
ACMS: The Akamai Configuration Management System

Alex Sherman†‡, Philip A. Lisiecki†, Andy Berkheimer†, and Joel Wein†∗.
†Akamai Technologies, Inc. ‡Columbia University ∗Polytechnic University.

†{andyb,lisiecki,asherman,jwein}@akamai.com
‡asherman@cs.columbia.edu ∗wein@mem.poly.edu.

Abstract
An important trend in information technology is the use of
increasingly large distributed systems to deploy increasingly
complex and mission-critical applications. In order for these
systems to achieve the ultimate goal of having similar ease-
of-use properties as centralized systems they must allow fast,
reliable, and lightweight management and synchronization of
their configuration state. This goal poses numerous technical
challenges in a truly Internet-scale system, including varying
degrees of network connectivity, inevitable machine failures,
and the need to distribute information globally in a fast and re-
liable fashion.

In this paper we discuss the design and implementation of a
configuration management system for the Akamai Network. It
allows reliable yet highly asynchronous delivery of configura-
tion information, is significantly fault-tolerant, and can scale if
necessary to hundreds of thousands of servers.

The system is fully functional today providing configuration
management to over 15,000 servers deployed in 1200+ differ-
ent networks in 60+ countries.

1 Introduction

Akamai Technologies operates a system of 15,000+
widely dispersed servers on which its customers deploy
their web content and applications in order to increase
the performance and reliability of their web sites. When
a customer extends their web presence from their own
server or server farm to a third party Content Delivery
Network (CDN), a major concern is the ability to main-
tain close control over the manner in which their web
content is served. Most customers require a level of con-
trol over their distributed presence that rivals that achiev-
able in a centralized environment.

Akamai’s customers can configure many options that
determine how their content is served by the CDN. These
options may include: html cache timeouts, whether to
allow cookies, whether to store session data for their
web applications among many other settings. Configura-

tion files that capture these settings must be propagated
quickly to all of the Akamai servers upon update.

In addition to the configuring customer profiles, Aka-
mai also runs many internal services and processes which
require frequent updates or “reconfigurations.” One ex-
ample is the mapping services which assign users to Aka-
mai servers based on network conditions. Subsystems
that measure frequently-changing network connectivity
and latency must distribute their measurements to the
mapping services.

In this paper we describe the Akamai Configura-
tion Management System (ACMS), which was built to
support customers’ and internal services’ configuration
propagation requirements. ACMS accepts distributed
submissions of configuration information (captured in
configuration files) and disseminates this information to
the Akamai CDN. ACMS is highly available through sig-
nificant fault-tolerance, allows reliable yet highly asyn-
chronous and consistent delivery of configuration infor-
mation, provides persistent storage of configuration up-
dates, and can scale if necessary to hundreds of thou-
sands of servers.

The system is fully functional today providing con-
figuration management to over 15,000 servers deployed
in 1200+ different ISP networks in 60+ countries. Fur-
ther, as a lightweight mechanism for making configura-
tion changes, it has evolved into a critical element of how
we administer our network in a flexible fashion.

Elements of ACMS bear resemblance to or draw from
numerous previous efforts in distributed systems – from
reliable messaging/multicast in wide-area systems, to
fault-tolerant data replication techniques, to Microsoft’s
Windows Update functionality; we present a detailed
comparison in Section 8. We believe, however, that our
system is designed to work in a relatively unique envi-
ronment, due to a combination of the following factors.

• The set of end clients – our 15,000+ servers – are
very widely dispersed.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 245



• At any point in time a nontrivial fraction of these
servers may be down or may have nontrivial con-
nectivity problems to the rest of the system. An in-
dividual server may be out of commission for sev-
eral months before being returned to active duty,
and will need to get caught up in a sane fashion.

• Configuration changes are generated from widely
dispersed places – for certain applications, any
server in the system can generate configuration in-
formation that needs to be dispersed via ACMS.

• We have relatively strong consistency requirements.
When a server that has been out-of-touch regains
contact it needs to become up to date quickly or risk
serving customer content in an outdated mode.

Our solution is based on a small set of front-end dis-
tributed Storage Points and a back-end process that man-
ages downloads from the front-end. We have designed
and implemented a set of protocols that deal with our
particular availability and consistency requirements.

The major contributions of this paper are as follows:

• We describe the design of a live working system
that meets the requirements of configuration man-
agement in a very large distributed network.

• We present performance data and detail some
lessons learned from a building and deploying such
a system.

• We discuss in detail the distributed synchronization
protocols we introduced to manage the front ends
Storage Points. While these protocols bear similar-
ity to several previous efforts, they are targeted at a
different combination of reliability and availability
requirements and thus may be of interest in other
settings.

1.1 Assumptions and Requirements
We assume that the configuration files will vary in size
from a few hundred bytes up to 100MB. Although very
large configuration files are possible and do occur, they
in general should be more rare. We assume that most
updates must be distributed to every Akamai node, al-
though some configuration files may have a relatively
small number of subscribers. Since distinct applications
submit configuration files dynamically, there is no par-
ticular arrival pattern of submissions, and at times we
could expect several submissions per second. We also
assume that the Akamai CDN will continue to grow.
Such growth should not impede the CDN’s responsive-
ness to configuration changes. We assume that submis-
sions could originate from a number of distinct applica-
tions running at distinct locations on the Akamai CDN.

We assume that each submission of a configuration file
foo completely overwrites the earlier submitted version
of foo. Thus, we do not need to store older versions of
foo, but the system must correctly synchronize to the lat-
est version. Finally, we assume that for each configura-
tion file there is either a single writer or multiple idem-
potent (non-competing) writers.

Based on the motivation and assumptions described
above we formulate the following requirements for
ACMS:

High Fault-Tolerance and Availability. In order to sup-
port all applications that dynamically submit configura-
tion updates, the system must operate 24x7 and experi-
ence virtually no downtime. The system must be able to
tolerate a number of machine failures and network parti-
tions, and still accept and deliver configuration updates.
Thus, the system must have multiple “entry points” for
accepting and storing configuration updates such that
failure of any one of them will not halt the system. Fur-
thermore, these “entry points” must be located in distinct
ISP networks so as to guarantee availability even if one
of these networks becomes partitioned from the rest of
the Internet.

Efficiency and Scalability. The system must deliver
updates efficiently to a network of the size of the Akamai
CDN, and all parts of the system must scale effectively
to any anticipated growth. Since updates, such as a cus-
tomer’s profile, directly effect how each Akamai node
serves that customer’s content, it is imperative that the
servers synchronize relatively quickly with respect to the
new updates. The system must guarantee that propaga-
tion of updates to all “alive” nodes takes place within a
few minutes from submission. (Provided of course, that
there is network connectivity to such “alive” or function-
ing nodes from some of our “entry points.”).

Persistent Fault-Tolerant Storage. In a large network
some machines will always be experiencing downtime
due to power and network outages or process failures.
Therefore, it is unlikely that a configuration update can
be delivered synchronously to the entire CDN in the
time of submission. Instead the system must be able
to store the updates permanently and deliver them asyn-
chronously to machines as they become available.

Correctness. Since configuration file updates can be
submitted to any of the “entry points,” it is possible that
two updates for the same file foo arrive at different “en-
try points” simultaneously. We require that ACMS pro-
vide a unique ordering of all versions and that the system
synchronize to the latest version for each configuration
file. Since slight clock skews are possible among our
machines, we relax this requirement and show that we
allow a very limited, but bounded reordering. (See sec-
tion 3.4.2).

