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Abstract — We explore negotiation as the basis for
cooperation between competing entities, for the specific
case of routing between two neighboring ISPs. Interdo-
main routing is often driven by self-interest and based on
a limited view of the internetwork, which hurts the sta-
bility and efficiency of routing. We present a negotiation
framework in which adjacent ISPs share information us-
ing coarse preferences and jointly decide the paths for the
traffic flows they exchange. Our framework enables pairs
of ISPs to agree on routing paths based on their specific
relationship, even if they have different optimization cri-
teria. We use simulation with over sixty measured ISP
topologies to evaluate our framework. We find that the
quality of negotiated routing is close to that of globally
optimal routing that uses complete, detailed information
about both ISPs. We also find that ISPs have incentive
to negotiate because both of them benefit compared to
routing independently based on local information.

1 Introduction

A defining characteristic of the Internet (and increas-
ingly, other planetary scale distributed systems) is that it
is operated by autonomous organizations with varied in-
terests. These organizations need to cooperate to provide
a useful service, but they also compete with each other,
e.g., for the same set of customers. This makes protocol
design challenging, as organizations tend to hide infor-
mation and make selfish policy decisions. The conse-
quence can be both poor stability and poor efficiency.
The current interdomain routing protocol (BGP) pro-
vides an example. ISPs export little internal information
and make selfish routing decisions based on their local
view of the internetwork. Routing can be unstable be-
cause the actions of ISPs influence each other: in the ab-
sence of knowledge about other networks, one ISP can
adversely influence another, and in the worst case cy-
cles of influence can lead to oscillations. We are aware
of one such incident that involved two large ISPs and
lasted for two days [12]. Routing can be inefficient be-
cause locally sound routing decisions may be globally
unsound [28, 30]. For instance, early-exit routing, in
which upstream ISPs use the locally optimal exit for
sending traffic to the downstream ISP, may cause the
downstream ISP to carry the traffic a long way [30].

The problems with the current Internet routing architec-
ture are also betrayed by the fact that operators are often
forced to work around it by manually cooperating (as was
the case in the incident above) using ad hoc mechanisms
to make the routing work as desired. This manual control
is neither efficient nor robust [17].

In this paper, we explore negotiation as the basis for
stable and efficient routing between neighboring ISPs.
This limited scenario exhibits many of the problems
that occur in the more general case of interdomain rout-
ing [31], while letting us study those issues in a more
tractable setting. We leave for future work the extension
of our approach to cover multilateral negotiations.

With negotiation, ISPs share information in a con-
trolled manner and jointly agree on a mutually accept-
able set of paths for traffic flows they exchange. The
joint agreement precludes the possibility of a cycle of
influence by design. We present a practical negotiation
framework, Nexit, with several properties that make it
a good fit for interdomain routing. It requires ISPs to
share relatively little information with each other: coarse,
opaque preferences rather than transparent metrics such
as latency or cost. It is flexible enough for the ISPs to
reach an operating point based on their specific relation-
ship, and it enables ISPs to optimize for their own crite-
ria, e.g., increasing performance versus reducing cost. It
also allows an ISP to ensure that it is no worse off than
the default case of selfish routing with local information,
so that negotiating carries no risk.

We evaluate negotiation using simulation over sixty
measured ISP topologies. For both distance and band-
width metrics, we compare negotiated routing with glob-
ally optimal routing that uses complete information to
optimize the two ISPs as a single larger system. We find
that the quality of negotiated routing is very close to that
of the globally optimal routing. For bandwidth measures,
the benefit of cooperative routing is often substantial, re-
ducing the likelihood of overload inside either ISP. For
distance measures, this benefit is small in aggregate, im-
plying that the average “price of anarchy” [23] from a
distance perspective is low in practice. The main benefit
of negotiation in this setting is that it can automatically
optimize a small fraction of flows with circuitous de-
fault paths. Compared to routing based on local informa-
tion, both ISPs benefit with negotiation, which provides a
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strong incentive to negotiate. In contrast, with global op-
timization, one ISP may lose to benefit the other; losing
ISPs will be averse to global optimization.

Our work provides a case study of when negotiation
might help to coordinate the actions of competing orga-
nizations that must cooperate to provide some service. In
our case, negotiation is successful because the interests
of the ISPs are not completely opposed. By cooperat-
ing, both of them benefit relative to selfish routing based
solely on local information.! Further, we find that gains
are possible only if the ISPs take a holistic view of traf-
fic. Optimizing a single flow often means a gain for one
ISP and a smaller loss for the other. Both the ISPs can
gain when routing is optimized across a set of flows (as is
the case for negotiation): each ISP gains for some flows
and loses for others, with an overall positive gain. Nexit
leverages these properties.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a brief background of interdomain
routing and motivate the need for better cooperation. We
discuss our design considerations in Section 3 and de-
scribe our negotiation framework in Section 4. In Sec-
tion 5, we empirically demonstrate the benefits of nego-
tiation. We discuss some issues concerning deployment
in Section 6, discuss related work in Section 7, and con-
clude in Section 8.

2 Background and Motivation

In this section, we provide a brief background of inter-
domain routing and give examples of problems that stem
from selfish routing based on local information.

2.1 Background

For our purposes, the Internet is a collection of ISP net-
works or autonomous systems (ASes). We refer to inter-
ISP links as interconnections. It is common for two large
ISPs to have multiple interconnections, e.g., in different
cities. ISPs use the BGP protocol to exchange reacha-
bility information — the list of ISPs along the path to the
destination (known as the AS-path) — with each other to
provide global connectivity. Routing information flows
in the opposite direction to data flow, from downstream
ISPs to upstream ISPs.

When multiple paths to a destination are available,
ISPs use a combination of local policy, AS-path length
and local resource constraints to select the path. The
commercial relationship with the adjacent ISP is an im-
portant consideration for local policy. Typical relation-
ships include customer-provider, peers, and siblings. In
the first, the customer pays the provider ISP. Money is
not exchanged in the other two, based on the assump-
tion of mutual benefit for traffic exchange. Peers are of-
ten competitors that benefit from direct access to each

other’s customers, while siblings are friendly or related
networks. Usually, ISPs prefer to send traffic through
their customers, peers, and providers in that order [11].
Within these groups, paths are chosen based on their
length and the amount of local resources consumed.

The original design of BGP [15] allowed only AS-
path reachability information to be shared. This proved
to be a serious shortcoming because ISPs want to opti-
mize their networks, for instance, to balance load in their
network, to improve the performance of the traffic they
carry, or to reduce overall resource consumption. While
ISPs could arbitrarily control their outgoing traffic, the
inability to control incoming traffic hindered optimiza-
tion. Over time, many ad hoc mechanisms have been
added to address this problem.

