Energy Attack on Server Systems

Zhenyu Wu, Mengjun Xie⁺ and Haining Wang Department of Computer Science College of William and Mary

Presenter: Zhenyu Wu

The College of WILLIAM & MARY

⁺ Currently affiliated with University of Arkansas at Little Rock

Energy and Green Computing

• Energy cost has become a major factor in the total cost of ownership (TCO) of large-scale server clusters

Energy and Green Computing

- Millions of tons of carbon-dioxide are generated in order of power data centers
 - Two Google searches = boiling a cup of coffee
 - Global data center carbon emission (2007)

Energy Proportional Computing

• Aims to make servers consume energy proportional to its workload.

Energy Proportional Computing

• Power usage break down:

Potential Vulnerabilities

- Energy efficient computing assumes a cooperative working environment
 - Power saving is passive, dependent on workload
 - Not all workload consumes identical amount of energy

Formulating Attack Vectors

- Attack Vector:
 - Isolate high energy cost requests
 - Analyze the triggering conditions
 - Reproduce in high concentration
 - High percentages, but no necessarily large amounts
- Vulnerable systems: open services, such as search engine, knowledge base, public forum, etc.
 - Have little or no control over the incoming request
 - Energy consumption is largely dependent on the type and amount of service requests

- We use a Wikipedia mirror server as the victim
 - Publicly available large scale database
 - Representative of standard open Internet services
- We discover the attack vector by profiling the server
 - Powered by MediaWiki, a large scale content management system.
 - Two levels of caching for efficient operation
 - Object Cache for dynamically generated pages
 - Memory Cache for recently executed database queries

Enery Consumption Per Request

- Keys to launching the energy attack:
 - Generate Cache Misses
 - Much higher energy/request than normal workload
 - Avoid Generating Anomalies
 - Be <u>low profile</u>, <u>non-obtrusive</u>
 - Must not generate traffic anomaly
 - Must not cause obvious performance degradation

- Website access profiling
 - Cache Misses:
 - The frequency of a web page being accessed is inversely proportional to its rank (Zipf's law)
 - A small number of web pages are accessed very frequently A large number of web pages are accessed very infrequently
 - Different access patterns = **Cold** pages = Cache misses
 - Stealthiness:
 - The request inter-arrival time of human users follow Pareto distribution
 - The attackers can *mimic* normal users by sending requests at average rates, and following Pareto distribution

- Server Configurations:
 - Dual Intel Xeon 5540 quad-core processor
 - 6GB DDR₃ SDRAM
 - 2TB SATA HDD in RAID 5
 - Power usage monitored by Watts Up PRO power meter
- Experiment Methodology
 - The server is able to stably support accesses from up to 100 benign clients.
 - At different benign workloads (5~100 clients), we launch attack with varying intensity
 - Measure the increase in power consumption and latency

Workload – Response Time Profile (Normal)

Workload – Power Consumption Profile (Normal)

• Power vs. Latency Increase at high workloads (100 clients)

• Power vs. Latency Increase at medium workloads (50 clients)

• Power vs. Latency Increase at low workloads (10 clients)

WILLIAM & MARY

- Damage achieved:
 - 6.2% ~ 42.3% additional power usage, depending on workload.
 - For typical server workloads: 21.7% ~ 42.3% power wastage

WILLIAM & MARY

- Damage achieved:
 - 6.2% ~ 42.3% additional power usage, depending on workload.
 - For typical server workloads: 21.7% ~ 42.3% power wastage

Alternative Energy Attack Vectors

- Algorithmic Complexity Attacks
 - Algorithms that have high worst-case run time
 - Plain quick sort, naïve hash-table, etc.
 - Originally proposed as DoS attacks, can be adapted to use as energy attacks
 - Processors are the most power consuming devices
 - Be stealthy: lower intensity, target non-computation intensive servers (such as file depositing services)

Alternative Energy Attack Vectors

• Example:

- Linux directory cache vulnerability
 - Simple hash for quick file name lookup
 - Vulnerable to collision attack
- FTP server
 - Setup: upload thousands of files with colliding names
 - Attack: download, rename, read/write metadata, etc.

Alternative Energy Attack Vectors

- Sleep Deprivation Attacks
 - Originally proposed as DoS attacks in sensor network, can be adapted to use as energy attacks
 - Target components that have large dynamic power range
 - Doesn't require high per-unit power consumption
- Example:
 - A hard drive consumes 12~16 watts of power in operational states, but only ~1 watt in spin-down
 - File servers usually have tens of hard drives!
 - Malicious access patterns can interfere with power management and prevent expected spin-down

Challenge of Defense

- The key is still missing:
 - What we want to do
 - Differentiate high energy cost workload
 - What we have at hand
 - Coarse grained power measurement instrument
 - "We are under attack! ...

... And we have to suck it."

- Fine grained performance counters (approximation)
 - Good for single task systems (mobile phone / PDA / etc.)
 - Incompetent for highly parallel environment
- What we really need:
 - Fine grained power measurement support

Future Work

- Extend beyond single server
 - Server-clusters, server farms
 - Data center, massively virtualized environment
 - Etc.
- Explore software-based countermeasures
 - Temporary workarounds to the lack of hardware support
 - Explore possibility of inferring workload natures from application behavior profiling