Acceptance Guarantee. ACMS “accepts” a submis-

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association246



sion request only when the system has “agreed” on this
version of the update. The agreement in ACMS is based
on a “quorum” of “entry points.” (The quorum used in
ACMS is at the core of our architecture and is discussed
in great detail throughout the paper). The agreement is
necessary, because if the “entry point” that receives an
update submission becomes cut off from the Internet it
will not be able to propagate the update to the rest of the
system. In essence, the Acceptance Guarantee stipulates
that if a submission is accepted, a quorum has agreed to
propagate the submission to the Akamai CDN.

Security. Configuration updates must be authenticated
and encrypted so that ACMS cannot be spoofed nor up-
dates read by any third parties. The techniques that we
use to accomplish this are standard, and we do not dis-
cuss them further in this document.

1.2 Our Approach

We observe that the ACMS requirements fall into two
sets. The first set of requirements deals with update man-
agement: highly available, fault-tolerant storage and cor-
rect ordering of accepted updates. The second set of
requirements deals with delivery: efficient and secure
propagation of updates. Instinctively we split the archi-
tecture of the system into two subsystems – the “front-
end” and the “back-end” – that correspond to the two sets
of requirements. The front-end consists of a small set
(typically 5 machines) of Storage Points (or SPs). The
SPs are deployed in distinct Tier-1 networks inside well-
connected data centers. The SPs are responsible for ac-
cepting and storing configuration updates. The back-end
is the entire Akamai CDN that subscribes to the updates
and aids in the update delivery.

High availability and fault-tolerance come from the
fact that the SPs constitute a fully decentralized sub-
system. ACMS does not depend on any particular SP
to coordinate the updates, such as a database master in
a persistent MOM (message-oriented middleware) stor-
age. ACMS can tolerate a number of failures or partitions
among the Storage Points. Instead of relying on a coordi-
nator, we use a set of distributed algorithms that help the
SPs synchronize configuration submissions. These algo-
rithms that will be discussed later are quorum-based and
require only a majority of the SPs to stay alive and con-
nected to one another in order for the system to continue
operation. Any majority of the SPs can reconstruct the
full state of the configuration submissions and continue
to accept and deliver submissions.

To propagate updates, we considered a push-based
vs. a pull-based approach. In a push-based approach
the SPs would need to monitor and maintain state of all
Akamai hosts that require updates. In a pull-based ap-
proach all Akamai machines check for new updates and

request them. We observed that the Akamai CDN itself
is fully optimized for HTTP download, making the pull-
based approach over HTTP download a natural choice.
Since many configuration updates must be delivered to
virtually every Akamai server, this allows us to use Aka-
mai caches effectively for common downloads and thus
reduce network bandwidth requirements. This natural
choice helps ACMS scale with the growing size of the
Akamai network.

As an optimization we add an additional set of ma-
chines (the Download Points) to the front-end. Down-
load Points offer additional sites for HTTP download and
thus alleviate the bandwidth demand placed on the Stor-
age Points.

To further improve the efficiency of the HTTP down-
load we create an index hierarchy that concisely de-
scribes all configuration files available on the SPs. A
downloading agent can start with downloading the root
of the hierarchical index tree and work its way down to
detect changes in any particular configuration files it is
interested in.

The rest of this paper is organized as follows. We give
an architecture overview in section 2. We discuss our
distributed techniques of quorum-based replication and
recovery in sections 3 and 4. Section 5 describes the de-
livery mechanism. We share our operational experience
and evaluation in sections 6 and 7. Section 8 discusses
related work. We conclude in section 9.

2 Architecture Overview

The architecture of ACMS is depicted in Figure 1.
First an application submitting an update (also known

as a publisher) contacts an ACMS Storage Point. The
publisher transmits a new version of a given configura-
tion file. The SP that receives an update submission is
also known as the Accepting SP for that submission. Be-
fore replying to the client the Accepting SP makes sure to
replicate the message on at least a quorum (a majority) of
Servers (i.e., Storage Points). Servers store the message
persistently on disk as a file. In addition to copying the
data, ACMS runs an algorithm called Vector Exchange
that allows a quorum of SPs to agree on a submission.
Only after the agreement is reached does the Accepting
SP acknowledge the publisher’s request, by replying with
“Accept.”

Once the agreement among the SPs is reached, the data
can also be offered for download. The Storage Points
upload the data to their local HTTP servers (i.e., HTTP
servers runs on the same machines as the SPs).

Since only a quorum of SPs is required to reach an
agreement on a submission, some SPs may miss an oc-
casional update due to downtime. To account for repli-
cation messages missed due to downtime, the SPs run

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 247



Figure 1: ACMS: Publishers, Storage Points, and Re-
ceivers (Subscribers)

a recovery scheme called Index Merging. Index Merg-
ing helps the Storage Points recover any missed updates
from their peers.

To subscribe for configuration updates, each server
(also known as a node) on the Akamai CDN runs a pro-
cess called Receiver that coordinates subscriptions for
that node. Services on each node subscribe with their
local Receiver process to receive configuration updates.
Receivers periodically make HTTP IMS (If-Modified-
Since) requests for these files from the SPs. Receivers
send these requests via the Akamai CDN, and most of
the requests are served from nearby Akamai caches re-
ducing network traffic requirements.

We add an additional set of a few well-positioned
machines to the front-end, called the Download Points
(DPs). DPs never participate in initial replication of up-
dates and rely entirely on Index Merging to obtain the lat-
est configuration files. DPs alleviate some of the down-
load bandwidth requirements from the SPs. In this way
data replication between the SPs does not need to com-
pete as much for bandwidth with the download requests
from subscribers.

3 Quorum-based Replication

The fault-tolerance of ACMS is based on the use of a
simple quorum. In order for an Accepting SP to accept
an update submission we require that the update be both
replicated to and agreed upon by a quorum of the ACMS

SPs. We define quorum as a majority. As long as a ma-
jority of the SPs remain functional and not partitioned
from one another, this majority subset will intersect with
the initial quorum that accepted a submission. Therefore,
this latter subset will collectively contain the knowledge
of all previously accepted updates.

This approach is deeply rooted in our assumption that
ACMS can maintain a majority of operational and con-
nected SPs. If there is no quorum of SPs that are func-
tional and can communicate with one another ACMS
will halt and refuse to accept new updates until a con-
nected quorum of SPs is re-established.

Each SP maintains connectivity by exchanging live-
ness messages with its peers. Liveness messages also
indicate whether the SPs are fully functional or healthy.
Each SP reports whether it has pairwise connectivity to
a quorum (including itself) of healthy SPs. The reports
arrive at the Akamai NOCC (Network Operations Com-
mand Center) [2]. If a majority of ACMS SPs fails to
report pairwise connectivity to a quorum, a red alert is
generated in the NOCC and operation engineers perform
immediate connectivity diagnosis and attempt to fix the
network or server problem(s).

By placing SPs inside distinct ISP networks we reduce
the probability of an outage that would disrupt a quo-
rum of these machines. (See some statistics in section
6.) Since we require only a majority of SPs to be con-
nected, it means we can tolerate a number of failures due
to partitioning, hardware, or software malfunctions. For
example, with an initial set containing five SPs, we can
tolerate two SP failures or partitions and still maintain a
viable majority of three SPs. When any single SP mal-
functions, a lesser priority alert also triggers corrective
action from the NOCC engineers. ACMS operational ex-
perience with maintaining a connected quorum and vari-
ous failure cases are discussed in detail in section 6.