Two such mechanisms that are commonly used to-
day are multi-exit discriminators (MEDs) and AS-path
prepending. MEDs are used between ISPs that connect
in multiple locations. The downstream ISP attaches an
integer to route advertisements to convey its preference
for a specific destination (or destination prefix) to use a
specific interconnections. If the upstream ISP chooses to
honor these MEDs, it picks the best interconnection from
the downstream’s perspective. With AS-path prepend-
ing, the downstream ISP artificially increases the path
length for traffic coming in from certain links by adding
its own AS identifier multiple times in the path. Whether
or not an upstream uses the increased path length in se-
lecting paths depends on its local policies. One might
think that the downstream ISP could completely deter-
mine the upstream ISP’s choice by selectively advertis-
ing routes on only those interconnections it wants the up-
stream to use; this practice is usually prohibited by con-
tractual agreement.

2.2 Example Problems

We now present two scenarios to illustrate the shortcom-
ings of current interdomain routing mechanisms.

Our first example concerns the tuning of traffic ex-
changed between two ISPs to use resources more effi-
ciently or to improve performance. Consider the two
ISPs shown in Figure la, each using the closest inter-
connection (“early-exit”) to transfer traffic to the down-
stream ISP as it minimizes resource usage in the up-
stream network. This is a common policy [30]. However,
the gains of this strategy vanish when one considers traf-
fic flowing in the reverse direction, if the other ISP also
uses early-exit routing. This situation is shown in Fig-
ure la. Compared to a judicious choice of interconnec-
tion, as in Figure 1c, early-exit routing can lead to greater
resource consumption for both ISPs and poorer overall
performance because it may route traffic away from the
ultimate destination. Under certain topological assump-
tions the cost of early exit routing can be up to three times
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Figure 1: Negotiation for performance tuning. (a) The
default (early-exit) scenario. (b) The traffic pattern with
MED:s (late-exit). (c¢) A mutually beneficial solution.

that of the optimal routing [13], though we show that it
is much less in practice.

There is no straightforward way to achieve the opti-
mized routing of Figure 1c¢ with BGP. For instance, the
use of MEDs leads to late-exit routing shown in Fig-
ure 1b. When the ISPs agree to honor each other’s pref-
erences for incoming traffic, the traffic will use the link
that is closest to the destination. Done consistently, this
situation is simply the reverse of early-exit.

Obtaining the routing configuration of Figure lc re-
quires both information sharing and coordination be-
tween ISPs. The former is not sufficient by itself as an
ISP has no incentive to use the middle interconnection
unless the other ISP also does the same. Coordination
can convince both ISPs to give up their selfish choices.

Our second example concerns managing overload af-
ter unexpected changes in the topology or traffic such
as failures or flash crowds. It is adapted from the in-
cident mentioned in Section 1. Consider the two ISPs
in Figure 2a, with traffic flowing from ISP-A to ISP-B.
Assume that the middle interconnection fails, and ISP-
A re-routes the affected traffic based on local conditions
(Figure 2b). This overloads ISP-B, which reacts by shift-
ing some traffic to the top interconnection, using MEDs,
for instance (Figure 2c). Unfortunately, ISP-B’s action
overloads ISP-A, and it reacts by shifting traffic to the
bottom link (Figure 2d). The result is a return to the sit-
uation of Figure 2b and continue the cycle of influence.

Figure 2e shows a solution that is acceptable to both
ISPs. As before, there is no straightforward way in BGP
to discover this configuration. Using MEDs, ISP-B needs
to specify that the preferred entrance for f3 is the top
interconnection and for f2 is the bottom one. But given
a purely local view, ISP-B has no basis for preferring this
configuration over f3 on the bottom link and f2 on the
top one. Similarly, ISP-A has little visibility into ISP-B’s
network to determine the acceptable routing pattern.

3 Design Considerations

In this section, we lay out the design considerations for
structuring cooperation between neighboring ISPs. Our
goal is to enable the negotiating ISPs to meet their indi-
vidual objectives. This implies giving them control over
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Figure 2: Negotiation in response to failures. (a) The
stable (no failure) scenario. (b) ISP-A’s response to the
failure of the middle interconnection congests ISP-B. (c)
ISP-B’s reaction of moving some traffic from the bottom
interconnection to the top one congests ISP-A. (d) ISP-A
reacts to its congestion by moving the traffic back to the
bottom link, which again congests ISP-B. (e) A mutually
acceptable solution.

both their incoming and outgoing traffic. This control
should be mutual, i.e., both upstream and downstream
ISPs should be able to influence path selection. Absolute
control for either the upstream or the downstream leads
to problems mentioned earlier.

Our solution is based on the following key considera-
tions that we extracted from the problem domain.

o Limited information disclosure: Competitors are
often reluctant to disclose detailed internal information
to each other. Thus, we must work with inputs that
do not directly disclose unwanted information. For an
ISP, this precludes disclosing information on the topol-
ogy and performance of its network. This sensitivity also
extends to cost information, since an ISP may not wish
to tell its competitor the true cost of carrying traffic. We
handle this concern by working with opaque preference
classes, rather than transparent metrics such as latency
or cost. An alternative approach is mechanism design,
in which the best strategy for an ISP is to reveal its true
cost regardless of what it knows about the other ISP’s
cost [8]. But this cost information can be abused outside
of the solution framework, such as when an ISP adds ca-
pacity along the competitor’s profitable routes [9].

o Support for heterogeneous objectives: Different
ISPs have different goals and hence different optimiza-
tion criteria. To work across such systems, coopera-
tion mechanisms should be agnostic towards the internal
objective functions used by individual entities. For in-
stance, while ISPs with capacity constraints may aim to
avoid overload, ISPs with overprovisioned networks may
aim to improve performance by reducing latency and jit-
ter. Yet others may want the best routes for their pre-
ferred customers. There are bound to be further consid-
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erations of which we cannot be aware. While economic
cost could be used as a unifying metric, it can be very dif-
ficult, if not impossible, for ISPs to quantify their internal
considerations in terms of true cost [29]. As before, we
handle this concern by working with opaque preferences.
ISPs map their internal objectives to these preferences.
This is relatively easier because ISPs already quantify
these objectives for intradomain optimization.

A consequence of the above two considerations is that
achieving social goals such as social optimality or fair-
ness is not a pre-requisite for negotiation. Social goals
are usually defined only when entities have comparable
objectives. For instance, both social optimality and fair-
ness are undefined when one ISP optimizes for latency
and the other for link utilization.

o Flexible outcomes: As we noted in Section 2.1, dif-
ferent pairs of ISPs have different relationships that gov-
ern their interaction, e.g., ISPs treat customers and com-
petitors differently. Instead of designing a mechanism
that produces a deterministic output given some input,
we should provide a flexible framework for ISPs to com-
pute outcomes based on their relationship [6].

