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Abstract

Pixelization is a technique to make parts of an image
impossible to discern by the human eye by artificially
decreasing the image resolution. Pixelization, as other
forms of image censorship, is effective at hiding parts of
an image that might be offensive to the viewer. However,
pixelization is also often used also to achieve anonymity,
for example to make the features of a person’s face un-
recognizable or the defining characteristics of cars and
building unidentifiable. This use of pixelization is some-
what effective in the case of still images, even though
it is open to dictionary attacks. However, when used in
videos, pixelization might be vulnerable to full recon-
struction attacks.

In this paper, we describe an attack against the
anonymization of videos through pixelization. We de-
velop an approach that, given a pixelized video, recon-
structs the image being pixelized so that the human eye
can clearly identify the object being protected. We im-
plemented our approach and tested it against both arti-
ficial and real-world videos. The results of our experi-
ments show that, in many cases, video pixelization does
not provide sufficient guarantees of anonymity.

1 Introduction

Hiding or blurring an image, or parts of it, is performed
to achieve different goals. For example, blurring is often
used to prevent graphic, suggestive, or offensive content
from being clearly identifiable by the viewer.

The most obvious way to remove content is to mask
the area to be protected using a solid-colored shape (e.g.,
a black square). However, other ways of hiding or blur-
ring an image that maintain the general appearance of
the image (e.g., in terms of color distribution) might be
preferred, as they produce a more “natural” result. For
example, blurring with a Gaussian filter, and tessellation
scrambling can be used for this purpose. However, if too

much information is retained through the blurring pro-
cess, it could be possible to invert the transformation and
obtain the original image. For example, three years ago,
a pedophile posted on the web a picture of himself where
his face was scrambled with a whirl blur filter to be un-
recognizable: nevertheless, the police was able to apply
the inverse filter and reconstruct the image of the man’s
face (see Figure 1).

Pixelization is a widely-used technique that decreases
the resolution of an area of an image to make the de-
tails of an image impossible to discern [4]."! Unfortu-
nately, pixelization is vulnerable to several reconstruc-
tion attacks and should only be used to hide the immedi-
ate appearance of offensive graphic content.

If pixelization is used to achieve privacy or
anonymization of a still image, the transformation could
be vulnerable to dictionary attacks [15]. Even worse,
if pixelization is used to anonymize a video, under cer-
tain conditions it is possible to completely reverse the
anonymization process and obtain the original, unpix-
elized image.

This is a known problem of pixelization [5]. However,
to the best of our knowledge, there has never been a for-
mal description of this attack, and, in addition, there is
no tool that is available to analyze pixelized videos.

In this paper we present an approach to the reconstruc-
tion of an image from pixelized video. Our approach
uses a number of novel techniques to optimize the recov-
ery process. We have developed a prototype tool that im-
plements our approach and we used it on several exam-
ples of pixelized videos. The results show that in many
cases it is possible to completely reconstruct the graphic
information that was protected by using pixelization.

For sake of simplicity, we limited our experiment to

"Note that the terms “pixelized” and “pixelated” are different. A
pixelized image is an image that has undergone the pixelization pro-
cess. A pixelated image is an image whose resolution allows one to
identify the single pixels of the image and in general gives the impres-
sion of poor quality.



Figure 1: The reconstructed picture of a suspected pe-
dophile (left) and the “anonymized” version that was
posted on the Internet (http://www.msnbc.msn. com/
id/21190969/; published on Oct 8, 2007; retrieved on
Nov 18, 2009).

gray-scale videos. Working with color videos does not
pose significant additional challenges, and the same tech-
nique we applied to our gray-scale video can be applied
separately to each channel (red, green, and blue compo-
nents) of a color video.