The rest of the section describes the quorum-based
Acceptance Algorithm in detail. We also explain how
ACMS replication and agreement methods satisfy Cor-
rectness and Acceptance requirements outlined in section
1.1 and discuss maintenance of the ACMS SPs.

3.1 Acceptance Algorithm
The ACMS Acceptance Algorithm consists of two
phases: replication and agreement. In the replication
phase, the Accepting SP copies the update to at least a
quorum of the SPs.

The Accepting SP first creates a temporary file with a
unique filename (UID). For a configuration file foo the
UID may look like this: “foo.A.1234”, where A is the
name of the Accepting SP and “1234” is the timestamp
of the request in UTC (shortened to 4 digits for this ex-
ample). This UID is unique, because each SP allows only

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association248



one request per file per second.
The Accepting SP then sends this file that contains the

update along with its MD5 hash to a number of SPs over
a secure TCP connection. Each SP that receives the file
stores it persistently on disk (under the UID name), veri-
fies the hash, and acknowledges that it has stored the file.

If the Accepting SP fails to replicate the data to a quo-
rum after a timeout, it replies with an error to the publish-
ing application. The timeout is based on the size of the
update, and a very low estimate of available bandwidth
between this SP and its peers. (If the Accepting SP does
not have connectivity to a quorum it replies much sooner
and does not wait for a timeout to expire).

Otherwise, once at least a quorum of SPs (including
the Accepting SP) has stored the temporary file, the Ac-
cepting SP initiates the second phase to obtain an agree-
ment from the Storage Points on the submitted update.

3.2 Vector Exchange

Vector Exchange (also called “VE”) is a light-weight
protocol that forms the second phase of the acceptance
algorithm – the agreement phase. As the name suggests,
VE involves Storage Points exchanging a state vector.
The VE vector is just a bit vector with a bit correspond-
ing to each Storage Point. A 1-bit indicates that the cor-
responding Storage Point knows of a given update. When
a majority of bits are set to 1, we say that an agreement
occurs and it is safe for any SP (that sees the majority of
the bits set) to upload this latest update.

In the beginning of the agreement phase, the Accept-
ing SP initializes a bit vector by setting its own bit to 1
and the rest to 0, and broadcasts the vector along with
the UID of the update to the other SPs. Any SP that sees
the vector sets its corresponding bit to 1, stores the vec-
tor persistently on disk and re-broadcasts the modified
vector to the rest of the SPs. Persistent storage guaran-
tees that the SP will not lose its vector state on process
restart or machine reboot. It is safe for each SP to set
the bit even if it did not receive the temporary file during
the replication phase. Since at least a quorum of the SPs
have stored this temporary file, it can always locate this
file at a later stage.

Each SP learns of the agreement independently when
it sees a quorum of bits set. Two actions can take place
when a SP learns of the agreement for the first time.
When the Accepting SP that initiated the VE instance
learns of the agreement it accepts the submission of the
publishing application. When any SP (including the Ac-
cepting SP) learns of the agreement it uploads the file.
Uploading means that the SP copies the temporary file to
a permanent location on its local HTTP server where it is
now available for download by the Receivers. If it does
not have the temporary file then it downloads it from one

of the other SPs via the recovery routine (section 4).
Note, that it is possible for the Accepting SP to be-

come “cut-off” from the quorum after it initiates the VE
phase. In this case it does not know whether its broad-
casts were received and whether the agreement took
place. It is then forced to reply only with “Possible
Accept” rather than “Accept” to the publishing applica-
tion. We recommend that the publisher that gets cut off
from the Accepting SP or receives a “Possible Accept”
should try to re-submit its update to another SP. (From a
publisher’s perspective the reply of “Possible Accept” is
equivalent to “Reject.” The distinction was made initially
purely for the purpose of monitoring this condition.)

As in many agreement schemes, the purpose of the VE
protocol is to deal with some Byzantine network or ma-
chine failures [18]. In particular, VE prevents an individ-
ual SP (or a minority subset of SPs) from uploading new
data and then becoming “disconnected” from the rest of
the SPs. A quorum of SPs could then continue to oper-
ate successfully without the knowledge that the minor-
ity is advertising a new update. This new update would
become available only to a small subset of the Akamai
nodes that can reach the minority subset, possibly caus-
ing a discord in the Akamai network viz. the latest up-
dates.

VE is based on earlier ideas of vector clocks intro-
duced by by Fidge [10] and Mattern [24]. Section 8
compares Acceptance Algorithm with Two-Phase Com-
mit and other agreement schemes used in common dis-
tributed systems.

3.3 An Example
We give an example to demonstrate both phases of the
Acceptance Algorithm. Imagine that our system contains
five Storage Points named A, B, C, D, and E with SP
D down temporarily for a software upgrade. With five
SPs the quorum required for the Acceptance algorithm is
three SPs.

SP A receives a submission update from publisher P
for configuration file “foo”. To use the example from
section 3.1 SP A stores the file under a temporary UID:
foo.A.1234.

SP A initiates the replication phase by sending the file
in parallel to as many SPs as it can reach. SPs B, C, and
E store the temporary update under the UID name. (SP
D is down and does not respond). SPs B and C happen to
be the first SPs to acknowledge the reception of the file
and the MD5 hash check. Now A knows that the majority
(A, B, and C) have stored the file and A is ready to initiate
the agreement phase.

SP A broadcasts the following VE message to the other
SPs:

foo.A.1234 A:1 B:0 C:0 D:0 E:0

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 249



This message contains the UID of the pending update
and the vector that has only A’s bit set. (A stores this
vector state persistently on disk prior to sending it out).

When SP B receives this message it adds its bit to the
vector, stores the vector, and broadcasts it:

foo.A.1234 A:1 B:1 C:0 D:0 E:0

After a couple of rounds all four live SPs store the fol-
lowing message with all bits set except for D’s:

foo.A.1234 A:1 B:1 C:1 D:0 E:1

At this point, as each SP sees that the majority of bits
is set, A, B, C, and E upload the temporary file in place
of the permanent configuration file foo, and store in their
local database the UID of the latest agreed upon version
of file foo: foo.A.1234. All older records of foo can be
discarded.

3.4 Guarantees
We now show that our Acceptance Algorithm satisfies
the acceptance and correctness requirements, provided
that our quorum assumption holds.

3.4.1 Acceptance Guarantee

Having introduced the quorum-based scheme we now
restate the acceptance guarantee more precisely than in
section 1.1. The acceptance guarantee states that if the
Accepting SP has accepted a submission, it will be up-
loaded by a quorum of SPs.

Proof: The Accepting SP accepts only when the up-
date has been replicated to a quorum AND when the Ac-
cepting SP can see a majority of bits set in the VE vec-
tor. Now if the Accepting SP can see a majority of bits
set in the VE vector it means that at least a majority of
the SPs have stored a partially filled VE vector during
the agreement phase. Therefore, any future quorum will
include at least one SP that stores the VE vector for this
update. Once such a SP is part of a quorum, after a few
re-broadcast rounds, all of the SPs in this future quorum
will have their bits set. Therefore, all the SPs in the latter
quorum will decide to upload.

So based on our assumption that a quorum of con-
nected SPs can be reasonably maintained, acceptance by
ACMS implies a future decision by at least a quorum to
upload the update.