Flexibility requires that all kinds of outcomes should
be possible but the most interesting space is that of “win-
win” outcomes where both ISPs gain. The social opti-
mum that treats both ISPs as a single larger system may
cause one to lose compared to the situation with no ne-
gotiation. Profit-maximizing entities will not negotiate
if they lose. Side payments between ISPs can alter this
balance but in this paper we focus on protocols that com-
pute win-win solutions without side payments and leave
exploring the use of side payments for future work.

It is desirable that the outcomes, whatever they might
be, come close to Pareto-optimal. An outcome is Pareto-
optimal if all other outcomes are worse for at least one of
the entities. Pareto-optimality rules out outcomes with
obvious wastage, i.e., those that are worse for both. (The
current Internet is often not Pareto-optimal as illustrated
in Figure 1.) There can be multiple Pareto-optimal solu-
tions in the system.

¢ Incentive compatibility vs. efficiency: A concern
when competing entities interact is that one of them may
try to manipulate the outcome in its favor by lying. In-
centive compatible mechanisms, in which truth telling is
provably the best strategy for all entities, guarantee inter-
actions that are robust against manipulation. However,
incentive compatibility often runs counter to efficiency.
It is known that in the absence of a third party acting as a
subsidizer, appraiser or arbitrator, there does not exist a
mechanism that is both incentive compatible and able to
implement all mutually acceptable solutions for bilateral
trading [21].

Faced with the trade-off between incentive compati-
bility and efficiency, we favor efficiency for two reasons.

First, we believe that cooperation will be the common
case because parties tend to act honestly while seeking
joint gains over a default contract [26]. Even today, ISPs
often cooperate using ad hoc mechanisms that are not ro-
bust against manipulation. We want to compute efficient
solutions when ISPs cooperate. Second, even if we were
to pick incentive compatibility, it is not clear that a mech-
anism design approach can be used to yield flexible out-
comes. Usually, for such approaches the objective of the
interaction, for instance, computing least cost paths [8],
is fixed by design. But we want to leave the objective up
to the ISPs.

However, we will see that favoring efficiency over in-
centive compatibility does not necessarily imply that a
cheating ISP can infinitely game the system (Sections 4.2
and 5.4).

e Information exchange model: Careful attention
needs to be paid not only to what information is dis-
closed but also to how it is shared. It is virtually im-
possible to give ISPs mutual control over traffic in the
routing information exchange model used today because
routing information flows only from downstream to up-
stream [18]. If this information is obeyed, e.g., MEDs by
contract, then the upstream loses control over outgoing
traffic. If obeying this information is optional, e.g., as
with AS-path prepending, whether the upstream follows
it depends on its local policies. Since these policies are
not known to the downstream, it cannot effectively con-
trol its incoming traffic. We use a two-way information
exchange in which both the upstream and downstream
ISPs provide their preference.

e Scope of optimization: Mutual control implies that
entities have to compromise over certain issues for gain
in others. What is the most effective way to arrange this
mutual compromise? Economic and political negotia-
tions tell us that better solutions are obtained when the
entities negotiate over a larger set of issues [26, 3]. We
find this to be true in our two-ISP scenario and encour-
age ISPs to keep all the traffic on the negotiating table
to increase the chances of finding mutual compromises.
For systems where simultaneous, mutual compromises
are hard to find, compromises can be decoupled in time
using “credits,” a topic we leave for future work.

o Efficient computation: Finally, computing the re-
sult of the negotiation should be efficient in time and the
number of messages. This excludes trial-and-error proto-
cols, such as where each ISP blindly proposes to re-route
a subset of the traffic at a time, in the hope that it is ac-
ceptable to the other ISP. We propose that ISPs exchange
sets of preferences to efficiently discovery a mutually ac-
ceptable operating point.
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4 The Nexit Framework

The goal of Nexit (short for negotiated exit) is to enable
a pair of ISPs to agree upon an interconnection for each
traffic flow they exchange. A flow is a stream of packets
from a source node in one ISP to a destination node in
the other ISP. There may be multiple flows between the
same pair of nodes but all packets in a flow take the same
path through the two networks. We discuss how ISPs es-
tablish identifiable flow signatures in Section 6. We as-
sume that ISPs are capable of source-destination routing,
i.e., flows with the same destination but different sources
can be routed independently, e.g., using MPLS. By using
more flexible flow definitions, Nexit can be extended to
destination-based routing but for ease of exposition we
focus on source-destination routing in this paper.?

Nexit is guided by the following observation. While
improving the path of an individual flow might hurt one
of the ISPs, a set of improvements will lead to a win-
win solution if each improvement brings a large benefit
to one ISP at a smaller cost to the other. Identifying such
changes only requires the ISPs to disclose a rough mea-
sure of the cost or benefit of the change.

Conceptually, Nexit consists of two steps. First, as is
the case for any negotiation, parties internally evaluate
their routing choices. Second, they participate in a pro-
tocol that uses these evaluations to arrive at a mutually
acceptable solution. We discuss these steps below.

1. ISP-internal evaluation of routing choices Each
ISP maps flow alternatives to opaque preference classes
based on its internal optimization criterion. An alterna-
tive corresponds to an interconnection for a flow. For
example, there are three alternatives per flow for ISPs
with three interconnections. Instead of using transparent
metrics such as latency, Nexit works with opaque prefer-
ence classes in the integral range [— P, P|. Internal ISP
metrics are mapped to this range as described below. P
is chosen to be large enough to differentiate alternatives
with substantially different quality but small enough to
avoid unnecessary information leakage. Opaque prefer-
ences provide a basis for negotiation between ISPs with
different objectives and disclose less internal information
as neither the objective nor the mapping process is re-
vealed. But if the ISPs are interested in a social goal,
they must decide in advance on the common metric and
the mapping process. We consider this to be a special
case for negotiation between friendly ISPs.

The mapping to preferences is done based on the de-
fault alternative for the flow, which is the alternative that
the ISP reckons the flow will use in the absence of ne-
gotiation. The two ISPs need not agree on the default
alternative for the flow. The ISPs map the default to pref-
erence class 0 and non-default alternatives to preferences
that reflect their relative goodness.

One requirement for the mapping process is that pref-
erences compose over addition. That is, an ISP should
be happy to use two alternatives each with preference
—1 if that enables it to use an alternative with prefer-
ence +3. ISP optimization objectives of which we are
aware can be mapped within this constraint. For instance,
mapping per-flow objectives, such as minimizing the dis-
tance a flow traverses inside the ISP network, is straight-
forward as the preferences for different alternatives are
independent. Network-wide objectives, such as mini-
mizing maximum link load, can be mapped using linear
program formulations [10] that optimize the sum of the
individual-path preferences. Preferences for metrics that
are external to an ISP network, such as those based on
end-to-end path quality (gathered using measurements,
for instance) can be considered mutually independent.

Preference classes are similar to BGP MEDs in terms
of information disclosure, but their relative magnitude re-
veals some extra information. Individual ISPs can con-
trol the extent of information disclosed by using either
ordinal preferences or fewer than P classes.

