Active Sensor Networks

Philip Levist, David Gay?, and David Cullert
{pal,culler} @cs.berkeley.edu, david.e.gay @intel.com

tEECS Department

University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

We propose using application specific virtual machines
(ASVMs) to reprogram deployed wireless sensor networks.
ASVMs provide a way for a user to define an application-
specific boundary between virtual code and the VM en-
gine. This allows programs to be very concise (tens to
hundreds of bytes), making program installation fast and
inexpensive. Additionally, concise programs interpret
few instructions, imposing very little interpretation over-
head. We evaluate ASVMs against current proposals for
network programming runtimes and show that ASVMs
are more energy efficient by as much as 20%. We also
evaluate ASVMs against hand built TinyOS applications
and show that while interpretation imposes a significant
execution overhead, the low duty cycles of realistic ap-
plications make the actual cost effectively unmeasurable.

1. INTRODUCTION

Wireless sensor networks have limited resources and
tight energy budgets. These constraints make in-network
processing a prerequisite for scalable and long-lived ap-
plications. However, as sensor networks are embedded
in uncontrolled environments, a user often does not know
exactly what the sensor data will look like, and so must
be able to reprogram sensor network nodes after deploy-
ment. Proposals for domain specific languages — still
an area of open investigation [5, 7, 19, 21, 23, 28] —
present possible programming models for writing these
programs. TinySQL queries, for example, declare how
nodes should aggregate data as it flows to the root of a
collection tree.

This wide range of programming abstractions has led
to a similarly wide range of supporting runtimes, ranging
from in-network query processors [19] to native thread li-
braries [28] to on-node script interpreters [5]. However,
each is a vertically integrated solution, making them all
mutually incompatible with each other. Additionally, they
all make implementation assumptions or simplifications
that lead to unnecessary inefficiencies.

Rather than propose a new programming approach to
in-network processing, in this paper we propose an archi-
tecture for implementing a programming model’s under-
lying runtime. We extend our prior work on the Maté vir-
tual machine (a tiny bytecode interpreter) [15], generaliz-

fIntel Research Berkeley
2150 Shattuck Avenue
Berkeley, CA 94703

ing its simple VM into an architecture for building appli-

cation specific virtual machines (ASVMs). Our experi-

ences showed that Maté’s harsh limitations and complex

instruction set precluded supporting higher level program-
ming. By carefully relaxing some of these restrictions

and allowing a user to customize both the instruction set

and execution triggering events, ASVMs can support dy-

namically reprogramming for a wide range of application

domains.

Introducing lightweight scripting to a network makes
it easy to process data at, or very close to, its source.
This processing can improve network lifetime by reduc-
ing network traffic, and can improve scalability by per-
forming local operations locally. Similar approaches have
appeared before in other domains. Active disks proposed
pushing computation close to storage as a way to deal
with bandwidth limitations [1], active networks argued
for introducing in-network processing to the Internet to
aid the deployment of new network protocols [27], and
active services suggested processing at IP end points [2].
Following this nomenclature, we name the process of in-
troducing dynamic computation into a sensor network
active sensor networking. Of the prior efforts, active net-
working has the most similarity, but the differing goals
and constraints of the Internet and sensor networks lead
to very different solutions. We defer a detailed compari-
son of the two until Section 6.

Pushing the boundary toward higher level operations
allows application level programs to achieve very high
code density, which reduces RAM requirements, inter-
pretation overhead, and propagation cost. However, a
higher boundary can sacrifice flexibility: in the most ex-
treme case, an ASVM has a single bytecode, “run pro-
gram.” Rather than answer the question of where the
boundary should lie — a question whose answer depends
on the application domain — ASVMs provide flexibility
to an application developer, who can pick the right level
of abstraction based on the particulars of a deployment.

Generally, however, we have found that very dense
bytecodes do not sacrifice flexibility, because ASVMs
are customized for the domain of interest. RegionsVM,
presented in Section 4, is an ASVM designed for ve-
hicle tracking with extensions for regions based opera-
tions [28]; typical vehicle tracking programs are on the

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

343

order of seventy bytes long, 1/200th the size of the origi-
nally proposed regions implementation. A second ASVM
we have built, QueryVM, supports an SQL interface to a
sensor network at 5-20% lower energy usage than the
TinyDB system [19], and also allows adding new aggre-
gation functions dynamically.

This paper has two contributions. First, it shows a
way to introduce a flexible boundary between dynamic
and static sensor network code, enabling active sensor
networking at a lower cost than prior approaches while
simultaneously gaining improvements in safety and ex-
pressiveness. Second, this paper presents solutions to
several technical challenges faced by such an approach,
which include extensible type support, concurrency con-
trol, and code propagation. Together, we believe these
results suggest a general methodology for designing and
implementing runtimes for in-network processing.