The converse of the acceptance guarantee does not
necessarily hold. If the quorum decides to upload, it does
not mean that the Accepting SP will accept. As stated
earlier the Accepting SP may be “cut off” from the quo-
rum after VE phase is initiated, but before it completes.
In that case the Accepting SP replies with “Possible Ac-
cept,” because it’s likely but not definite. The publishing

application treats this reply as “Reject” and tries to re-
submit to another SP.

The probability of a “Possible Accept” is very small,
and we have never seen it occur in the real system. The
reason for that is that in order for the VE phase to be
initiated the replication phase must succeed. If the repli-
cation is successful it most likely means that the lighter
VE phase that also requires connectivity to a quorum
(but less bandwidth) will also succeed. If the replication
phase fails, ACMS replies with a definite “Reject.”

3.4.2 Correctness

The Correctness requirements state that ACMS provides
a unique ordering of all update versions for a given con-
figuration file AND that the system synchronizes to the
latest submitted update. We later relaxed that guarantee
to state that ACMS allows limited re-ordering in decid-
ing which update is the latest, due to clock skews. More
precisely, accepted updates for the same file submitted
at least 2T + 1 seconds apart will be ordered correctly.
T is the maximum allowed clock skew between any two
communicating SPs.

The unique ordering of submitted updates is guaran-
teed by the UID assigned to a submission as soon as it is
received by ACMS (regardless of whether it will be ac-
cepted). The UID contains both a UTC timestamp from
the SP’s clock and the SP’s name. The submissions for
the same configuration file are first ordered by time and
then by the Accepting SP name. So “foo.B.1234” is con-
sidered to be more recent than “foo.A.1234”, and it is
kept as the later version. A Storage Point accepts only
one update per second for a given configuration file.

Since we do not use logical synchronized clocks,
slight clock skews and reordering of updates are possi-
ble. We now explain how we bound such reordering, and
why any small reordering is acceptable in ACMS.

We bound the possible skew between any two com-
municating SPs by T seconds (where T is usually set to
20 seconds). Our communication protocols enforce this
bound by rejecting liveness messages from SPs that are
at least T seconds apart. (I.e., such pairs of servers ap-
pear virtually dead to each other). As a result it follows
that no two SPs that accept updates for the same file can
have a clock skew more than 2T seconds.

Proof: Imagine SPs A and B that are both able to ac-
cept updates. This means both A and B are able to repli-
cate these update to a majority of SPs. These majorities
must overlap by at least one SP. Moreover, neither A nor
B can have more than a T second clock skew from that
SP. So A and B cannot be more than 2T seconds apart.

Developers of the Akamai subsystems that submit
configuration files to Akamai nodes via ACMS are ad-
vised to avoid mis-ordering by submitting updates to the

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association250



same configuration file at intervals of at least 2T + 1.
In addition, we use NTP [3] to synchronize our server
clocks, and in practice we find very rare instances when
our servers are more than one second apart.

Finally with ACMS, it is actually acceptable to re-
order updates within a small bound such as 2T . We
are not dealing with competing editors of a distributed
filesystem. Subsystems that are involved in configuring
a large CDN such as Akamai must and do cooperate with
each other. In fact, we considered two cases of such sub-
systems that update the same configuration file. Either
there is only one process that submits updates for file
“foo”, or there are redundant processes that submit the
same or idempotent updates for file “foo”. In the case
of a single publishing process, it can easily abide by the
2T rule and therefore avoid reordering. In the case of
redundant writers – that exist for fault-tolerance – we
do not care whose update within the 2T period is sub-
mitted first as these updates are idempotent. Any more
complex distributed systems that publish to ACMS use
leader election to select a publishing process, effectively
reducing these systems to one-publisher systems.

3.5 Termination and Message Complexity
In almost all cases VE terminates after the last SP in a
quorum broadcasts its addition to the VE vector. How-
ever, in an unlikely event where a SP becomes partitioned
off during a VE phase it attempts to broadcast its vector
state once every few seconds. This way, once it recon-
nects to a quorum it can notify the other SPs of its partial
state.

VE is not expensive and the number of messages ex-
changed is quite small. We make a small change to the
protocol as it was originally described by adding a small
random delay (under 1 second) before a re-broadcast of
the changed vector by a SP. This way, instead of all SPs
re-broadcasting in parallel, only one SP broadcasts at a
time. With the random delay, on average each SP will
only broadcast once after setting its bit. This results in
O(n2) unicast messages.

We use the gossip model, because the numbers of par-
ticipants and the size of the messages are both small.
The protocol can easily be amended to have only the Ac-
cepting SP do a re-broadcast after it collects the replies.
Only when an SP does not hear the re-broadcast does it
switch to a gossip mode. When the Accepting SP stays
connected until termination the number of messages ex-
changed is just O(n).

3.6 Maintenance
Software or OS upgrades performed on individual Stor-
age Points must be coordinated to prevent an outage of a

quorum. Such upgrades are scheduled independently on
individual Storage Points so that the remaining system
still contains a connected quorum.

Adding and removing machines with quorum-based
systems is a theoretically tricky problem. Rambo [19]
is an example of a quorum-based system that solves dy-
namic set configuration changes by having an old quo-
rum agree on a new configuration.

Since adding or removing SPs is extremely rare we
chose not to complicate the system to allow dynamic
configuration changes. Instead, we halt the system tem-
porarily by disallowing accepts of new updates, change
the set configuration on all machines, wait for a new quo-
rum to sync up on all state (via the Recovery algorithm),
and allow all SPs to resume operation. Replacing a dead
SP is a simpler procedure where we bring up a new SP
with the same SP ID as the old one and clean state.

3.7 Flexibility of the VE Quorum
ACMS’ quorum is configured as majority. Just like in
the Paxos [16] algorithm this choice guarantees that any
future quorum will necessarily intersect with an earlier
one and all previously accepted submissions can be re-
covered. However, this definition is quite flexible in VE
and allows for consistency vs. availability trade-offs. For
example, one could define a quorum to be just a couple
of SPs which would offer loose consistency, but much
higher availability. Since there is a new VE instance for
each submission, one could potentially configure a dif-
ferent quorum for each file. If desired, this property can
be used to add or remove SPs by reconfiguring each SP
independently, resulting in a very slight and temporary
shift toward consistency over availability.

4 Recovery via Index Merging

Recovery is an important mechanism that allows all Stor-
age Points that experience down time or a network out-
age to “sync up” all latest configuration updates.

Our Acceptance Algorithm guarantees that at least a
quorum of SPs stores each update. Some Akamai nodes
may only be able to reach a subset of the SPs that were
not part of the quorum that stored the update. Even if
that subset intersects with the quorum, that Akamai node
may need to retry multiple downloads before reaching
a SP that stores the update. To increase the number of
Akamai nodes that can get their updates and improve the
efficiency of download, preferably all SPs should store
all state.

In order to “sync up” any missed updates Storage
Points continuously run a background recovery protocol
with one another. The downloadable configuration files
are represented on the SPs in the form of an index tree.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 251



The recovery protocol is called Index Merging. The SPs
“merge” their index trees to pick up any missed updates
from one another.

The Download Points also need to “sync up” state.
These machines do not participate in the Acceptance Al-
gorithm and instead rely entirely on the recovery proto-
col on Storage Points to pick up all state.

4.1 The Index Tree
For a concise representation of the configuration files, we
organize the files into a tree. The configuration files are
split into groups. A Group Index file lists the UIDs of
the latest agreed upon updates for each file in the group.
The Root Index file lists all Group Index files together
with the latest modification timestamps of those indexes.
The top two layers (i.e. the Root and the Group indexes)
completely describe the latest UIDs of all configuration
files and together are known as the snapshot of the SP.