In summary, these are our contributions:

e We formalized the problem of reconstructing an im-
age from a video that has been anonymized using
pixelization. To the best of our knowledge, this is
the first formalization of the problem in this con-
text.

e We developed an approach for image reconstruction
that uses several novel techniques to optimize the
recovery of the graphic content that has been pix-
elized.

e We implemented our approach in a tool, and we
tested its performance on a number of videos, show-
ing that indeed content can be recovered in many
cases.

The rest of this paper is structured as follows. In Sec-
tion 2 we describe the de-identification approach that is
associated with pixelization. In Section 3, we describe
our approach to the reconstruction of the original image
from a sequence of pixelized images. Then, in Section 4,
we describe our tool and the experiments that we ran on
both artificial and real-world video sequences. We high-
light the limitations of our approach and potential areas
for improvement in Section 5, while, in Section 6, we
analyze related work. Finally, in Section 7 we briefly
conclude.

2 Image De-identification via Pixelization

Pixelization [4] is a technique employed to hide details
from an area of an image, by replacing the area with a
very low resolution version of it. An appealing feature
of this technique is that it preserves the color distribution
of the scrambled area, and, therefore, it gives the viewer
a milder distortion of the original image with respect to
other techniques.

In pixelization, the area of the image to be anonymized
is divided in a grid of squares of equal size,? and the color
of each square is replaced with the mean of the color of
the pixels underlying that square.

The results of pixelization can be seen, for example, in
Figure 4(b), where the face of William Mark Felt, Sr., the
man known as “Deep Throat” in the Watergate scandal,
is scrambled to make him unrecognizable.

However, when this method is applied to video se-
quences depicting the same subject, it is highly prob-
able that the pixelization squares change position with
respect to the underlying image, therefore averaging dif-
ferent pixels at different times. While a human observer
is not able to exploit this fact, it is not difficult to process
the video frames to obtain a partial reconstruction of the
original image. This process is call image recovery.

3 Image Recovery

For each frame, the pixelization filter is a linear oper-
ation, which maps multiple square regions of an image
into their respective means.

Let x be a vector of size C = n-m representing the
m X n image that we want to reconstruct. We intro-
duce the pixelization matrix P, defined as the vertical
concatenation of two matrices P; and P». P; has size
(R=(f-px-py),C), while P, has size (k,C), where:

e fis the number of frames available;

e px and py are the number of horizontal and vertical
pixelization squares; and

e k is the number of pixels that are covered by pix-
elization only in a subset of the frames, whose
value® can thus be retrieved exactly.

The total size of P is then (R+k,C). As shown in
Figure 3, each row of the first R rows of P represents
the pixelization operation applied to one square of one
frame. Therefore, supposing that the squares are of size

2 Actually, it is not necessary for the squares to be all of equal size or
to be squares at all. However, this is the most common way to perform
pixelization. Hereinafter, without loss of generality, we will assume
that the area to be pixelized is divided into equal-sized squares.

3In this paper, by pixel value we mean the 8-bit gray-scale value.
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Frame a.
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Figure 2: The black dot in the subject image is captured
by two frames a and b. In each frame, the dot is captured
by the same square (thin grid), but it is averaged with
different portions of the original image, because of the
relative offset in the pixelized area (thick grid) in a and b.

g x g, every such row will have g> elements set to 1/g>
and the rest of them set to 0. Each row r, in fact, when
multiplied by the image x, produces a single value given
by the average of the pixel in x underlying the square
represented by r. The vector b in Figure 3 stores such
known terms, one for each square and each frame, R =
f - px- pyin total.

The last k rows of the matrix will have just one element
setto 1.

The vector b needs further explanation. Each ele-
ment in b comes either from the average of a pixelization
square in a frame, or from the actual value of a single
pixel in the original image, which at some point in time
have slid out the pixelized area and could be retrieved
fully. We define the set of pixels that have emerged
from the pixelized area at least once during the video the
“uncovered pixels”. For real video sequences, the color
of the uncovered pixels will vary from frame to frame
(hopefully of a small quantity), so the value stored in b
will be the median of all the collected values from the
video sequence. Similarly, if the video is compressed
with a lossy algorithm, all the values of a pixelization
square may not be the same; in this case, as well, we
take the median value.

