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Abstract

Efficiently managing storage is important for virtualized
computing environments. Its importance is magnified
by developments such as cloud computing which con-
solidate many thousands of virtual machines (and their
associated storage). The nature of this storage is such
that there is a large amount of duplication between oth-
erwise discreet virtual machines. Building upon previ-
ous work in content addressable storage, we have built
a prototype for consolidating virtual disk images using
a service-oriented file system. It provides a hierarchi-
cal organization, manages historical snapshots of drive
images, and takes steps to optimize encoding based on
partition type and file system. In this paper we present
our experiences with building this prototype and using
it to store a variety of drive images for QEMU and the
Linux Kernel Virtual Machine (KVM).

1 Motivation

The installation, organization, and management of disk
images is a critical component of modern virtualization
technologies. In typical configurations, it is the disk im-
ages (and in particular the root disk image) that defines
the identity of a particular virtual machine instance. To
be effective, a storage virtualization system must be ex-
tensible, able to scale to a large number of virtual ma-
chine instances, and support advanced storage features
such as replication, snapshoting, and migration. It is also
highly desirable that such a system be able to rapidly
clone disk images, such that multiple virtual machines
may use it as a template for their own image.

The introduction of cloud computing magnifies the
importance of scalability and efficiency in dealing with
storage virtualization. Instead of dozens of virtual
machines, cloud environments are designed to support
thousands (if not hundreds of thousands [1]) of virtual
machines and so will require many-thousand virtual disk
images in order to function – as well as sufficient infras-
tructure to provide backups and management.

Today’s virtualization environments have a variety of
mechanisms to provide disk images. Users may use
raw hardware partitions physically located on the host’s
disks, partitions provided by an Operating System’s log-
ical volume manager [4], or partitions accessed via a

storage area network. In addition to these raw parti-
tions, many hypervisors provide copy-on-write mecha-
nisms which allow base images to be used as read-only
templates for multiple logical instances which store per-
instance modifications.

We have previously experimented with both file and
block-based copy-on-write technologies [9] for manag-
ing the life cycle of servers. While we found such
“stackable” technologies to be very effective for ini-
tial installation, the per-instance copy-on-write layers
tended to drift. For example, over the lifetime of the
Fedora 7 Linux distribution there were over 500MB of
software updates to the base installation of 1.8GB. While
that represents only about 27% of changes over a year of
deployment – it becomes greatly magnified in a large-
scale virtualization environment.

Our assessment at the time was that simple stacking
wasn’t sufficient, and that a content addressable stor-
age (CAS) approach to coalescing duplicate data be-
tween multiple disk images would provide a solution to
the incremental drift of virtual disks. Additionally, the
nature of CAS would obviate the need for end-users to
start with a template image as any duplication would be
identified and addressed by the CAS back end. Further-
more, CAS solutions lend themselves to rapid cloning,
snapshoting, and can be configured to implicitly provide
temporal-based backups of images.

Others have looked at using CAS solutions for
archival of virtual machine images [12] and managing
disk images [11]. Nath, et.al. evaluate the use and de-
sign tradeoffs of CAS in managing a large set of VM-
based systems in an enterprise environment [8]. In all of
these cases, the authors used content addressable stor-
age as a sort of library from which disk images could
be “checked-out”. We were more interested in looking
at a live solution where the disk image was always di-
rectly backed by content addressable storage such that
no check-in or check-out transactions are necessary.

The rest of this paper is organized as follows: sec-
tion 2 provides the results of our preliminary analysis
comparing the amount of duplication present in several
loosely related disk images. Section 3 describes our
prototype implementation of a content addressable im-
age management system for virtual machines. Section 4
gives our preliminary performance analysis of the proto-



type, and section 5 describes our status and future work.

2 Image Analysis

In order to assess the potential for coalescing duplicated
data between virtual disk images we compared a cross-
section of images from various versions of various Linux
distributions as well images resulting from separate in-
stalls of Windows XP. We establish overlap candidates
by crawling the file systems, producing a SHA-1 cryp-
tographic hash for each file and associating it with the
size of the file and the number of hard-links to the file in
a manner similar to Mirage’s manifests [11]. The Linux
file systems in question are Ext2 formatted root volumes
(without /boot which contains the kernels and ram disks)
present after the default installation of the various distri-
butions.