Each SP can modify its snapshot when it learns of a
quorum agreement through the Acceptance Algorithm or
by seeing a more recent UID in a snapshot of another SP.

Since a quorum of SPs should together have a com-
plete state, for full recovery each SP needs only to
merge in a snapshot from Q − 1 other SPs (where Q =
majority). (Download Points need to merge in state
from Q SPs).

The configuration files are assigned to groups stati-
cally when the new configuration file is provisioned on
ACMS. A group usually contains a logical set of files
subscribed to by a set of related receiving applications.

4.2 The Index Merging Algorithm
At each round of the Index Merging Algorithm a SP A
picks a random set of Q − 1 other SPs and downloads
and parses the index files from those SPs. If it detects a
more recent UID of a configuration file, SP A updates its
own snapshot, and attempts to download the missing file
from one of its peers. Note that it is safe for A to update
its snapshot before obtaining the file. Since the UID is
present in another SP’s snapshot it means that the file
has already been agreed upon and stored by a quorum.

To avoid frequent parsing of one another’s index files,
the SPs remember the timestamps of one another’s index
trees and make HTTP IMS (if-modified-since) requests.
If an index file has not been changed, HTTP 304 (not-
modified) is returned on the download attempt.

Index Merging rounds run continuously.

4.3 Snapshots for Receivers
As a side-effect the snapshots also provide an efficient
way for Receivers to learn of latest configuration file ver-

sions. Typically receivers are only interested in a subset
of the index tree that describes their subscriptions. Re-
ceivers also download index files from the SPs via HTTP
IMS requests.

Using HTTP IMS is efficient but is also problematic
because each SP generates its own snapshot and assigns
its own timestamps to the index files that it uploads. Thus
it is possible for a SP A to generate an index file with
more recent timestamp than SP B, but less recent infor-
mation. If a Receiver is unlucky and downloads the in-
dex file from A first, it will not download an index with a
lower timestamp from B, until the timestamp increases.
It may take a while for it to get all the necessary changes.

There are two solutions to this problem. In one solu-
tion we could require a Receiver to download an index
tree independently from each SP, or at least a quorum of
the SPs. Having each Receiver download multiple in-
dex trees is an unnecessary waste of bandwidth. Fur-
thermore, requiring each Receiver to be able to reach a
a quorum of SPs reduces system availability. Ideally, we
only require that a Receiver be able to reach one SP that
itself is part of a quorum.

We implemented an alternative solution, where the
SPs merge their index timestamps, not just the data listed
in the those indexes.

4.4 Index Time-stamping Rules
With just a couple of simple rules that constrain how
Storage Points assign timestamps to their index files, we
can present a coherent snapshot view to the Receivers:

1. If a Storage Point A has an index file bar.index with
a timestamp T , and then A learns of new infor-
mation inside bar.index (either through Vector Ex-
change agreement or Index Merging from a peer),
then on the next iteration A must upload a new
bar.index with a timestamp at least T + 1.

2. If Storage Points A and B have an index file
bar.index that contains identical information and
have timestamps Ta and Tb respectively with Ta >
Tb, then on the next iteration B must upload
bar.index with a timestamp at least as great as Ta.

Simply put, rule 1 says that when a Storage Point in-
cludes new information it must increase the timestamp.
This is really a redundant rule — a new timestamp would
be assigned anyway when a Storage Point writes a new
file. Rule 2 says that a Storage Point should always set its
index’s timestamp to the highest timestamp for that index
among its peers (even if it includes no new information).

Once a Storage Point modifies a group index it must
modify the Root Index as well following the same rules.
(The same would apply to a hierarchy with more layers).

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association252



We now show the correctness of this timestamping algo-
rithm.

4.5 Timestamping Correctness
Guarantee: If a Receiver downloads bar.index (index file
for group bar) with a timestamp T1 from any Storage
Point, then when new information in group bar becomes
available all Storage Points will publish bar.index with a
timestamp at least as big as T1 + 1, so that the Receiver
will quickly pick up the change.

Proof: Assume in steady state a set of k Storage Points
1...k each has a bar.index with timestamps T1, T2, ..., Tk

sorted in non-decreasing order. (i.e., Tk is the highest
timestamp). When new information becomes available,
then following rule 1 above, Storage Point k will incor-
porate new information and increase its timestamp to at
least Tk + 1. On the next iteration, following rule 2,
SPs 1...k − 1 will make their timestamps at least Tk + 1
as well. Before the change, the highest timestamp for
bar.index known to a Receiver was Tk. A couple of iter-
ations after the new information becomes incorporated,
the lowest timestamp available on any Storage Point is
Tk + 1. Thus, a Receiver will be able to detect an in-
crease in the timestamp and pick up a new index quickly.

5 Data Delivery

In addition to providing high fault-tolerance and avail-
ability the system must scale to support download by
thousands of Akamai servers. We naturally use the Aka-
mai CDN (Content Distribution Network) which is opti-
mized for file download. In this section we describe the
Receiver process, its use of the hierarchical index data,
and the use of the Akamai CDN itself.

5.1 Receiver Process
Receivers run on each of over 15,000 Akamai nodes and
check for message updates on behalf of the local sub-
scribers.

A Subscription for a configuration file specifies the lo-
cation of that file in the index tree: the root index, the
group index that includes that file, and the file name it-
self. Receivers combine all local subscriptions into a
subscriptions tree. (This is a subtree of the whole tree
stored by the SPs.)

A Receiver checks for updates to the subscription tree
by making HTTP IMS requests recursively beginning at
the Root Index. If the Root Index has changed, Re-
ceiver parses the file, and checks whether any interme-
diate indexes that are also in the Receiver’s subscrip-
tion tree have been updated (i.e., if they are listed with
a higher timestamp than previously downloaded by that

Receiver). If so, it stores the timestamp listed for that
index as the “target timestamp,” and keeps making IMS
requests until it downloads the index that is at least as re-
cent as the target timestamp. Finally it parses that index
and checks whether any files in its subscription tree (that
belong to this index) have been updated. If so the Re-
ceiver then tries to download a changed file until it gets
one at least as recent as the target timestamp.

There are a few reasons why a Receiver may need to
attempt multiple IMS requests before it gets a file with
a target timestamp. First some Storage Points may be a
bit behind with Index Merging and not contain the latest
files. Second, an old file may be cached by the Akamai
network for a short while. The Receiver retries its down-
loads frequently until it gets the required file. Once the
Receiver downloads the latest update for a subscription,
it places the data in a file on local disk and points a local
subscriber to it.

The Receiver must know how to find the SPs. The
Domain Name Service provides a natural mechanism to
distribute the list of SPs’ and DPs’ addresses.

5.2 Optimized Download
The Akamai network’s support for HTTP download is a
natural fit to be leveraged by ACMS for message propa-
gation. Since the indexes and the configuration files are
requested by many machines on the network, these files
benefit greatly from the caching capabilities of the Aka-
mai network.

First, Receivers running on colocated nodes are likely
to request the same files, which makes it likely that the
request is served from a neighboring cache in the local
Akamai cluster. Furthermore, if the request leaves the
cluster it will be directed to other nearby Akamai clus-
ters which are also likely to have a response cached. Fi-
nally, if the file is not cached in another nearby Akamai
cluster, the request goes through to one of the Storage
Points. These cascading Akamai caches greatly reduce
the network bandwidth required for message distribution
and make pull-down propagation the ideal choice.