Differently from the majority of super-resolution ap-
proaches (e.g., [7] and [9]), we do not need to consider
the point spread function (PSF) of the video camera, i.e.,
we are not interested in modeling how a real image is
distorted though the lenses and the charge-coupled de-
vice (CCD). In fact, we are not trying to obtain an image
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Figure 3: The reconstruction procedure is cast as a linear
system. The pixelization matrix P is the vertical concate-
nation of Pj, in which different rows account for differ-
ent squares in different frames and P, which accounts
for the pixels that were seen out of the pixelized grid at
least once. x is the subject image to be reconstructed
(expressed as a vector). b is the vector of known terms,
coming either from the gray-level intensity of a square,
or from the actual value recorded for pixels seen outside
the pixelized grid at least once.

of resolution higher than the video frames, but, instead,
we are aiming to recover an image of the same quality.

The linear system Px = b is very unlikely to have an
exact solution; the system could be under-determined
because the video frames do not cover all the possible
offsets of the pixelization squares (which translates into
not having enough rows in P linearly independent with
each other). More precisely, if we have g x g pixeliza-
tion squares, in order to have a full-rank P matrix we
need the pixelized area during the video to cover g* ad-
jacent offsets. Intuitively, this implies that each pixel of
the original image appears in enough equations (rows of
P), in each of them averaged with other different pixels,
conveying enough information for the full reconstruction
of the original pixel.

Moreover, this system is likely to have no solution,
mainly for two reasons. The first one is the quantiza-
tion approximation, that is, the color of the pixelization
squares is not the exact mean of the original pixels, but,
instead, it is rounded to the nearest integer when stored
as a new frame; the second one is the fact that the images
in the different frames of a real-world video are subject
to change because of sensor noise, non discrete panning
of the camera, change in light, atmospheric aberration,
etc.

The naive way of trying to get the reconstructed image
£ would be trying to compute £ = PTb, where P is the
pseudo-inverse matrix of P. In this way, we would try
to find an X that minimizes the mean squared error of the



system. This solution, however, will not give satisfying
results (see Figure 4(c)) even for the ideal case in which
the P matrix has full rank and all the pixelized frames
have been generate from identical shifted images. This
is due to the sensitivity to the quantization of the value
of the pixelization squares. The pseudo-inverse method,
in fact, does not take into account that the values of the
pixels are bounded and generates a mostly out-of-range
solution featuring a chessboard like pattern.

3.1 Maximum A Posteriori (MAP) ap-
proach

Based on the experience provided by previous literature
and our experiments, we propose the following method
to obtain a good-quality reconstructed image in a rea-
sonable time frame. The goal of our approach is to find
an image £ such that, if shifted and pixelized in multiple
frames, will give an output sequence that is as close as
possible to our input video.

We therefore want to minimize the error with respect
to the P£ = b+ g, system, where g, is a vector of the
same size of b and whose elements can take values in the
range [—0.5,0.5]. The role of &, is to take into account
the quantization effect.

We also need a regularization function to be applied
to the image in order to correct for the noise introduced
by the quantization, the CCD sensor, the image registra-
tion error, etc. Such regularization function must smooth
image artifacts, but, at the same time, preserve edges.
Minimization of total variation (TV, or L; norm of im-
age derivatives) [13] has proven to be superior in image
de-noising when compared to L, norm minimization, be-
cause of its less strong penalization of image edges.

Our function to minimize, therefore, is:
Ff(x)=||Px—b—¢€l|]2+aTV(x) €))

where TV (x) = ||Vx]|; is the Total Variation of image x
and « is how much TV is weighted with respect to the
system’s mean squared error (MSE).