2. Negotiation protocol  Next, the ISPs exchange
their preference lists and agree on an interconnection for
each flow using a protocol that proceeds in rounds. In
each round, one ISP proposes an alternative and the other
decides if it is acceptable. This is accomplished in sev-
eral steps. The exact implementation method of each step
is agreed upon contractually in advance by the ISPs.

e Decide turn: Decide which ISP proposes an alter-
native in the current round. The method we use in our
experiments is that the ISPs alternate. Another is that the
ISP with the lower cumulative gain (as measured using
the sum of preferences for the flows negotiated so far)
gets the next turn. Yet another possibility is a coin toss.

e Propose an alternative: The ISP whose turn it is
proposes an alternative based on local and remote pref-
erences. The method we use picks from the set that max-
imizes the sum of preferences of the two ISPs, breaking
ties using local preferences. An alternative is to propose
the best local alternative with minimal negative impact
on the other ISP.

e Accept alternative? The other ISP decides whether
to accept the proposal. This gives ISPs veto power over
the proposal, which they might use if the preference for
this alternative has changed since last advertised or if
they perceive that the proposer is not playing by the mu-
tually agreed rules. We always accept proposed alterna-
tives in our experiments. Accepted flows are removed
from the preference lists.

® Reassign preferences? Reassignment occurs when
one of the ISPs wants to update its preference list. This
is needed when the preferences are based on constraints
such as available bandwidth that may change after some
flows have been negotiated. We reassign preferences af-
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Initial preference lists

| || f2t0p | f2bot | f3top ‘ f3bot |

[AB) [ L0 ©,0) ] ©,0 [ 0,0 ]
Reassignment after f2po:

| || f2top | f2bot | f3top ‘ fgbot |

[AB) | | [ 0.1 [ 0.0 ]

Figure 3: Preference lists for the example in Figure 2.
The column headings correspond to flow alternatives;
the subscripts correspond to the interconnections. The
tuples represent the two ISPs’ preferences for that alter-
native. The alternative selected at each step is shown in
bold.

ter negotiating each 5% of the traffic for bandwidth ex-
periments and do not reassign preferences for distance
experiments.

e Stop? 1SPs decide whether they want to continue ne-
gotiating over more flows. In our experiments, ISPs stop
when they perceive no additional gain in continuing. We
call this early termination. Alternately, ISPs may con-
tinue as long as their cumulative gain is positive even
though it may be lower than that with early termination.
We call this full termination. It will be preferred in inter-
est of social welfare. The socially best outcome occurs
when ISPs negotiate for all the flows, even if that means
a reduction in one of the ISPs’ gain.

4.1 An Example

We illustrate the working of Nexit using the second sce-
nario of Section 2, shown in Figure 2. We simulate ne-
gotiation over the two flows, f2 and f3, impacted by the
failure. Each flow has two alternatives — the top and bot-
tom interconnections. Assume that the preference class
range is [-1, 1] and the ISPs propose alternatives that
maximize the total gain, breaking ties at random.

The top table in Figure 3 shows the initial preferences
lists for the two ISPs. These are relative to the default of
both flows traversing the bottom link. The subscripts for
the flows denote the interconnection. Recall that, in that
example, ISP-A is averse to f2 traversing the top inter-
connection, and ISP-B is averse to both flows coming in
via the bottom interconnection. Initially, all the alterna-
tives for ISP-A are as good as the default except f2 going
over the top link. ISP-B is initially indifferent to all the
alternatives because preference classes to flows are as-
signed independently of each other. ISP-B can handle
either of the flows entering via the bottom link; the prob-
lem arises only when they both do. Suppose that ISP-A
gets the first turn and it proposes f2,¢ by randomly pick-
ing out of the three equally good options. ISP-B accepts.

Next, the ISPs reassign preferences as shown in the
bottom table: ISP-B prefers f3:,, over the default. Re-
assignment takes into account the expected state of the
network, assuming that the first accepted choice was im-
plemented. ISP-B takes the next turn and proposes f3;.p.
This alternative is accepted by ISP-A, leading to the de-
sirable final solution shown in Figure 2e that could not
be found by BGP.

Of course, Nexit may not always arrive at an exactly
optimal solution. In the example, this occurs if ISP-
A happens to pick f3p, the first time. At this point,
whichever way f2 is routed, one of the ISPs suffers:
ISP-A does not want f2 to use the top link and ISP-B
does not want it to use the bottom link. It is possible to
prevent such sub-optimality if ISPs disclose resource de-
pendency among flows. But we opt for simplicity in the
design of Nexit; we will see that for realistic scenarios,
this does not lead to much efficiency loss.

4.2 Discussion

In this section, we make two observations about Nexit.
First, it can be used to obtain a wide variety of outcomes.
Computing exact socially optimal or Pareto optimal out-
comes in our problem setting is NP-hard. The hardness
for load-dependent metrics stems from the inability to
split a flow across multiple paths. For load-independent
metrics, computing Pareto-optimal solutions in which
both ISPs do better than the default is NP-hard. This
follows from a simple reduction from PARTITION; we
omit this reduction due to space constraints. Nexit ap-
proximates those outcomes using its hill climbing (or
greedy) structure. Socially optimal solutions are approx-
imated when the ISPs’ metrics and the mapping process
are compatible (e.g., both ISPs optimize for latency and
map a gain of 20ms to the same preference class), ISPs
select alternatives that maximize the combined gain, and
continue negotiating until all flows have been negoti-
ated. Max-min fair solutions (that maximize the mini-
mum gain) are approximated when the metrics and the
mapping process are compatible and the ISP with lesser
cumulative gain proposes alternatives, giving it a chance
to catch up with the other ISP. Finally, Pareto optimal
solutions are approximated when the ISPs (with possi-
bly incompatible metrics) propose alternatives that max-
imize the combined gain.

Second, even though Nexit is not strictly strategy-proof
in that an ISP can lie about its preferences, its structure is
such that it cannot be infinitely gamed. First, a cheating
ISP can never cause the truthful ISP to lose, only gain
less, because the truthful ISP will not accept solutions
that are worse than the default. Second, the combination
of truthful ISPs that terminate negotiation when they see
no more self-gain and ISPs that take turns to pick flow
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alternatives may lead to premature termination of nego-
tiation. When this occurs, it hurts the cheating ISP com-
pared to it being truthful. Third, various modes of Nexit
make cheating harder. For instance, if the alternative se-
lection criterion is decided in advance, lying might hurt
the cheater because its choices will be limited by the (in-
correct) preference list that it discloses to the other ISP.
In Section 5.4, we evaluate these arguments empirically.
Analytically understanding the impact of cheating is an
interesting avenue for future work.

5 Evaluation

In this section, we evaluate negotiated routing by com-
paring it with today’s default routing and globally opti-
mal routing. While the former is based on local informa-
tion, the latter is based on complete information sharing
and treats both ISPs as a single larger system; as such it
ignores the legitimate differences in ISP interests.