We then determine the amount of self-similarity
within a file system by looking for duplicate hashes
and discounting hard linked copies as false duplicates.
Our analysis showed that typical root disk images have
around 5% duplicate file data within a single image af-
ter initial installation, and that the amount of duplicate
file data seems to be increasing (Fedora 7 had 4.1% or
70MB, Fedora 9 has 5.3% or 116MB). We then concate-
nate file lists from two different images and look for du-
plicate file hashes to establish the amount of data du-
plicated between the two images. The total size of the
duplicate files is compared to the total size of all files
from the two images to calculate the % of duplicates.

Image Base Office SDK Web
Base 96% 88% 85% 95%
Office 96% 79% 87%
SDK 96% 85%
Web 96%

Figure 1: Different Fedora 9 Flavors

Figure 1 shows the amount of similarity between sep-
arate installs of several different configurations of the
Fedora 9 x86–64 distribution. The image personality
is determined by options selected during the installation
process. TheBaseconfiguration is the standard instal-
lation, with no personality configuration selected. The
Office configuration contains productivity applications
such as OpenOffice, theSDKconfiguration contains de-
velopment tools and resources, and theWebconfigura-
tion contains the necessary applications for web serv-
ing. Separate installations of the same configuration had
96% similarity according to our methodology. The dif-
ferences are likely log files and other metadata which
would be particular to a specific system instance. Not
surprisingly, the similarity amongst the different config-
urations is relatively high due to the common base in-

stallation which accounts for around 80% or more of the
data.

Figure 2: Different Architectures

We then compared slightly less similar images by
comparing the installation of a 32-bit Fedora 9 system
with a 64-bit Fedora 9 system. As can be seen in Fig-
ure 2 we observed roughly 60% overlap between the two
images consisting primarily of the non-binary portions
of the installation (configuration files, fonts, icons, doc-
umentation, etc.).

Image Fed 8 Fed 9 Ubuntu OpenSuSe-11
Fedora 7 34% 22% 8% 15%
Fedora 8 31% 10% 16%
Fedora 9 11% 21%
Ubuntu 8.04 8%

Figure 3: Different Distributions

Next, we compared several different distributions,
looking at the overlap between different versions of Fe-
dora as well as 32-bit versions of Ubuntu and OpenSuSe
11. The resulting overlap can be seen in Figure 3. As
one might expect, adjacent versions of the distribution
had relatively high degrees of overlap ranging from 22%
to 34% despite about a year of time between their re-
spective releases. It should be pointed out that the ef-
fect is cumulative, if looking across all three distribu-
tions which total about 6 GB of root file system data,
2GB of that data is overlapped data resulting in approx-
imately 1.2GB of wasted space. The overlap between
the Fedora installations and the other distribution ven-
dors is less striking. There was a high degree of overlap
between Fedora and OpenSuSe but a much lower degree
of overlap with Ubuntu. The results are a little offset be-
cause the Ubuntu image is almost an order of magnitude
smaller than the Fedora and SuSe base installations.

Switching from Linux to Windows, we compared two
separate installations of WindowsXP on a FAT32 file
system. We selected a FAT32 installation over NTFS
to reduce the complexity of analyzing block-based re-
sults. We were somewhat dismayed to discover only a
27% overlap as can be seen in Figure 4. A closer look
reveals that the two largest files in the instance file sys-
tems are the hibernation file (hiberfil.sys) clocking in at



Figure 4: Individual WindowsXP Installs

just under a gigabyte in size and the swap file (page-
file.sys) hovering around 1.5 gigabytes in size. This 2.5
gigabytes actually comprises more then 60% of the over-
all size of the file system. Discounting these two files we
find roughly 90% overlap between the two distributions.

Figure 5: Effect of Block Size on Efficiency

Digging deeper, we observed that both of these files
were primarily zero–filled. We reworked our analysis
tools to perform block-level hashing of files within the
file system at 512-byte, 1k, 4k, and 8k granularities.
By comparing file content hashes at this level of gran-
ularity we were able to more effectively detect dupli-
cation within files as well as handle sparse files more
efficiently. As can be seen in theWindows File Block
results in Figure 5 we achieved near perfect (99%) de-
duplification of the two Windows install images using
any of the block size options. Results were fractional
better with 512 byte blocks, but the overhead associated
with tracking such small blocks in a CAS would far out-
weigh the benefits.