The trade-off of having great cacheability is the in-
creased propagation delay of the messages. The longer
the file is served out of cache, the longer it takes for the
Akamai system to refresh cached copies. Since we are
more concerned here with efficient rather than very fast
delivery, we set a long cache TTL on the ACMS files, for
example, 30 seconds.

As mentioned in section 2 we augment the list of SPs
with a set of a few Download Points. Download Points
provide an elegant way to alleviate bandwidth require-
ments from the SPs. As a result replication and recovery
algorithms on the SPs experience less competition with
the download bandwidth.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 253



6 Operational Experience

The design of ACMS has been an iterative process be-
tween implementation and field experience where our
assumptions of persistent storage, network connectivity,
and OS/software fault-tolerance were tested.

6.1 Earlier Front-End Versions

Our prototype version of ACMS consisted of a single pri-
mary Accepting Storage Point replicating submissions to
a few secondary Storage Points. Whenever the Accept-
ing SP would lose connectivity to some of the Storage
Points or experience a software or hardware malfunction
the entire system would halt. It quickly became impera-
tive to design a system that did not rely entirely on any
single machine. We also considered a solution of us-
ing a set of auto-replicating databases. We encountered
two problems. First, commercial databases would prove
unnecessarily expensive as we would have to acquire li-
censes to match the number of customers using ACMS.
More importantly, we required consistency. At the time
we did not find database software that would deal with
various Byzantine network failures. Although some aca-
demic systems were emerging that in theory did promise
the right level of wide-area fault-tolerance we required
a professional, field-tested system that we could easily
tune to our needs. Based on our study of Paxos [16] and
BFS [17] we designed a simpler version of decentralized
quorum-based techniques. Similar to Paxos and BFS our
algorithm requires a quorum. However, there is no leader
to enforce strict ordering in VE as bounded re-ordering
is permitted with non-competing configuration applica-
tions.

6.2 Persistent Storage Assumption

Storage Points rely on persistent disk storage to store
configuration files, snapshots, and temporary VE vectors.
Most hard disks are highly reliable, but guarantees are
not absolute. Data may get corrupted, especially on sys-
tems with high levels of I/O. Moreover, if the operating
system crashes before an OS buffer is flushed to disk, the
result of the write may be lost.

After experiencing a few file corruptions we adopted
the technique of writing out MD5 hash together with the
file’s contents before declaring a successful write. The
hash is checked on opening the file. A Storage Point
which detects a corrupted file will refuse to communicate
with its peers and require an engineer’s attention. Over
the period of six months ending in February 2005, the
NOCC [2] monitoring system has recorded 3 instances
of such file corruption on ACMS.

Since ACMS runs automatic recovery routines replac-
ing damaged or old hardware on ACMS is trivial. The
SP process running on a clean disk quickly recovers all
of the ACMS state from other SPs via Index Merging.

6.3 Connected Quorum Assumption

The assumption of a connected quorum turned out to be a
very good one. Nonetheless, network partitions do occur,
and the quorum requirement of our system does play its
role. For the first 9 months of 2004 the NOCC monitor-
ing system recorded 36 instances where a Storage Point
did not have connectivity to a quorum due to network
outages that lasted for more than 10 minutes. However,
in all of those instances there was an operating quorum
of other SPs that continued to accept submissions.

Brief network outages on the Internet are also common
although they would generally not result in a SP losing
connectivity to a quorum. For example, a closer analysis
of ACMS logs over a 6 day period revealed two short out-
ages within the same hour between a pair of SPs located
in different Tier-1 networks. They lasted for 8 and 2 min-
utes respectively. Such outages emphasize the necessity
for an ACMS-like design to provide uninterrupted ser-
vice.

6.4 Lessons Learned

As we anticipated, redundancy has been important in all
aspects of our system. Placing the SPs in distinct net-
works has protected ACMS from individual network fail-
ures. Redundancy of multiple replicas helped ACMS
cope with disk corruption and data loss on individual
SPs.

Even the protocols used by ACMS are in some sense
redundant. The continuous recovery scheme (i.e., Index
Merging) helps the Storage Points recover updates that
they may miss during the initial replication and agree-
ment phases of the Acceptance Algorithm. In fact, in
some initial deployments Index Merging helped ACMS
overcome some communication software glitches of the
Acceptance Algorithm.

The back-end of ACMS also benefited from redun-
dancy. Receivers begin their download attempt from
nearby Akamai nodes, but can fail over to higher layers
of the Akamai network if needed. This approach allows
Receivers to cope with downed servers on their down-
load path.

Despite the redundant and self-healing design some-
times human intervention is required. We rely heavily on
the Akamai error reporting infrastructure and the opera-
tions of the NOCC to prevent critical failures of ACMS.
Detection of and response to secondary failures such as

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association254



individual SP corruption or downtime helps decrease the
probability of full quorum failures.

7 Evaluation

To evaluate the effectiveness of the system we gathered
data from the live ACMS system accepting and deliver-
ing configuration updates on the actual Akamai network.

7.1 Submission and Propagation
First we looked at the workload of the ACMS front-end
over a 48 hour period in the middle of a work week.
There were 14,276 total file submissions on the system
with five operating Storage Points. The table below lists
the distribution of the file sizes. Submission of smaller
files (under 100KB) were dominant, but files on the order
of 50MB also appear about 3% of the time.

size range avg file sz distribution avg.time (s)
0K-1K 290 40% 0.61

1K-10K 3K 26% 0.63
10K-100K 22K 23% 0.72
100K-1M 167K 7% 2.23
1M-10M 1.8M 1% 13.63

10M-100M 51M 3% 199.87
The last column of the table shows the average sub-

mission time for various file sizes. We evaluated the
“submission” time by measuring the period from the time
an Accepting SP is first contacted by a publishing appli-
cation, until it replies with “Accept.” The submission
time includes replication and agreement phases of the
Acceptance Algorithm. The agreement phase for all files
takes 50 milliseconds on average. For files under 100KB,
all “submission” times are under one second. However,
with larger files, replication begins to dominate. For ex-
ample, for 50MB files, the time is around 200 seconds.
Even though our SPs are located in Tier 1 networks they
all share replication bandwidth with the download band-
width from the Receivers. In addition, replication for
multiple submissions and multiple peers is performed in
parallel.

We also measured the total update propagation time
from when many configuration updates were first made
available for download through receipt on the live Aka-
mai network for a random sampling of 250 Akamai
nodes. Figure 2 shows the distribution of update prop-
agation times. The average propagation time is approx-
imately 55 seconds. Most of the delay comes from Re-
ceiver polling intervals and caching.

Figure 3 examines the effect of file size on propagation
time. We have analyzed the mean and 95th-percentile
delivery time for each submission in the test period.
99.95% of updates arrived within three minutes. The re-
maining 0.05% were delayed due to temporary network

0 50 100 150
0

2

4

6

8

10

12
Update Propagation Time Distribution

propagation time (s)

%
 re

ce
iv

ed

Figure 2: Propagation time distribution for a large num-
ber of configuration updates delivered to a sampling of
thousands of machines.

connectivity issues; the files were delivered promptly af-
ter connectivity was restored. These delivery times meet
our objectives of distributing files within several minutes.
The figure shows a high propagation time for especially
small files. Although one would expect that the propaga-
tion time increases monotonically with the file size, CDN
caching slows down files submitted more frequently. We
believe that many smaller files are updated frequently on
ACMS. As a result the caching TTL of the CDN is more
heavily reflected in propagation delay.