We answer three high-level questions:

e How much of the gain of globally optimal routing
can be realized using negotiation, given the restrictions
such as limited information sharing? We show that ne-
gotiated routing is very close to globally optimal routing.
We also show that negotiating over a large set of flows is
necessary to achieve that gain.

e Compared to the default routing, how do individual
ISPs fare with globally optimal routing and with nego-
tiation? We show that, while the global optimal often
benefits one ISP but hurts the other, negotiation always
benefits both ISPs.

e How much can a cheating ISP gain by lying about
its preferences? We show that a cheating ISP may lose
compared to being truthful.

The answers to these questions depend on many as-
pects of ISP networks, some of which are hard to model.
Our approach is to use measured data where it is avail-
able and experiment with a range of models drawn from
the literature where it is not. In this way, we hope to
focus on realistic rather than theoretical best- or worst-
case bounds, while avoiding results that are sensitive to
incidental choices in our setup.

As measured input, we use a dataset of PoP (city)-level
topologies of 65 ISPs, along with geographic coordinates
of PoPs and estimated inter-PoP link weights that model
routing internal to an ISP [30]. This dataset is diverse in
terms of ISP sizes and geographical presence.

We consider two kinds of ISP optimization criteria.
The first, based on a distance metric, explores the steady-
state reduction in overall network resource usage that can
be achieved, implicitly assuming that the network capac-
ity is well-matched to the traffic it carries. The second,
based on a bandwidth metric, explores how negotiation
can reduce the possibility of overload that might occur

when the traffic is no longer well-matched to the net-
work, e.g., due to a failure. The results from these two
criteria are presented in Sections 5.1 and 5.2. Since we
are interested in evaluating the potential of negotiation
by comparing it to the globally optimal, which is well-
defined only when ISPs use the same optimization cri-
teria, both ISPs use the same criteria in these two sec-
tions. In Section 5.3, we evaluate the case where the two
ISPs have different optimization criteria. Finally, in Sec-
tion 5.4, we consider a scenario where one of the ISPs
cheats by lying about its preferences.

We used Nexit as follows in our experiments. Pref-
erence class range is [-10,10]; we found that increasing
the range does not lead to noticeable increase in perfor-
mance. ISPs take turns to propose alternatives and pick
the alternative that maximizes the gain across both of
them, breaking ties using their own preferences. Pro-
posals are always accepted as our goal is to evaluate the
benefit of negotiation when ISPs cooperate fully. Pref-
erences are not reassigned for the distance experiments
and are reassigned for bandwidth experiments after ne-
gotiating each 5% of the traffic. Negotiation stops when
one of the ISPs cannot gain more.

5.1 Distance and Cost

In this section, we evaluate negotiation for improving
steady-state routing.

Methodology  We assess the quality of steady-state
routing using a metric that reflects the total resource con-
sumption in the network. This is the sum of path lengths
of all flows. There is a flow from each PoP in one ISP to
each PoP in the other ISP. The length of a path is the sum
of the lengths of its constituent links; we estimate link
length using the geographical distance between its end-
points [22]. Our metric attempts to capture the motiva-
tion behind early-exit routing: to reduce overall network
resource consumption by minimizing the distance a flow
travels inside the upstream network, allowing a smaller
or thinner network to support a given set of external traf-
fic demands. Admittedly, it is a crude approximation of
ISP objectives because it does not capture many factors,
such as flow sizes, that ISPs might consider in practice.

For this evaluation, we use pairs of ISPs that connect
at two or more locations to allow a choice of interconnec-
tions. We exclude eight ISPs whose measured topologies
are a logical mesh because their geographic distance is
not reflective of true distance. In all, we have 229 ISP
pairs, each with traffic flows going in both directions.

We compute routing for the three methods as follows.
The default routing uses the early-exit policy: the inter-
connection chosen by the upstream ISP for that flow is
the one that is closest to the source PoP. The globally
optimal routing uses the interconnection that minimizes
the total distance for each flow. Negotiated routing is
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Figure 4: The benefit of the optimal and negotiated rout-
ing. The x-axis is the percentage reduction in the dis-
tance relative to the default routing.

computed using Nexit; ISPs use the distance of flows in-
side their network to map interconnection to preference
classes.

Results  Figure 4 shows the results of this experi-
ment by plotting the gain of the optimal and negotiated
routing relative to the default routing. The left graph
plots the cumulative distribution function (CDF) of the
total gain across the two ISPs. Each point corresponds
to an ISP-pair. The graph shows that negotiated routing
is very close to the globally optimal routing. In other
words, the ISPs do not lose much by insisting that all so-
lutions be win-win. Interestingly, however, this gain is
little on average: roughly 4% for half of the ISP pairs.
This suggests that the aggregate cost of early-exit rout-
ing is low, i.e., the “price of anarchy” is low for pairs
of ISPs. This is well below the theoretical bound [13],
probably because the topological assumptions made for
computing the bound do not hold in practice. The main
value of optimization in this setting is to automatically
improve the performance of individual flows that suf-
fer significantly under default routing; we consider flow-
level gains shortly. We also find that, in general, ISPs
with more interconnections gain more through negotia-
tion. We omit this analysis due to space constraints.

Figure 4b plots the gain for individual ISPs in the pair.
With globally optimal routing, roughly a third of the ISPs
actually lose, with some losing by more than 30%. These
ISPs will have little incentive to move to the globally op-
timal solution. In contrast, individual ISPs do not lose
with negotiated routing, providing a strong incentive to
negotiate.?

Next, we show that the gains for both ISPs depend on
negotiation across a set of flows. A simpler alternative
strategy would be to restrict it to pairs of flows going
in the opposite direction and discard bad routing paths.
We experimented with two strategies — flow-Pareto and
Sflow-both-better. The former rejects paths that are worse
than the default for both ISPs, while the latter rejects
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Figure 5: The gain, relative to the default routing, of two
alternate routing strategies that simply discard bad al-
ternatives. Neither achieves nearly the potential benefit
of the negotiated or optimal routing.

those that are worse for any one ISP. For example, in Fig-
ure 1, using the top link for A— B and the middle link for
B— A is flow-Pareto, and using the middle interconnec-
tion for both directions is flow-both-better. If multiple
paths satisfy the required criterion, one is picked at ran-
dom. Figure 5 plots the gains from these strategies. It
shows that these seemingly reasonable strategies which
avoid obvious wastage at flow-level are not effective, and
their cost is close to that of the default itself. We also
experimented with breaking down the set of flows into
several groups and negotiating within each group sepa-
rately. We find that this does not provide as much benefit
as negotiating over the entire set. Thus, for mutual gain
to be realized, negotiation must be done across flows and
ISPs must be willing to trade minor losses on some flows
for significant gains on others.