We also used the same tool to scan the raw disk image
at the various block granularities. Its effectiveness at de-
duplicating blocks are shown in theWindows Disk Block
result in Figure 5. The results show a slightly higher
efficiency for 8k blocks, but this is primarily due to error
associated with partial blocks and our discounting zero-
filled-blocks. The disk based scan was able to identify
approximately 93% of the duplicate data.

We then applied these same two techniques to analyz-
ing two different installations of the same Linux distri-
bution as can be seen in theLinux File BlockandLinux
Disk Blockresults. We found similar results to the Win-
dows analysis with the exception that 8k block granu-
larity did very poorly with Linux most likely due to dif-
ferences between Ext2 and FAT32 layout schemes since
both file systems reported using 4k block sizes.

3 Implementation
In order to get a better idea of the performance and ef-
ficiency implications of using a CAS based image man-
agement system, we constructed a prototype by combin-
ing the Venti [10] CAS back end with a service-oriented
file system to provide an organizational infrastructure
and tested it with guest logical partitions running under
QEMU [2] which provides the Virtual I/O infrastructure
for KVM [6].

Venti provides virtualized storage which is addressed
via SHA-1 hashes. It accepts blocks from 512 bytes to
56kb, using hash trees of blocks to represent larger en-
tries (VtEntry), and optionally organizing these entries
in hash trees of hierarchical directories (VtDir), which
are collected into snapshots represented by a VtRoot
structure. Each block, VtEntry, VtDir, and VtRoot has
an associated hash value, which is also referred to as a
score. Venti maintains an index which maps these scores
to physical disk blocks which typically contain com-
pressed versions of the data they represent. Since the
SHA-1 hash function effectively summarizes the con-
tents of the block, duplicate blocks will resolve to the
same hash index – allowing Venti to coalesce duplicate
data to the same blocks on physical storage.

Using Venti to store partition images is as simple as
treating the partition as a large VtEntry. Slightly more
intelligent storage of file system data (to match native
block sizes and avoid scanning empty blocks) can be
done with only rudimentary knowledge of the underly-
ing file system. If the file system isn’t recognized, the
system can fall-back to a default block size of 4k. This
approach is used by the vbackup utility in Plan 9 from
User Space [3] which can be used to provide temporal
snapshots of typical UNIX file systems, and is also used
by Foundation [12] which provides archival snapshots
of VMware disk images. Multi-partition disks can be
represented as a simple one level directory with a single
VtEntry per partition.

Venti only presents an interface to retrieving data by
scores and doesn’t provide any other visible organiza-
tional structure. To address this, we built vdiskfs, a
stackable synthetic file server which provides support
for storing and retrieving disk images in Venti. Cur-
rently, it is a simple pass-through file server that recog-
nizes special files ending in a “.vdisk” extension. In the



underlying file system a “.vdisk” file contains the SHA-1
hash that represents a Venti disk image snapshot. When
accessed via vdiskfs, reads of the file will expose a vir-
tual raw image file. vdiskfs is built as a user-space file
system using the 9P protocol which can be mounted by
the Linux v9fs [5] kernel module or accessed directly by
applications.

QEMU internally implements an abstraction for block
device level I/O through the BlockDriverState API. We
implemented a new block device that connects directly
to a 9P file server. The user simply provides the host in-
formation of the 9P file server along with a path within
the server and QEMU will connect to the server, obtain
the size of the specified file, and direct all read/write re-
quests to the file server.

In communicating directly to the 9P file server,
QEMU can avoid extraneous data copying that would
occur by first mounting the file system in the host with a
synthetic file system. It also avoids double-caching the
data in the host’s page cache. Consider a scenario where
there were two guests both sharing the same underly-
ing data block. This block will already exist once in the
host’s page cache when Venti reads it for the first time. If
a v9fs mount was created that exposed multiple images
that contained this block, whenever a user space process
(like QEMU) read these images, a new page cache entry
would be added for each image.