This approach is often called Maximum a Posteriori
(MAP) method. This class of methods tries to find the
original image x which, if pixelized, is most likely to
have generated the frames in the video, given a proba-
bility distribution for x. In our case, the regularization
function (i.e., the TV function) can be interpreted as the
prior probability for x, favoring piecewise smooth im-
ages.

In order to solve this problem, we followed the effi-
cient iterative approach proposed in [7], i.e., we adopted

the steepest descent method:

X1 = )ek_ﬁvf()ek)
Vilx) = P(Px—b)+
o Y (Sim(x) = shift g (S m(x)))

(I,m)e

{(0,1),(1,0)}

Sl7m(x) sign(x — Shift()ﬁll717m(x))

where 3 is the descent speed. The shiftoi s (x) func-
tion shifts the image x of / rows and m columns, while
filling the new border elements with zeros; the shift; ,(x)
function, is the same shifting operation, but the new ele-
ments will be the same as the previous ones in that posi-
tion. These two distinct operations are needed to ensure
proper handling of border pixels.

Although Farsiu et al. found that Bilinear Total Vari-
ation [14] regularization gives better results [7], in our
case it is not beneficial because of the chess-board pat-
tern that the minimum MSE solution tends to generate.
Therefore, in contrast with Fariusa et al. [14], we limit
the radius of the TV regularization operator for each
pixel to 1. This means that for each pixel the TV is com-
puted taking into account only its axis aligned adjacent
pixels (North, South, East, West).

3.2 Image Registration

In pixelized video recovery, we assume that the same
image has been recorded in different frames at different
positions. One of the most important tasks is therefore
image registration, i.e., the tracking of how the image
moves across frames. Wrong or inaccurate image regis-
tration would lead to reconstruction with excessive blur-
ring or artifacts (depending on the chosen weight for TV
regularization).

Our reconstruction technique is extremely sensitive to
image registration. At each frame, we require that the
pixelized image is accurately tracked, which means to
correctly recover the offset with respect its position in
the previous frame.

To improve the accuracy of this step, we developed a
sub-pixel image registration technique. This technique
allows us to deal with, and recover correctly, fractional
(sub-pixel) image offsets. A detailed description of how
the sub-pixel registration is performed is out of the scope
of this work.

3.2.1 Image registration with OpenCV

In order to perform image registration we used the In-
tel OpenCV library [1], which contains a collection of
computer vision functions. In particular, the optical flow



tracking API allowed us to automatically identify inter-
esting features on the input video and track their move-
ment across multiple frames.
We used the
cvCalcOpticalFlowPyrLK()

method, implementing a pyramidal version of the Lucas-
Kanade feature tracking algorithm [3]. Such algorithm
proved to be faster that the other optical flow tracking
functions implemented in OpenCYV, yet very precise (pro-
viding fractional offsets) and convenient for our needs; in
fact it allows us to provide an image mask that we used to
exclude the pixelized area from being analyzed for move-
ment tracking. The image mask also allows us to instruct
the feature tracking algorithm to work on a restricted part
of the image, containing feature moving together with
the pixelized area of the image (e.g., a moving car or
person).

3.3 Outliers removal

When dealing with real videos recoded by a camcorder,
a longer video sequence does not necessarily mean im-
proved reconstruction quality. In fact some variables of
the video are likely to change over time (e.g., light source
intensity and position, automatic white balance of the
camcorder, position of the subject or camera).

Moreover, even for short video sequence, the image
registration algorithm may give inaccurate results for
some frames.

In both cases the effectiveness of our approach is neg-
atively affected. We therefore introduced a method for
recursively filtering out the outliers, i.e., the frames that
mostly contribute to the error of the recovered solution
in our linear system.

This can be achieved by observing the distribution of
the squared errors (b — P£)> summed over each frame. In
our experiments, as shown in Section 4.3, we observed
that a small set of frames was giving a much higher con-
tribution to the error than the other frames. We therefore
removed them from the video and reprocessed it to re-
cover the pixelized image again.