We close this section with a flow-level view of negoti-
ation. Figure 6 shows the gain for individual flows with
globally optimal and negotiated routing. Some individ-
ual flows gain significantly: 7% of the flows gain over
20%, and 1% of the flows gain over 50%. We specu-
late that the flows that suffer heavily due to the default
routing are the ones that are manually optimized by op-
erators today. Spring et al. observed that a small fraction
of Internet flows were routed along non-default paths be-
tween ISP-pairs [30]. Negotiation can automatically im-
prove the performance of these flows, thus saving pre-
cious operator time. Further, the proximity of the nego-
tiated curve to the optimal one suggests that negotiation
catches almost all of the flows that need optimization.

Another interesting conclusion that can be drawn from
the graph is that only a fraction of flows — roughly 20%
in our experiment — need to be non-default routed to get
most of the gain.

5.2 Bandwidth and Congestion

We now evaluate the benefit of negotiation in a set-
ting where the ISPs are interested in controlling conges-
tion and overload. Even when ISP networks are well-
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Figure 6: A flow-level view of optimal and negotiated
routing. This graph aggregates all flows across all ISP
pairs.

engineered, overload can occur during failures and sud-
den changes in traffic demands, as might be caused by a
flash crowd [4].

Methodology = We consider a scenario where an in-
terconnection fails and simulate negotiation for the flows
that are impacted by the failure; in the interest of stabil-
ity, ISPs are likely to reroute only such flows. Our results
may also apply to internal link failures and changes to
traffic matrices.

For this experiment, we consider only ISP pairs with
three or more interconnections because negotiation after
a failure requires at least two working interconnections.
There are 247 such ISP pairs in our dataset.

Overload is difficult to evaluate for two reasons. First,
calculating bandwidth measures requires estimates of
ISP link utilizations and workloads, none of which is
readily available. Second, the choice of metric to rep-
resent overall ISP cost in terms of individual, congested
links is less clear. For both of these, we experimented
with a range of plausible models. We first describe the
models used for the results presented in this paper and
then list the alternate models we tried. While our re-
sults are limited to our modeling choices, we found them
to be qualitatively similar for these alternate models as
well, suggesting that they are not overly sensitive to our
specific models.

First, we need a workload model. We assume that
there is one flow from each upstream-ISP PoP to each
downstream-ISP PoP; we consider only one direction of
traffic at a time. To determine flow sizes we use a gravity
model [19, 32], which predicts that the amount of traffic
between a pair of PoPs is proportional to the product of
the “weight” of the PoPs. We assume that the weight of
a PoP is proportional to the population of its city. Using
data from CIESIN [5], we estimate this as the number of
people in a 50 x 50 square mile grid centered on the ge-
ographical coordinates of the city. This model leads to a
skewed traffic matrix with larger cities consuming more
bandwidth, both hallmarks of real Internet traffic [14, 2].

Second, to model link capacities, we assume that they
are proportional to the load on the link before the fail-
ure [32], i.e., in steady-state a well-designed network
tends to be roughly matched to its traffic so that links
that carry more traffic tend to be of higher capacity. The
traffic matrix combined with the routing within an ISP
lets us compute the load on each link. But this method
does not assign capacity to links in the topology that do
not carry any traffic before the failure. We should not
remove these links since they may be used after failures.
To such links we assign a capacity that is the median of
the links with non-zero load. The intuition here is that the
unused links are backup links, and their capacity varies
between the minimum and maximum among the links in
use. Finally, to preclude our results being dominated by
links that carry little traffic, we “upgrade” all links below
the median to the median.

Finally, as the choice of the ISP optimization metric,
we use a measure based on the intuition that ISPs pre-
fer routing that does not significantly increase the load
on links after a failure. All ISPs overprovision to some
extent, so the link capacity of well-engineered networks
is likely to be some small multiple of its average load.
A much higher offered load after a failure implies that
either the link becomes congested or it must have been
significantly overprovisioned, which is expensive. Thus,
our metric should penalize large increases in link load
after a failure. We measure the quality of routing using
maximum excess load or MEL, which is the maximum
ratio of load after and before the failure on any link in
the topology. Higher MELs are undesirable as they re-
flect a higher offered load on the link after the failure.

We experimented with the following alternate models.
For workload, we tried identical weights for all PoPs and
weights drawn from a uniform random distribution. For
link capacities, we used discrete capacities by rounding
them up to the nearest power of two. For assigning ca-
pacities to unused links, we used other measures such as
the maximum and average load. Finally, as an alternate
ISP optimization metric, we used a metric based on a
linear programming formulation of optimal routing [10].
This metric minimizes the sum of link costs, where the
cost is a piecewise linear function of load with increasing
slope.

We reroute the impacted flows after a simulated failure
using the three routing methods as follows. The default
routing is early-exit over the new topology. The globally
optimal is computed by solving an optimization problem
that minimizes the maximum increase in link load. For
computational tractability, we allow flows to be fraction-
ally divided among interconnections; thus, the quality
of this routing is an upper bound on the global optimal
without fractional routing. Negotiated routing is com-
puted using Nexit, with both ISPs using the maximum
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Figure 7: The quality of negotiated routing when manag-
ing overload. The x-axis is the MEL relative to the MEL
of optimal routing.

increase in link load along the path to map flows to pref-
erences. The preferences are recomputed after each 5%
of the traffic is negotiated.

Results Figure 7 shows the results of this experiment
by plotting the ratio of the MEL of the default and nego-
tiated routing to that of the optimal routing. Each data
point corresponds to one hypothesized interconnection
failure; so there are four distinct points for ISP pairs with
four interconnections. The MEL for the default routing is
often significantly larger than the optimal routing, imply-
ing that the default routing tends to overload certain links
in the topology even when this overloading is avoidable.
For the upstream ISP, the ratio of the two MELs is more
than two for half of the cases, and more than five for 10%
of the cases. Though not shown in the graph, the MEL
ratios are high even when the optimal MEL is high, sug-
gesting that overload with default routing is not limited
to thin links in the network. The overload tendency is
more for the upstream because many previously unused
paths inside the upstream are used to send traffic from
the sources to the interconnections that continue work-
ing after the failure.

The graphs also show that negotiated routing is very
close to the optimal routing (since most of the MELs
are one) even though the amount of information used to
compute it is much less, the procedure to compute it is
much simpler, and the routing itself is restrictive (com-
pared to optimal routing which can fractionally divide a
flow among interconnections).

As for distance, negotiation leads to non-default paths
for only a fraction of the traffic. In our experiments, ne-
gotiation for 20% of the flows brings most of the benefit.
We omit this analysis due to space constraints.