While QEMU can interact directly with the 9P file
server, there is a great deal of utility in having a user-
level file system mount of the synthetic file system.
Virtualization software that is not aware of 9P can
open these images directly paying an additional mem-
ory/performance cost. A user can potentially import and
export images easily using traditional file system man-
agement utilities (like cp).

We used QEMU/KVM as the virtual machine moni-
tor in our implementation. QEMU is a system emula-
tor that can take advantage of the Linux Kernel Virtual
Machine (KVM) interface to achieve near-native perfor-
mance. All I/O in QEMU is implemented in user space
which makes it particularly well suited for investigating
I/O performance.

QEMU/KVM supports paravirtual I/O with the Vir-
tIO [13] framework. VirtIO is a simple ring-queue
based abstraction that minimizes the number of transi-
tions between the host and guest kernel. For the pur-
poses of this paper, we limited our analysis to the em-
ulated IDE adapter within QEMU/KVM. VirtIO cur-
rently only achieves better performance for block I/O in
circumstances where it can issue many outstanding re-
quests at a time. The current vdiskfs prototype can only
process a single request at a time. Moreover, QEMU is
also limited in its implementation to only support a sin-
gle outstanding request at a time.

4 Performance

Our performance tests were done using QEMU/KVM on
a 2-way AMD Quad-core Barcelona system with 8GB
of RAM and a 13 disk fibre channel storage array. Venti
was configured with a 10GB arena and a 512MB isect
and bloom filter. Venti was configured with 32MB of
memory cache, a 32MB bloom cache, and a 64MB isect
cache.

For each of our benchmarks, we compared an image
in an Ext3 file system using the QEMU raw block driver
back end, an image exposed through ufs, a user space
9P file server, using the QEMU block-9P block driver
back end, and then an image stored in Venti exposed
through vdiskfs using the QEMU block-9P block driver
back end.

Each benchmark used a fresh Fedora 9 install for
x86 64. For all benchmarks, we backed the block driver
we were testing with a temporary QCOW2 image. The
effect of this is that all writes were thrown away. This
was necessary since vdiskfs does not currently support
write operations.

Our first benchmark was a simple operating system
boot measured against wall clock time. The purposes of
this benchmark was to determine if a casual user would
be impacted by the use of a content addressable storage
backed root disk. Our measurements showed that the
when using the QEMU block-9P driver against a sim-
ple 9P block server, there was no statistically significant
difference in boot time or CPU consumption compared
to the QEMU raw block driver. When using the QEMU
block-9P driver against vdiskfs, we observed a 25reduc-
tion in CPU consumption due to increased latency for
I/O operations.

Figure 6: Boot Time of CAS Storage

The second benchmark was a timeddd operation.
The transfer size was 1MB and within the guest, di-
rect I/O was used to eliminate any effects of the guest
page cache. It demonstrates the performance of stream-



ing read. All benchmarks were done with a warm cache
so the data is being retrieved from the host page cache.

The ufs back end is able to obtain about 111MB/sec
using block-9P. Since all accesses are being satisfied by
the host page cache, the only limiting factor are addi-
tional copies within ufs and within the socket buffers.

The QEMU raw block driver is able to achieve over
650MB/sec when data is accessed through the host page
cache. We believe it is possible to achieve performance
similar to the QEMU raw block driver through ufs by
utilizing splice in Linux.

Figure 7: Streaming Read Performance

vdiskfs is only able to obtain about 12MB/sec using
block-9P. While this performance may seem disappoint-
ing, it is all we expected from the existing implemen-
tation of Venti and we talk about some approaches to
improving it in Section 5.

Figure 8: Efficiency of Underlying Storage Technique

Finally, to validate whether or not content addressable
storage schemes would improve storage efficiency in the
face of software-updates we compared the disk overhead
of two instances of a Linux installation before and after a
software update. We compared raw disk utilization, file

system reported space used, copy-on-write image disk
utilization, content addressable storage, and compressed
content addressable storage. To construct the copy-on-
write images, we used the QEMU QCOW2 format and
used the same base image for bothBaseandBase2. To
evaluate the content addressable storage efficiency we
used Venti to snapshot the raw disk images after instal-
lation and again after a manual software update was run.
We used Venti’s web interface to collect data about its
storage utilization for compressed data as well as its pro-
jections for uncompressed data.