The use of caching reduces bandwidth on the Storage
Points anywhere from 90% to 99%, increasing in general
with system activity and with the file size being pushed,
allowing large updates to be propagated to tens of thou-
sands of machines without significant impact on Storage
Point traffic.

Finally to analyze general connectivity and the tail of
the propagation distribution we looked at a propagation
of short files (under 20KB) to another random sample of
300 machines over a 4 day period. We found that 99.8%
of the time a file was received within 2 minutes from be-
coming available and 99.96% of the time it was received
within 4 minutes.

7.2 Scalability
We analyzed the overhead of the Acceptance Algorithm
and its effect on the scalability of the front-end. Over a
recent 6 day period we recorded 43,504 successful file
submissions with an average file size of 121KB. In a sys-
tem with 5 SPs, the Accepting SP needs to replicate data
to 4 other SPs requiring 484 KBytes per file on average.
The size of a VE message is roughly 100 bytes. With
n(n − 1) VE messages exchanged per submission, VE
uses 2 KB per file or 0.4% of the replication bandwidth.

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 255



102 103 104 105 106

60

90

120
Update Propagation Time

file size (bytes)

pr
op

ag
at

io
n 

tim
e 

(s
)

95th percentile
mean

Figure 3: Propagation times for various size files. The
dashed line shows the average time for each file to prop-
agate to 95% of its recipients. The solid line shows the
average propagation time.

For our purposes we chose 5 SPs, so that during a soft-
ware upgrade of one machine the system cold tolerate
one failure and still maintain a majority quorum of 3. Ex-
tending the calculation to 15 SPs, for example, with an
average file size of 121 KB the system would require 1.7
MB for replication and 21KB for VE. The VE overhead
becomes 1.2%, which is higher, but not significant.

Such a system is conceivable if one chooses not to
rely on a CDN for efficient propagation, but instead of-
fer more download sites (SPs). The VE overhead can
be further reduced as described in section 3.5. However,
the minimum bandwidth required to replicate the data to
all 15 machines may grow to be prohibitive. In such a
system one could still allow each Server to maintain all
indexes, but split the actual storage into subsets based on
some hashing function such as Consistent Hashing [4].

For ACMS choosing the Akamai CDN itself for prop-
agation is the natural choice. The cacheability of the sys-
tem grows as the CDN penetrates more ISP networks,
and the system scales naturally with its own growth.
Also, as the CDN grows the reachability of receivers in-
side more remote ISPs improves.

8 Related Work

8.1 Fault Tolerant Replication

Many distributed filesystems such as Coda [20], Pangea
[21], and Bayou [22] store files across multiple repli-
cas similar to the Storage Points of ACMS. Similar to

ACMS’ Index Merging these filesystems run recovery al-
gorithms that synchronize the data among replicas, such
as Bayou’s anti-entropy algorithm. However, all of these
systems attempt to improve the availability of data at the
expense of consistency. The aim is to allow file op-
erations to clients on a set of disconnected machines.
ACMS, on the other hand must provide a very high level
of consistency across the Akamai network and cannot al-
low a single SP to accept and upload a new update inde-
pendently.

The two-phase Acceptance Algorithm used by ACMS
is similar in nature to the Two Phase-Commit [12]. Two-
phase commit also separates a transaction phase from a
commit phase, but its failure modes make it more suit-
able to a local environment.

The Vector Exchange (the agreement phase of our al-
gorithm) was inspired by the concept of vector clocks in-
troduced by Fidge [10] and Mattern [24] which are used
to determine causality of events in a distributed system.
Bayou also uses vectors to represent latest known com-
mit sequence numbers for each server. In our algorithm,
the vectors’ contents are simply bits since each message
only has two interesting states, known to a server or not.
Each subsequent agreement is a separate “instance” of
the protocol.

VE uses a quorum-based scheme similar to Paxos [16]
and BFS [17]. Paxos defines quorum as strict majority
while BFS defines it as “more than 2/3.” VE allows
“quorum” to be configurable as long as it is at least a
majority. All these algorithms consider Byzantine fail-
ures and rely on persistent storage by a quorum to enable
a later quorum to recover state. This strong property pre-
cludes scenarios allowed by a simpler two phase commit
protocol for a minority of partitioned replicas to commit
a transaction. Other quorum systems include weighted
voting [11] and hierarchical quorum consensus [15].

At the same time VE is simpler than Paxos and
BFS and does not implement a full Byzantine Fault-
Tolerance. It does not require an auxiliary protocol to de-
termine a leader or a primary as in Paxos or BFS respec-
tively. This relaxation stems from the nature of ACMS
applications where only a single or redundant writers ex-
ist for each file and thus, some bounded reordering is
permissible as explained in section 3.4.2. No leader is
enforcing ordering.

OceanStore [31] is an example of a storage system that
implements Byzantine Fault-Tolerance to have replicas
agree on the order of updates that originate from differ-
ent sources. ACMS, on the other hand must complete
“agreement” at the time of an update submission. This
is primarily due to the important aspect of the Akamai
network where an application that publishes a new con-
figuration file must know that the system has agreed to
upload and propagate the new update. (Otherwise it will

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association256



keep retrying.)

8.2 Data Propagation
Similar to multicast [9], ACMS is designed to deliver
data to many widely dispersed nodes in a way that con-
serves bandwidth. While ACMS takes advantage of
the Akamai Network optimizations for hierarchical file
caching, multicast uses proximity of network IP ad-
dresses to send fewer IP packets. However, due to the
lack of more intelligent routing infrastructure between
major networks on the Internet, it is virtually impossible
to multicast data across these networks.

To bypass the Internet routing shortcomings many
application-level multicast schemes based on over-
lay networks were proposed: CAN-Multicast [27],
Bayeux [34], and Scribe [29] among others [14] [7].
These systems leverage communication topologies of
P2P overlays such as CAN [26], Chord [30], Pastry [28],
Tapestry [33]. Unlike ACMS, these systems create a
propagation tree for each new source of the multicast,
incurring an overhead. As shown in [5], using these sys-
tems for multicast is not always efficient. In our system
on the other hand, once the data is injected into ACMS, it
is available for download from any Storage or Download
Point, and propagates down the tree from these distinct
well-connected sources. The effect of the overlay net-
works used in reliable multicasting networks [23], [6] is
replaced by cooperating caches in our system.

ACMS is similar to Messaging Oriented Middleware
(MOM) in that it provides persistent storage and asyn-
chronous delivery of updates to subscribers that may
be temporarily unavailable. Common MOMs include
Sun’s JMS [32], IBM’s MQSeries [13], Microsoft’s
MSMQ [25], and the like. These system usually con-
tain a server that persists the messaging “queue” which
helps deal with crash recovery, but does create a single
point of failure. The distributed model of ACMS stor-
age, on the other hand, helps it tolerate multiple failures
or partitions.

8.3 Software Updates
Finally, we compare a complete ACMS with existing
software update systems. LCFG [35] and Novadigm [36]
create systems to manage desktops and PDAs across an
enterprise. While these systems scale to thousands of
servers they usually span a single or a few enterprise
networks. ACMS, on the other hand delivers updates
across multiple networks for critical customer-facing ap-
plications. As a result ACMS focuses on a highly fault-
tolerant storage and efficient propagation.

