.

6.3 mRSA Measurements

The mRSA results are obtained by measuring the
time starting with the message hash computation
by the user (client) and ending with the veri�cation
of the signature by the user. The measurements are

Keysize 466 Mhz PII 800 Mhz PIII 930 Mhz PIII
(bits) (slow client) (SEM) (fast client)
512 2.9 1.4 1.4
1024 14.3 7.7 7.2
2048 85.7 49.4 42.8

Table 2: RSA results with CRT (in milliseconds).

Keysize 466 Mhz PII 800 Mhz PIII 930 Mhz PIII
(bits) (slow client) (SEM) (fast client)
512 6.9 4.0 3.4
1024 43.1 24.8 21.2
2048 297.7 169.2 144.7

Table 3: Standard RSA results without CRT (in milliseconds).

illustrated in Table 4.

It comes as no surprise that the numbers for the slow
client in Table 4 are very close to the unoptimized
RSA measurements in Table 3. This is because the
time for an mRSA operation is determined solely by
the client for 1024- and 2048- bit keys. With a 512-
bit key, the slow client is fast enough to compute its
PSu in 6:9ms. This is still under 8:0ms (the sum
of 4ms round-trip delay and 4ms RSA operation at
the SEM).

The situation is very di�erent with a fast client.
Here, for all key sizes, the timing is determined
by the sum of the round-trip client-SEM packet de-
lay and the service time at the SEM. For instance,
178:3ms (clocked for 2048-bit keys) is very close to
174:7ms which is the sum of 5:5ms communication
delay and 169:2ms unoptimized RSA operation at
the SEM.

All of the above measurements were taken with the
SEM operating in a stateful mode. In a stateless
mode, SEM incurs further overhead due to the pro-
cessing of the SEM bundle for each incoming re-
quest. This includes decryption of the bundle and
veri�cation of the CA's signature found inside. To
get an idea of the mRSA overhead with a state-
less SEM, we conclude the experiments with Table
5 showing the bundle processing overhead. Only
1024- and 2048-bit SEM key size was considered.
(512-bit keys are certainly inappropriate for a SEM.)
The CA key size was constant at 1024 bits.

7 Comparison of SEM with existing

certi�cate revocation techniques

Certi�cate revocation is a well recognized problem
with the existing Public Key Infrastructure (PKI).
Several proposals address this problem. We brie
y
review these proposals and compare them to the
SEM architecture. For each proposal we describe
how it applies to signatures and to encryption. For
simplicity we use signed and encrypted Email as an
example application. We refer to the entity vali-
dating and revoking certi�cates as the Validation
Authority (VA). Typically, the VA is the same en-
tity as the Certi�cate Authority (CA). However, in
some cases these are separate organizations.

A note on timestamping. Binding signature seman-
tics (Section 1.3) for signature veri�cation states
that a signature is considered valid if the key used
to generate the signature was valid at the time sig-
nature generation. Consequently, a veri�er must
establish exactly when a signature was generated.
Hence, when signing a message, the signer must in-
teract with a trusted timestamping service to obtain
a trusted timestamp and a signature over the user's
(signed) message. This proves to any veri�er that
a signature was generated at a speci�c time. All
the techniques discussed below require a signature
to contain a timestamp indicating when a signature
was issued. We implicitly assume this service. As
we will see, there is no need for a trusted time ser-
vice to implement binding signature semantics with
the SEM architecture.

Keysize 466 Mhz PII 930 Mhz PIII
(bits) (slow client) (fast client)
512 8.0 9.9
1024 45.6 31.2
2048 335.6 178.3

Table 4: Timings for mRSA (in milliseconds).

SEM key size Bundle overhead
1024 8.1
2048 50.3

Table 5: Bundle overhead in mRSA with a SEM in a stateless mode (in milliseconds).

7.1 Review of existing revocation tech-
niques

CRLs and �-CRLs: Certi�cate Revocation Lists
are the most commonway to handle certi�cate revo-
cation. The Validation Authority (VA) periodically
posts a signed list of all revoked certi�cates. These
lists are placed on designated servers called CRL
distribution points. Since these lists can get quite
long, the VA may alternatively post a signed �-CRL
which only contains the list of revoked certi�cates
since the last CRL was issued. For completeness, we
brie
y explain how CRLs are used in the context of
signatures and encryption:

{ Encryption: at the time email is sent, the sender
checks that the receiver's certi�cate is not on the
current CRL. The sender then sends encrypted
email to the receiver.

{ Signatures: when verifying a signature on a mes-
sage, the veri�er checks that, at the time that
the signature was issued, the signer's certi�cate
was not on the CRL.