A natural question is what happens if, instead of ne-
gotiating with the downstream, the upstream unilaterally
load balances outgoing traffic. It is possible that this will
not hurt or may even benefit the downstream, coming
close to optimal in the process. We evaluate this hypoth-
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Figure 8: The impact on downstream ISP of unilateral
routing optimization by the upstream ISP. The x-axis is
the ratio of the MELSs for the upstream-optimized and de-
fault routing; values more than one imply that upstream-
centric optimization was harmful for the downstream
ISP,

esis by simulating the upstream ISP optimizing the rout-
ing for its own network.

Figure 8 shows the impact of upstream-centric opti-
mization on the downstream ISP. It shows the ratio of
MELs in the downstream ISP with upstream-centric op-
timization versus early-exit routing. The result is un-
predictable: while in some cases, upstream-centric op-
timization helps the downstream (left end of the graph),
in others the downstream ISP suffers (right end of the
graph). In 10% of the cases, the MEL for upstream-
centric optimization is more than twice of that for the
default routing. Thus, the unilateral adjustment of rout-
ing by the upstream is undesirable because that may end
up causing more congestion in the downstream. This is
similar to the second example in Section 2.

5.3 Diverse Optimization Criteria

So far we have shown the quality of negotiated routing
when both ISPs use the same optimization criteria, but
many negotiating ISPs will use different criteria. We
evaluate this case using an experiment similar to that in
Section 5.2 except that the downstream ISP uses the dis-
tance metric from Section 5.1.

Figure 9 shows the results. The left graph shows how
successfully the upstream ISP controls overload in its
network. It plots the MEL for the default and negoti-
ated routing relative to the MEL of optimal routing in
which overload is optimized across both ISPs. The right
graph shows the distance reduction in the downstream
ISP relative to the default routing. Both ISPs are able to
optimize for the metric of their interest. The upstream
can effectively control overload and the downstream can
significantly reduce the distance that the traffic traverses
in its network.
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the default routing.

5.4 The Impact of Cheating

In this section, we empirically evaluate the impact of
cheating on the results produced by Nexit. We do so using
a cheating strategy that, on the surface at least, appears to
help the cheater. Experiments with a few other strategies
yielded similar results. We do not claim that this is the
case for all possible cheating strategies.

The cheating ISP uses the following strategy in this
experiment. Assume that the cheating ISP has perfect
knowledge of the other ISP’s preferences, which over-
estimates the cheater’s ability because in practice some
uncertainty can be introduced in this knowledge. The cri-
terion for selecting alternatives is to maximize the sum of
preferences across the two ISPs, breaking ties at random.
The cheater uses the knowledge of the other ISP’s pref-
erences to inflate the preference of its best alternative for
each flow just enough so that it corresponds to maximum
sum. This is a better strategy than blindly maximizing
preferences because as far as possible the relative order-
ing of the cheater’s original preferences are preserved,
which is useful for ensuring that better alternatives are
picked first. When the other ISP’s preferences are such
that inflating the best alternative does not lead to maxi-
mum sum, the cheater decreases the preferences for the
other alternatives accordingly.

We use the above cheating strategy for both the
distance and bandwidth experiments of Sections 5.1
and 5.2. Figure 10 shows the impact of cheating for the
distance experiment. The right graph shows that while
cheating significantly reduces the gain of the truthful
ISPs, it is unattractive as it also reduces the gain for the
cheating ISPs. Figure 11 shows the impact of cheating
for the bandwidth experiment with the upstream ISP act-
ing as the cheater. As before, cheating reduces the bene-
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Figure 10: The impact of cheating for the distance exper-
iment. The x-axis is the reduction in distance compared
to the default routing. (a) Reduction in distance across
both ISPs. (b) Reduction in distance for individual ISPs.
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Figure 11: The impact of cheating for the bandwidth ex-
periment. The upstream ISP is the cheater. The x-axis is
the MEL relative to that of the optimal routing.

fit for not only the truthful, downstream ISPs but also for
the cheating, upstream ISPs.

In both the experiments above, the cheating ISP loses
because the negotiation terminates prematurely as the
truthful ISP stops when it sees no benefit for itself. As-
suming that the cheating ISP is interested in maximiz-
ing its gain, rather than minimizing the other ISP’s gain,
this provides a disincentive against cheating. Further, re-
call that even if there exist strategies by which a cheater
gains, the structure of Nexit is such that an honest ISP can
always protect itself by not negotiating loses.

6 Deployment Considerations

In this section, we outline how Nexit might be integrated
into the current Internet. While we do not present a de-
tailed design, we discuss several key issues concerning a
practical deployment to argue for its plausibility.
Integration with ISP routing Instead of an in-band
integration with BGP, we advocate an out-of-band inte-
gration with routing as shown in Figure 12. Negotiation
agents use the current state of the network to map routing
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alternatives to preference classes and disclose these pref-
erences. Once the path has been negotiated, low-level
BGP mechanisms such as local-prefs are used to imple-
ment it. This architecture is similar to RCP [7] and has
three important advantages in our context. First, nego-
tiation requires a holistic view of traffic (with ISPs los-
ing on some flows and gaining on others) which is more
cleanly accomplished with a centralized approach. Sec-
ond, it avoids overloading an already fragile BGP. Third,
it does not require ISPs to modify the bulk of deployed
routers to benefit from negotiation.

Identifying flows for negotiation = The ISPs parti-
tion the traffic they exchange into flows. Recall that a
flow is a stream of packets from a node in one ISP to a
node in the other. We need identifiable flow signatures
because ISPs typically do not know where packets enter
or leave the other ISP’s network. Routing prefixes pro-
vide a basis for such a signature. Assume that the two
ISPs agree on a common set of prefixes, for instance, the
union of the prefixes they announce to each other through
BGP. Also assume that if the prefix is aggregated, the
subprefixes attach to the aggregating network at the same
place.

A flow is uniquely identified using the (most specific)
source and destination prefixes of its packets and an iden-
tifier that corresponds to its ingress into the upstream.
When traffic that is not covered by an existing flow is
observed, the upstream signals the arrival of a new flow.
It informs the downstream of the two prefixes (which the
downstream can also observe independently), its choice
of the identifier, and the estimated flow size. To pre-
vent information leakage, the upstream chooses different
identifiers for different flows that enter at the same place.

The upstream periodically refreshes the information
on active flows and flows that are inactive for a certain
period are timed out.

As a practical matter, to improve scalability ISPs can
decide to negotiate over only the set of long-lived and
high-bandwidth (or important) flows. For this, the up-
stream will trigger a new flow only if its size stays above
a threshold for a certain period of time. Optimizing
the small fraction of high-bandwidth flows can optimize
most of the traffic [31].

Input data  The input data required for negotiation
depend on the ISP optimization criteria but most of it can
be obtained using today’s technology. For instance, the
network path of a given flow can be computed using the
current routing state (e.g., OSPF weights or MPLS con-
figuration). The distance of a flow through the network
can be computed using the distance of individual edges.
Link utilization can be obtained using SNMP probes. In-
formation on existing flows and their sizes can be gath-
ered using NetFlow or similar tools.