4 Experiments

In order to show the effectiveness of our approach we
provide three examples, one from an artificial video se-
quence, and two from real-world videos. All the experi-
ments have been run with § = 0.3 and @ = 0.01 for the
steepest descent algorithm.

4.1 Ideal case

The artificial video has been created by using one single
image (Figure 4(a)). Such image has been shifted into 10

different positions both horizontally and vertically, so as
to generate 100 different frames, which have been com-
bined sequentially into a video. Then, the video has been
pixelized into 100 squares of size 10 x 10 (Figure 4(b)).
After that, the pixelized video has been process with the
algorithm described in Section 3 (Figure 4(d)).

Even though this case represents an optimal, unreal-
istic example, it represents an interesting baseline for
our approach. In particular, it shows that even after a
10 x 10 pixelization it is possible to recover an impres-
sive amount of image detail. It also allows a compar-
ison between the extremely noisy solution provided by
the pseudo-inverse method and the solution provided by
the MAP approach with total variation prior.

We then tried to vary the size of the pixelization
squares, while keeping fixed the size of the pixelized
area. More specifically, we used the same image of the
previous example and pixelized with pixelization squares
of size 2, 3, 4, 5, 6, 10, 12, and 15. For every experi-
ment, we wanted a 60 x 60 pixelized area, with no pixel
getting uncovered in any frame. The mean square error
per pixel of the reconstructed image proved to increase
linearly with the size of the pixelization square. As such
number increases, also the number of frames in the video
sequence increases, and therefore one may expect that
this additional information would compensate for the re-
duced number of equations per frame (as the number of
pixelization squares decreases): in fact, the number of
equations in the P; matrix remains constant. However,
bigger pixelization squares imply that more information
is lost during the quantization of the value of each square;
in other words, every equation of P; has more degrees of
freedom (pixels) in re-distributing the quantization error.

In the previous example, we generated a number of
frames having different offsets in order to have a full-
rank P matrix. For example, if the pixelization squares
size was 10 x 10, we shifted the original image from 1 to
10 pixels horizontally and from 1 to 10 pixels vertically,
therefore generating 100 different image offsets. How-
ever, we wanted to see how a reduced number of avail-
able frame offsets would impact the quality of the recon-
structed image. For this purpose, we randomly selected a
fraction of all the frames of the previous experiment and
ran the same reconstruction algorithm on that. We re-
peated the experiment for 10 different percentages, from
10% to 90%. In Figure 5, we show the recovered im-
ages, while in Figure 6 we plotted the value of the mean
squared error per pixel of the pixelized area. This shows
that with our reconstruction method we do not actually
need a full-rank P matrix (as it usually happens for a real
video); the algorithm is therefore robust even if 50% of
the frames are missing.



(a) p=10%

(b) p=30%

() p=50%

(d) p=70% (e) p=90%

Figure 5: Recovered images according to different values of p, where p is the percentage of distinct frames available
for image reconstruction. Such percentage is relative to the minimum number F of frame at different offsets which
would give a full-rank P matrix. In this case, the same video as in Figure 4 was used: 10 x 10 pixelization squares have
been used, so F is 100. Therefore p = 30% means that 30 distinct frames were available for image reconstruction. The
recovery of the original image was performed 5 different times, each time using a given fraction of the total frames.

The actual frames used have been selected randomly.

4.2 License plate recovery

The second example is a video recorded with a common
consumer 460K pixel CCD Mini-DV camcorder. A 120-
frame (4-second) sequence has been recorded by a per-
son standing still and holding the video camera in her/his
hands, while pointing it towards the back of a car. The
part of the frames depicting the license plate of the car
have then been pixelized with 4 x 4 pixel squares, ac-
cording to the algorithm described in Section 2 (Fig-
ure 7(a)). Even though the person shooting the video was
asked not to move, small oscillations are typical when the
video recording device is held without a tripod. The pix-
elization of the sequence is done by a video processing
filter, which is creating the pixelization squares in a fixed
position with respect to the video frame borders rather
than the subject being recorded.