OCSP: The Online Certi�cate Status Protocol
(OCSP) [11] improves on CRLs by avoiding the
transmission of long CRLs to every user and by pro-
viding more timely revocation information. To vali-
date a speci�c certi�cate in OCSP, the user sends a
certi�cate status request to the VA. The VA sends
back a signed response indicating whether the spec-
i�ed certi�cate is currently revoked. OCSP is used
as follows for Encryption and signatures:

{ Signatures: When verifying a signature, the ver-
i�er sends an OCSP query to the VA to check
if the corresponding certi�cate is currently valid.
Note that the current OCSP protocol prevents
one from implementing binding semantics: it is
not possible to ask an OCSP responder whether

a certi�cate was valid at some time in the past.
Hopefully this will be corrected in future versions
of the protocol.

One could potentially abuse the OCSP protocol
and provide binding semantics as follows. To sign
a message, the signer generates the signature,
and also sends an OCSP query to the VA. The VA
responds with a signed message saying that the
certi�cate is currently valid. The signer appends
both the signature and the response from the VA
to the message. To verify the signature, the ver-
i�er checks the VA's signature on the validation
response. The response from the VA provides
a proof that the signer's certi�cate is currently
valid. This method reduces the load on the VA:
it is not necessary to contact the VA every time
a signature is veri�ed. Unfortunately, there is
currently no infrastructure to support this mech-
anism.

{ Encryption: Every time the sender sends an en-
crypted message to the receiver she sends an
OCSP query to the VA to ensure that the re-
ceiver's certi�cate is still valid.

Certi�cate Revocation Trees: Kocher suggested
an improvement over OCSP [7]. Since the VA is a
global service it must be su�ciently replicated in or-
der to handle the load of all the validation queries.
This means the VA's signing key must be replicated
across many servers which is either insecure or ex-
pensive (VA servers typically use tamper-resistance
to protect the VA's signing key). Kocher's idea is to
have a single highly secure VA periodically post a
signed CRL-like data structure to many insecure VA
servers. Users then query these insecure VA servers.
The data structure proposed by Kocher is a hash
tree where the leaves are the currently revoked cer-
ti�cates sorted by serial number (lowest serial num-

ber is the left most leaf and the highest serial num-
ber is the right most leaf). The root of the hash tree
is signed by the VA. This hash tree data structure
is called a Certi�cate Revocation Tree (CRT).

When a user wishes to validate a certi�cate CERT
she issues a query to the closest VA server. Any inse-
cure VA can produce a convincing proof that CERT
is (or is not) on the CRT. If n certi�cates are cur-
rently revoked, the length of the proof is O(logn).
In contrast, the length of the validity proof in OCSP
is O(1).

Skip-lists and 2-3 trees: One problem with
CRT's is that, every time a certi�cate is revoked,
the entire CRT must be recomputed and distributed
in its entirety to the various VA servers. A data
structure allowing for dynamic updates would solve
this problem since the secure VA would only need
to send small updates to the data structure along
with a signature on the new root of the structure.
Both 2-3 trees proposed by Naor and Nissim [10] and
skip-lists proposed by Goodrich [5] are natural data
structures for this purpose. Additional data struc-
tures were proposed in [1]. When a total of n cer-
ti�cates are already revoked and k new certi�cates
must be revoked during the current time period,
the size of the update message to the VA servers
is O(k logn) (as opposed to O(n) with CRT's). The
proof of certi�cate's validity is O(logn), same as
with CRTs.

7.2 Comparison with SEM architecture

CRLs and OCSP are the most commonly deployed
certi�cate revocation techniques. Some positive ex-
periments with skip-lists are reported in [5]. We
compare the SEM architecture with CRLs and
OCSP. Since CRT's and skip-lists are used in the
same way as OCSP (i.e., query a VA to obtain a
proof of validity) most everything in our OCSP dis-
cussion applies to these methods as well.

Immediate revocation: Suppose we use CRLs for
revocation. Then, Bob veri�es a signature or en-
crypts a message he must �rst download a long CRL
and verify that the Alice's certi�cate is not on the
CRL. Note that Bob is uninterested in all but one
certi�cate on the CRL. Nevertheless, he must down-
load the entire CRL since, otherwise, the VA's sig-
nature on the CRL cannot be veri�ed. Since CRLs
and �-CRLs tend to get long, they are downloaded
infrequently, e.g., once a week or month. As a result,
certi�cate revocation might only take e�ect a month

after the revocation occurs. The SEM architecture
solves this problem altogether.

Suppose now that OCSP is usd for revocation.
Whenever Bob sends email to Alice he �rst issues an
OCSP query to verify validity of Alice's certi�cate.
He then sends email encrypted with Alice's public
key. The encrypted email could sit on Alice's email
server for a few hours or days. If, during this time,
Alice's key is revoked (e.g., because Alice is �red or
looses her private key) there is nothing preventing
the holder of Alice's private key from decrypting the
email after revocation. The SEM solves this prob-
lem by disabling the private key immediately after
revocation.

Implicit timestamping: Both OCSP and CRLs
require the signer to contact a trusted time ser-
vice at signature generation time to obtain a secure
timestamp for the signature. Otherwise, a veri�er
cannot determine with certainty when the signature
was issued. If binding semantics are su�cient, the
time service is unnecessary when using the SEM ar-
chitecture. Once a certi�cate is revoked, the corre-
sponding private key can no longer be used to issue
signatures. Therefore, a veri�er holding a signature
is explicitly assured that the signer's certi�cate was
valid at the time the signature was generated.