When to negotiate? =~ While we have conceptually

Peering
Links

Figure 12: Integrating negotiation with current ISP rout-
ing. Logically, the negotiation agents sit on top of the
routing infrastructure. They collect data concerning the
state of the network as inputs to negotiation and appro-
priately configure the routers to implement the negoti-
ated solution.

described negotiation as being a one-shot event between
neighboring ISPs, in practice, it will be a continuous pro-
cess. ISPs inform each other of their updated preferences
for each flow being exchanged. These would be used to
continually find routing patterns that benefit both ISPs.

Dealing with changes Certain events, such as
failures or increase in traffic quantity, require an ISP to
change where or how much traffic it sends to its neigh-
bor. There are two ways to address such events. First,
the ISP informs its neighbors of the upcoming changes,
negotiates with them and routes accordingly. This en-
sures that ISPs do not violate each other’s resource con-
straints. However, waiting for negotiation to end before
routing the flows could lead to heavy packet loss or de-
lay if there are no alternate paths. Thus, this method is
more appropriate when alternate paths exist. The sec-
ond method is more suited for unplanned changes: the
ISP simultaneously routes the flows and opens up a ne-
gotiation channel with the other ISP. The two ISPs then
negotiate, at the end of which the flows may be rerouted.
This enables faster restoration of service, with the dan-
ger that one ISP might initially overload the other. ISPs
can protect other traffic from such transient overloads by
lowering the priority of non-negotiated traffic entering
their network.

ISPs can easily verify whether the traffic exchange
complies with what was negotiated. If unilateral changes
are detected (without a renegotiation request as described
above), the ISP can partially or fully rollback the com-
promises made in return.

7 Related Work

Two works have addressed the problem of enabling
neighboring domains to cooperatively manage the traf-
fic they exchange. First, Machiraju and Katz use secure
multi-party computation (SMPC) to enable ISPs to se-
lect interconnections without directly disclosing private
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information [16]. In contrast to our approach, they as-
sume that both ISPs optimize for the same objective and
do not consider the possibility of an ISP losing through
cooperation. In the future, we plan to explore combining
SMPC with negotiation to design mechanisms that are
both flexible and do not require the disclosure of internal
metrics.

Second, Winick et al. propose a method in which be-
fore moving traffic an upstream ISP informs the down-
stream of changes it intends to make [31]. The down-
stream decides if those changes are acceptable. This
method is one form of negotiation. Instead, Nexit uses
preference lists to compute a mutually acceptable solu-
tion. This is useful because the solution space is expo-
nential in the number of flows and it is hard for one ISP
to find good solutions without input from the second.

Mechanisms that enable autonomous entities to coop-
erate have received much attention in recent years. A
popular approach is distributed algorithmic mechanism
design (DAMD) [9]. The two applications of this ap-
proach, of which we aware, are both direct mechanisms
in which the entities disclose their costs [8, 24]. These
costs are used to compute solutions that satisfy the de-
sired property such as social optimality. Competitive
concerns are addressed by proving that a cheating en-
tity cannot manipulate the solution in its favor even with
the knowledge of others’ costs. However, this may not
capture all real-world competitive concerns [9]. For in-
stance, an ISP can use the knowledge of the competitor’s
cost to plan its own network in a way that undercuts the
competitor’s profits. We address this concern by disclos-
ing only coarse grained, opaque preference classes. An-
other advantage of our approach is that the ISPs do not
need to map their optimization metric to true cost, which
can be difficult, if not impossible [29].

Researchers have advocated the use of money as the
basis for interdomain traffic control [1, 20]. These works
propose that downstreams advertise the price of carrying
traffic as part of routing announcements and upstreams
pay this price while sending traffic. This approach as-
sumes that ISPs are able and willing to advertise path
prices. Additionally, this approach appears to be incom-
patible with the charging model in the Internet, in which
monetary payments flow from customer to provider ISPs
irrespective of the direction of the traffic.

Our work is another piece in the research theme that
examines the “price of anarchy” in the Internet. While
other researchers have studied selfish routing by individ-
ual users [27, 25], we study selfish routing by ISPs. Jo-
hari and Tsitsiklis use a graphical argument to show that
the latency of early-exit routing can be three times that of
optimal routing [13]. Our results over real ISP topologies
show that this is much lower in practice.

Finally, we draw broadly on concepts in negotiation the-
ory [3, 21, 26], though our specific techniques are geared
towards our problem domain.

8 Conclusions

In this paper, we have explored negotiation as the basis
for cooperation between competing entities. Our focus
has been two neighboring ISPs with multiple intercon-
nections, which forms the base case for interdomain rout-
ing in the Internet. We presented Nexit, an inter-ISP ne-
gotiation framework in which ISPs disclose only coarse,
opaque preference classes, much like BGP MEDs, to
each other and jointly decide paths for the flows they ex-
change.

Using simulation with over sixty measured ISP topolo-
gies, for both bandwidth and distance metrics, we
showed that the quality of negotiated routing is close
to that of globally optimal routing which considers both
ISPs to be part of one larger system. The success of ne-
gotiation stems from the fact that ISPs can trade small
losses for significant gains; when applied across flows
this leads to a net gain for both ISPs. While globally op-
timal routing can lead to both winners and losers, both
ISPs benefit with negotiation, providing a strong incen-
tive to negotiate. The benefit is often substantial for
bandwidth measures, lessening the likelihood of conges-
tion in either network. The benefit for distance is small
on average, suggesting that the overall “price of anar-
chy” is low in practice. We also showed that because of
the trading nature of negotiation, an ISP that lies can lose
compared to being truthful.

In the Internet routing context, negotiation has advan-
tages beyond the more easily quantifiable performance
benefits. It can increase stability as ISPs do not inadver-
tently violate each other’s resource constraints in a way
that might set off a reactionary chain of events. It relieves
operators from some of the time-consuming and error-
prone tasks related to route optimization. It enables ISPs
to jointly optimize traffic for profitable services such as
VPNs (virtual private networks). Today, such services
are limited to individual providers, and thus have lim-
ited reach. As part of ongoing effort we are working to-
wards a prototype implementation of Nexit that will work
in concert with BGP.

Our work is a first step towards designing an Internet-
wide negotiation mechanism and, more broadly, under-
standing the trade-offs involved in the design of proto-
cols between competing yet cooperating entities. Stabil-
ity and efficiency of such systems requires that the partic-
ipants have a global perspective while making local de-
cisions. Our study shows that negotiation can be highly
effective towards that goal.
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Notes

LIn game theory parlance, the two-ISP situation is not zero-sum but
is akin to prisoner’s dilemma because both players benefit from coop-
eration.

2Empirical evaluation with destination-based routing yields results
similar to those in Section 5.

3A subtle advantage of opaque preferences is that it makes nego-
tiation “jealousy free” because one ISP cannot determine whether the
other profits more in any meaningful terms.
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