As can be seen in Figure 8 the various solutions all
take approximately the same amount of storage for a sin-
gle image. When adding a second instance of the same
image, the raw storage use doubles while both the copy-
on-write storage and content-addressable-storage essen-
tially remain the same. The software update process on
each image downloaded approximately 500MB of data.
As the update applied, each QCOW2 image (as well as
the raw disk images) increased in size proportionally.

We were surprised to find both the raw disk and copy-
on-write overhead for the software update was over dou-
ble what we expected. We surmise this is due to tempo-
rary files and other transient data written to the disk and
therefore the copy-on-write layer. This same dirty-but-
unused block data is also responsible for the divergence
between theTotal FS Usedand theTotal Disk Usedlines
in the reported storage utilization. This behavior paints
a very bad efficiency picture for copy-on-write solutions
in the long term. While copy-on-write provides some
initial benefits, their storage utilization will steadily in-
crease and start to converge with the amount of storage
used by a raw-disk installation.

Utilizing the disk block scanning techniques we ap-
plied in Section 2, we found we could detect and de-
duplicated these transient dirty blocks. Such an ap-
proach may work to improve overall performance once
we work out the scalability and performance issues of
the underlying CAS mechanism. Because Venti is par-
tially aware of the underlying structure of the Ext2 file
system it only snapshots active file blocks. As a result,
its storage utilization grows slightly for the first software
update, but the overhead of the second software update
is completely eliminated.

5 Future Work
While we have shown promising efficiency improve-
ments, it is clear that the current Venti performance
in this environment is far below what would be desir-
able. Venti was primarily developed as a backup archive
server, and as such its implementation is single threaded
and not constructed to scale under heavy load. Addi-
tionally, its performance is primarily bottlenecked by the
requirement of indirecting block requests via the index



which results in random access by the nature of the hash
algorithm [7]. In our future work we plan to address
these issues by reworking the Venti implementation to
support multi-threading, more aggressive caching, and
zero-copy of block data. The use of flash storage for
the index may further diminish the additional latency in-
herent in the random-access seek behavior of the hash
lookup.

Our target environment will consist of a cluster of col-
laborating Venti servers which provide the backing store
for a larger cluster of servers acting as hosts for virtual
machines. In addition to our core Venti server optimiza-
tions, we wish to employ copy-on-read local disk caches
on the virtual machine hosts to hide remaining latency
from the guests. We also plan on investigating the use
of collaborative caching environments which will allow
these hosts and perhaps even the guests to share each
other’s cache resources.

Another pressing area of future work is to add write
support to vdiskfs to allow end-users to interact with it
in a much more natural manner. We plan on employing
a transient copy-on-write layer which will buffer writes
to the underlying disk. This write buffer will routinely
be flushed to Venti and the vdisk score updated. Venti
already maintains a history of snapshot scores through
links in the VtRoot structure, so historical versions of
the image can be accessed at later times. We would also
like to provide a synthetic file hierarchy to access snap-
shots in much the same way as implemented by Plan 9’s
yesterday command.

Linux recently added a series of system calls to al-
low user space applications to directly manipulate kernel
buffers known as splice. The splice system call could
be used by a 9P file server to move data directly from
the host page cache, into a kernel buffer, and then allow
the actual client application (such as QEMU’s block-9P
back end) to copy the data directly from the kernel buffer
into its memory. In this way, we can avoid the additional
copy to and from the TCP socket buffer.

Another area to explore is to look at integrating the
content addressable storage system with an underlying
file system to see if we can obtain efficiency closer to
that of what we measured using our file-system crawl-
ing mechanism. We could use our paravirtualized 9P
implementation to allow direct access to the file system
from the guests instead of using virtual block devices.
This would eliminate some of the extra overhead, and
may provide a better basis for cooperative page caches
between virtual machines. It also provides a more mean-
ingful way for a user to interact with the guest’s file sys-
tem contents than virtual images provide.

While the large performance gap represents a partic-
ularly difficult challenge, we believe that the efficiency
promise of content addressable storage for large scale

virtual machine environments more than adequately jus-
tifies additional investment and investigation in this
area.
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