We then exploited these continuously changing differ-
ences in position between the license place and the pix-
elization grid in order to recover the original license plate
number. Image registration has been performed on the
rest of the car image as described in the previous section.

The resulting image (Figure 7(b)) shows how the let-
ters and numbers are clearly readable, even if for a hu-
man observer the original video sequence would have
given no clue. This example proves how pixelization
has failed its intent to preserve privacy. Even though
from the video itself the details of the license plate are
not revealed, someone interested in recovering the sen-
sitive information can do so with an inexpensive video
processing procedure.

4.3 Face recovery

The third example (Figure 8) is still real video, recorded
in the same way as the previous example. This video is
a recording of a face for 10 seconds (300 frames). The
size of the pixelization squares is, in this case 8 x 8. In

this longer video, there is a relevant number of frames
that give an excessive contribution to the error of the re-
construction model. This can be seen by the plot of the
squared error contribution (b — A£)? summed over each
frame (Figure 9). Note that in the graph, the frames are
not in chronological order, but have been ordered accord-
ing to increasing squared error contribution. In fact, the
contribution for the last 50 frames grows much faster
than the rest of the frames. We therefore applied the
technique described in Section 3.3, removing them from
the video and recomputing the solution of the reconstruc-
tion problem again. It is interesting to note that, in this
case, the outliers removal process helped in discarding
the frames when the subject was blinking, therefore al-
lowing us to retain good detail also in the area around
the eyes.

Again, the pixelization processing failed to hide the
identity of the subject. The reconstructed face is clearly
identifiable.

5 Potential Techniques for Improvement

The environment of the input video for which our ap-
proach would successfully work out-of-the-box is very
limited. For example, we assume that the subject is
still with respect to the background and the only allowed
movements for the camera are horizontal/vertical trans-
lation or slight rotation (panning/tilting).

No zooming or horizon rotation are considered, al-
though they might be typical for a hand held camcorder.
Such camera movement can be taken into account by fur-
ther developing the model in order to be able to describe
all rigid movements of the image.

If the subject is not still with respect to the back-
ground, two different approaches may be followed. If the
subject is not completely covered by the pixelized image,
we can perform image registration on the uncovered parts



(a) Original image (b) Pixelized frame

(c) Pseudo-inverse reconstruc-
tion

(d) MAP recovered image

Figure 4: Example of reconstructed images from an arti-
ficial video. A single image (a) has been shifted into 64
different positions and than pixelized (b). The original
image has then been recovered with the pseudo-inverse
method (c) or with the proposed algorithm (d) from the
64-frame video.

(e.g. the top of the head and the shoulders on the example
of Figure 8, or the body of a running car). Alternatively,
if the subject is completely covered by the pixelization,
tracking of its movement can be attempted computing its
center of mass, although the estimation would be clearly
much less accurate.

Further developing this method of recovery of pix-
elized images towards allowing more degrees of free-
dom on the input video, 3D camera movement track-
ing can be considered, using software like Vicon Bou-
jou [2] and augment the P matrix to take into account
affine deformation of the subject. For example, this im-
provement would allow targeting the reconstruction of
a license place of a passing car observed by a panning
camera.

An additional important direction of improvement is
taking into account the artifacts introduced by MPEG
compression, which may badly interfere with the pix-
elization squares. As of the current implementation, we
are addressing this problem by taking the median of the
values of the pixelization squares. However, considering
how the compression process distorts the image would
help detecting better values of the pixelized image.

250
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Figure 6: Mean squared error per pixel of the pixelized
area vs. the percentage of distinct image position offset
between frames available for reconstruction, with refer-
ence to the example in Figure 5.