Shifted validation burden: With current PKIs,
the burden of validating certi�cates is placed on: (1)
senders of encrypted messages and (2) veri�ers of
signed messages. In the SEM architecture, the bur-
den of certi�cate validation is reversed: (1) receivers
of encrypted messages and (2) signers (generators)
of signed messages.

SEM Replication (A disadvantage): Since many
users need to use the SEM for decryption and sign-
ing, it is natural to replicate it. However, replicating
the SEM across organizations is not recommended
for the same reason that replicating the VA in OCSP
is not recommended. Essentially, the SEM gener-
ates tokens using a private key known only to the
SEM. The result of exposing this key is that an at-
tacker could unrevoke certi�cates. Replicating the
SEM might make it easier to expose the SEM's key.
Hence, the SEM architecture is mainly applicable
in the same environments where OCSP is used, i.e.,
mainly medium-sized organizations. The SEM ar-
chitecture is not geared towards the global Internet.

8 Conclusions

We described a new approach to certi�cate revo-
cation. Rather than revoking the user's certi�cate
our approach revokes the user's ability to perform
cryptographic operations such as signature genera-
tion and decryption. This approach has several ad-
vantages over traditional certi�cate revocation tech-
niques: (1) revocation is instantaneous { the in-
stant the user's certi�cate is revoked the user can
no longer decrypt or sign messages, (2) when us-
ing binding signature semantics there is no need to
validate the signer's certi�cate during signature ver-
i�cation, and (3) using mRSA this revocation tech-
nique is transparent to the peer { the system gen-
erates standard RSA signatures and decrypts stan-
dards RSA encrypted messages.

We implemented the SEM architecture for experi-
mentation purposes. Our measurements of the im-
plementation show that signature and decryption
times are essentially unchanged from the user's per-
spective. Therefore, we believe this architecture is
appropriate for a medium-size organization where
tight control of security capabilities is desired. The
SEM architecture is not designed for the global In-
ternet.

9 Acknowledgments

The authors gratefully acknowledge Carl Ellison for
helping us to get this paper into proper shape and
bringing up a number of interesting points. We also
thank Paolo Montini and Ignacio Solis for their help
with the initial SEM and mRSA prototyping.

References

[1] W. Aiello, S. Lodha, R. Ostrovsky, \Fast digital
identity revocation", In proceedings of CRYPTO
'98.

[2] D. Boneh, M Franklin, \E�cient generation of
shared RSA keys", In Proceedings of Crypto' 97,
Lecture Notes in Computer Science, Vol. 1233,
Springer-Verlag, pp. 425{439, 1997.

[3] P. Gemmel, \An introduction to threshold cryp-
tography", in CryptoBytes, a technical newsletter
of RSA Laboratories, Vol. 2, No. 7, 1997.

[4] N. Gilboa, \Two Party RSA Key Generation",
in Proceedings of Crypto '99.

[5] M. Goodrich, R. Tamassia, and A. Schwerin,
\Implementation of an Authenticated Dictionary
with Skip Lists and Commutative Hashing", In
Proceedings of DARPA DISCEX II, June 2001.

[6] S. Haber, W.S. Stornetta, \How to timestamp a
digital document", J. of Cryptology, Vol. 3, pp.
99{111, 1991.

[7] P. Kocher, \On Certi�cate Revocation and Val-
idation", Financial Cryptography { FC '98, Lec-
ture Notes in Computer Science, Springer-Verlag,
Vol. 1465, 1998, pp. 172-177.

[8] M. Malkin, T. Wu, and D. Boneh, \Experiment-
ing with Shared Generation of RSA keys", In pro-
ceedings of the Internet Society's 1999 Sympo-
sium on Network and Distributed System Secu-
rity (SNDSS), pp. 43{56.

[9] S. Micali, \Enhanced certi�cate revocation sys-
tem", Technical memo, MIT/LCS/TM-542b,
March 1996.

[10] M. Naor, K. Nissim, \Certi�cate revoca-
tion and certi�cate update", In proceedings of
USENIX Security '98.

[11] M. Myers, R. Ankney, A. Malpani, S. Galperin
and C. Adams, \X.509 Internet PKI Online
Certi�cate Status Protocol - OCSP". IETF
RFC 2560, June 1999.

[12] OpenSSL, http://www.openssl.org

[13] R. Rivest, \Can we eliminate Certi�cate Revo-
cation Lists", Financial Cryptography { FC '98,
Lecture Notes in Computer Science, Springer-
Verlag, Vol. 1465, 1998, pp. 178-183.

[14] R. Rivest, A. Shamir and L. Adleman, \A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems", CACM, Vol. 21, No.
2, February 1978.

[15] SEM Eudora plug-in.
http://crypto.stanford.edu/semmail/