Systems that deliver software, like Windows Updates
[37] target a much larger set of machines than found in

the Akamai network. However, polling intervals for such
updates are not as critical. Some Windows users take
days to activate their updates while each Akamai node is
responsible for serving requests to tens of thousands of
users and thus must synchronize to the latest updates very
efficiently. Moreover, systems such as Windows Updates
use a rigorous, centralized process to push out new up-
dates. ACMS accepts submissions from dynamic pub-
lishers dispersed throughout the Akamai network. Thus,
highly fault-tolerant, available, and consistent storage of
updates is required.

9 Conclusion

In this paper we have presented the Akamai Configura-
tion Management System that successfully manages con-
figuration updates for the Akamai network of 15,000+
nodes. Through the use of simple quorum-based algo-
rithms (Vector Exchange and Index Merging), ACMS
provides highly available, distributed, and fault-tolerant
management of configuration updates. Although these
algorithms are based on earlier ideas, they were particu-
larly adapted to suit a configuration publishing environ-
ment and provide high level of consistency and easy re-
covery for the ACMS’ Storage Points. These schemes of-
fer much flexibility and may be useful in other distributed
systems.

Just like ACMS, any other management system could
benefit from using a CDN such as Akamai’s to propagate
updates. First, a CDN managed by a third party offers a
convenient overlay that can span thousands of networks
effectively. A solution such as multicast requires much
management and simply does not scale across different
ISPs. Second, a CDN’s caching and reach will allow the
system to scale to hundreds of thousands of nodes and
beyond.

Most importantly we have presented valuable lessons
learned from our operational experience. Redundancy
of machines, networks, and even algorithms helps a dis-
tributed system such as ACMS cope with network and
machine failures, and even human errors. Despite 36 net-
work failures that we recorded in the last 9 months, that
affected some ACMS Storage Points, the system contin-
ued to operate successfully. Finally, active monitoring of
any critical distributed system is invaluable. We relied
heavily on the NOCC infrastructure to maintain a high
level of fault-tolerance.

Acknowledgements
We would like to thank William Weihl, Chris Joerg, and
John Dilley among many other Akamai engineers for
their advice and suggestions during the design. We want
to thank Gong Ke Shen for her role as a developer on this

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 257



project. We would like to thank Professor Jason Nieh
for his motivation and advice with the paper. Finally,
we want to thank all of the reviewers and especially our
NSDI shepherd Jeff Mogul for their valuable comments.

References
[1] Akamai Technologies, Inc.,

http://www.akamai.com/.

[2] Network Operations Command Center,
http://www.akamai.com/en/html/technology/nocc.html.

[3] http://www.ntp.org/.

[4] D.Karger, E.Lehman, T.Leighton, M.Levine, D.Lewin
and R.Panigrahy, Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Comput-
ing, pages 654-663 , 1997.

[5] M. Castro, M. B. Jones, A-M Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman, An Evaluation
of Scalable Application-level Multicast Built Using Peer-
to-Peer Overlays, in Proc. INFOCOM, 2003.

[6] Y. Chawathe, S. McCanne, and E. Brewer, RMX: Reli-
able Multicast for Heterogeneous Networks, Proc. of IN-
FOCOM, March 2000, pp. 795–804.

[7] Y. H. Chu, S. G. Rao, and H. Zhang, A case for end
system multicast, Proc. of ACM Sigmetrics, June 2000,
pp. 1–12.

[8] S. B. Davidson, H. Garcia-Molina, and D. Skeen, Con-
sistency in partitioned networks, ACM Comput. Surveys,
1985.

[9] S. E. Deering and D. R. Cheriton, Host extensions for
IP multicasting, Technical Report RFC 1112, Network
Working Group, August 1989.

[10] C. J. Fidge, Timestamp in Message Passing Systems that
Preserves Partial Ordering, Proc. 11th Australian Com-
puting Conf., 1988, pp. 56–66.

[11] D. K. Gifford, Weighted Voting for Replicated Data, Pro-
ceedings 7th ACM Symposium on Operating Systems,
1979.

[12] J. Gray, Notes on database operating systems, Operating
Systems: An Advanced Course. pp. 394–481, 1978.

[13] IBM Corporation, WebSphere MQ family,
http://www-306.ibm.com/software/integration/
mqfamily/.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, F. Kaashoek,
and J. W. O’Toole, Overcast: Reliable Multicasting
with an Overlay Network, Proc. of OSDI, October 2000,
pp. 197–212.

[15] A. Kumar, Hierarchical quorum consensus: A new algo-
rithm for managing replicated data, IEEE Trans. Com-
puters, 1991.

[16] L. Lamport, The Part-time Parliament, ACM Transac-
tions in Computer Systems, May, 1998.

[17] M. Castro, B. Liskov, Practical Byzantine Fault-
Tolerance, OSDI 1999.

[18] L. Lamport, R. Shostak, and M. Pease, The Byzantine
Generals Problem, ACM Transactions on Programming
Languages and Systems, July 1982.

[19] N. Lynch and A. Shvartsman, RAMBO: A Reconfigurable
Atomic Memory Service for Dynamic Networks, DISC,
October 2002.

[20] M. Satyanarayanan, Scalable, Secure, and Highly Avail-
able Distributed File Access, IEEE Computer, May 1990.

[21] S. Saito, C. Karamanolis, M. Karlsson, M. Mahalingam,
Taming Aggressive Replication in the Pangaea Wide-area
File System, OSDI 2002.

[22] K. Peterson, M. Spreitzer, D. Terry, Flexible Update
Propagation for Weakly Consistent Replication, SOSP,
1997.

[23] S. Paul, K. Sabnani, J. C. Lin, and S. Bhattacharyya, Reli-
able Multicast Transport Protocol (RMTP), IEEE Journal
on Selected Areas in Communications, April 1997.

[24] F. Mattern, Virtual Time and Global States of Distributed
Systems, Proc. Parallel and Distributed Algorithms Conf.,
Elsevier Science, 1988.

[25] Microsoft Corporation, Microsoft Message Queuing
(MSMQ) Center,
http://www.microsoft.com/windows2000/
technologies/communications/msmq/default.asp.

[26] S. Rantmasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, A Scalable Content-Addressable Network,
Proc. of ACM SIGCOMM, August 2001.

[27] S. Ratnasamy, M. Handley, R. Karp and S. Shenker,
Application-level multicast using content-addressable
networks, Proc. of NGC, November 2001.

[28] A. Rowstron and P. Drischel, Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems, Proc of Middleware, November 2001.

[29] A. Rowstron, A. M. Kermarrec, M. Castro and P. Dr-
uschel, Scribe: The design of a large-scale event noti-
fication infra, structure in Proc of NGC, Nov 2001.

[30] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan, Chord: A scalable peer-to-peer lookup ser-
vice for internet applications, in Proc of ACM SIG-
COMM, August 2001.

[31] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, B. Zhao, OceanStore:
an architecture for global-scale persistent storage, AS-
PLOS 2000, November 2000.

[32] Sun Microsystems, Java Message Service,
http://java.sun.com/products/jms.

[33] B. Zhao, J. Kubiatowicz and A. Joseph, Tapestry: An
infrastructure for fault-resilient wide-area location and
routing, U. C. Berkeley, Tech. Rep. April 2001.

[34] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubia-
towicz, Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide-Area Data Dissemination, Proc. of NOSS-
DAV, June 2001.

[35] http://www.lcfg.org/.

[36] http://www2.novadigm.com/hpworld/.

[37] Microsoft Windows Update
http://windowsupdate.microsoft.com.

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association258