(a) Pixelized frame (b) MAP Recovered image
Figure 7: Pixelized frame (a) and recovered image (b)
from a 120-frame real video sequence of a license plate.
Pixelization squares are 4 x 4 pixel big.

6 Related Work

The fact that pixelization may fail to preserve privacy is
not new. Neustaedter et al. raise some concerns when
blurring and pixelization are used for video-conferencing
in home settings [10]. The authors reached the conclu-
sion that it is not possible to provide a good idea of the
the scene depicted in the video and at the same time pre-
serve the privacy of the subject being recorded by using
blurring/pixelization.

Also the effectiveness of pixelization applied to faces
has already been questioned. Gross et al. show that pix-
elization has very low effectiveness in preserving pri-
vacy when pixelized video sequence is fed to a face
recognition software matching the face against a face
database [8]; quite unexpectedly, they also find that at-
tempts to reconstruct the original image usually worsen
the effectiveness of the recognition algorithm. Our con-
cern is different: we do not want to avoid a face to be
matchable against a database, but we want to recover the
original image (e.g., a face or a license plate number) in
a way that it is recognizable for the human eye.

More recently, Dufaux [5] analyzed the effectiveness



(a) Original image (b) Pixelized frame

(c) Average of pixelized frames (d) MAP Recovered image

Figure 8: Frame from original video (a) and pixelized
frame (b). Image (c) has been obtained by averaging
all the pixelized frames after image registration. Image
(d) is the output of our recovery process. The pixelized
frames are taken from a 300-frame real video sequence
of a face. Pixelization squares are 8 x 8 pixel big.

of various Privacy Enabling Technologies applied to hu-
man faces in a video sequence. They compared different
anonymization methods by means of similarity measures
and effectiveness of application of face recognition tech-
niques to the anonymized video. Again, pixelization was
shown to be weaker than other methods.

The process of recovering an image after it has gone
through a process of pixelization is a particular case of
image super-resolution, i.e., the extraction of a high-
resolution image from a sequence of low resolution ones.
Super-resolution has been an active field of research in
the last twenty years; a broad and detailed analysis of
such work is presented in [12]. Our approach is similar
to the work of Farsiu et al. [7] in the method used to find
the recovered images: like them, we are using the steep-
est descend method to minimize the error of our linear
model augmented with a total variation-based regulariza-
tion of the image.

However, our model is augmented in order to take into
account more information about our input (i.e., the fact
that the pixelization is created by an averaging video fil-
ter and that there are uncovered pixels in some frames

2.8

26

24 b

22 b

Squared error (105)

0 50 100 150 200 250 300
Frames

Figure 9: Sum of squared error contributions (b; — A;£)?
per frame on the example of Figure 8. Frames have been
ordered according to increasing squared error contribu-
tion.

which are helping us to recover the original image).

Additional research in the super-resolution field has
targeted color images [6], which pose additional issues
when the video sequence is coming without rescaling
from a CCD sensor. Moreover, more sophisticate algo-
rithms looking for a maximum a posteriori solution, and,
at the same time, computing optimal image registration
has been explored by Pickup [11]. Another interesting
approach comes from Gunturk et al., whose model takes
into account errors introduced by video compression pro-
cesses [9]. These techniques have not been applied to our
proof-of-concept experiments, but are however interest-
ing paths to explore for future research.

7 Conclusions

Pixelization is a technique to blur an image (or the frame
of a video) to either protect the viewer from offensive
content or prevent the viewer from recognizing the char-
acterizing features of an object (such as a face, a car’s
plate number, etc.)

We have developed a new approach and developed a
tool that performs an attack against the privacy of pix-
elized videos. The results of our experiments show that,
in many cases, images can be recovered from pixelized
videos, and, therefore, this technique should not be used
to achieve privacy.

Future work will focus on how additional information
about the geometry and position of the objects to be re-
covered can be used to improve the reconstruction pro-
cess, especially in cases where the object being blurred
roto-translates with respect to the camera.
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