In the next section, we describe background informa-
tion relevant to this work, including mote network re-
source constraints, operating system structure, and the
first version of Maté. From these observations, we de-
rive three ways in which Maté is insufficient, establish-
ing them as requirements for in-network processing run-
times to be effective. In Section 3, we present ASVMs,
outlining their structure and decomposition. In Section 4
we evaluate ASVMs with a series of microbenchmarks,
and compare ASVM-based regions and TinySQL to their
original implementations. We survey related work in
Section 5, discuss the implications of these results in Sec-
tion 6, and conclude in Section 7.

2. BACKGROUND

ASVMs run on the TinyOS operating system, whose
programming model affects their structure and imple-
mentation. The general operating model of TinyOS net-
works (very low duty cycle) and network energy con-
straints lead to both very limited node resources and un-
derutilization of those resources. Maté is a prior, mono-
lithic VM we developed for one particular application
domain. From these observations, we derive a set of
technical challenges for a runtime system to support ac-
tive sensor networking.

2.1 TinyOS/nesC

TinyOS is a popular sensor network operating system
designed for mote platforms. The nesC language [6],
used to implement TinyOS and its applications, provides
two basic abstractions: component based programming
and low overhead, event driven concurrency.

Components are the units of program composition. A
component has a set of interfaces it uses, and a set of in-
terfaces it provides. A programmer builds an application
by connecting interface users to providers. An interface
can be parameterized. A component with a parameter-

ized interface has many copies of the interface, distin-
guished by a parameter value (essentially, an array of the
interface). Parameterized interfaces support runtime dis-
patch between a set of components. For example, the
ASVM scheduler uses a parameterized interface to issue
instructions: each instruction is an instance of the inter-
face, and the scheduler dispatches on the opcode value.
TinyOS’s event-driven concurrency model does not al-
low blocking operations. Calls to long-lasting opera-
tions, such as sending a packet, are typically split-phase:
the call to begin the operation returns immediately, and
the called component signals an event to the caller on
completion. nesC programming binds these callbacks
statically at compile time through nesC interfaces (in-
stead of, e.g., using function pointers passed at run-time).

2.2 Mote Networks

As motes need to be able to operate unattended for
months to years, robustness and energy efficiency are
their dominant system requirements. Hardware resources
are very limited, to minimize energy consumption. Cur-
rent TinyOS motes have a 4-8MHz microcontroller, 4—
10kB of data RAM, 60-128kB of program flash memory,
and a radio with application-level data transmission rates
of 1-20kB/s.

Energy limitations force long term deployments to op-
erate at a very low utilization. Even though a mote has
very limited resources, in many application domains some
of those resources are barely used. For example, in the
2003 Great Duck Island deployment [26], motes woke up
from deep sleep every five or twenty minutes, warmed up
sensors for a second, and transmitted a single data packet
with readings. During the warm-up second, the CPU was
essentially idle. All in all, motes were awake 0.1% of the
time, and when awake used 2% of their CPU cycles and
network bandwidth. Although a mote usually does very
little when awake, there can also be flurries of activity, as
nodes receive messages to forward from routing children
or link estimation updates from neighbors.

2.3 Maté v1.0

We designed and implemented the first version of Maté
in 2002, based on TinyOS 0.6 (pre-nesC) [15]. At that
time, the dominant hardware platform was the rene2 (the
mica was just emerging), which had 1kB of RAM, 16kB
of program memory and a 10kbps software controlled
radio. Maté has a predefined set of three events it exe-
cutes in response to. RAM constraints limited the code
for a particular event handler to 24 bytes long (a single
packet). In order to support network protocol implemen-
tations in this tiny amount of space, the VM had a com-
plex instruction set open to inventive assembly program-
ming but problematic as a compilation target.

344

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

2.4 Requirements

Maté’s hard virtual/native boundary prevents it from
being able to support a range of programming models.
In particular, it fails to meet three requirements:

Flexibility: The Maté VM has very concise programs,
but is designed for a single application domain. To pro-
vide support for in-network processing, a runtime must
be flexible enough to be customized to a wide range of
application domains. Supporting a range of application
domains requires two forms of customization: the exe-
cution primitives of the VM (its instruction set), and the
set of events it executes in response to. For example,
data collection networks need to execute in response to a
request to forward a packet up a collection tree (for sup-
pression/aggregation), while a vehicle tracking network
needs to execute in response to receiving a local broad-
cast from a neighbor.

Concurrency: By introducing a lightweight threading
model on top of event-driven TinyOS, Maté provides a
greatly simplified programming interface while enabling
fine-grained parallelism. Limited resources and a con-
strained application domain allowed Maté to address the
corresponding synchronization and atomicity issues by
only having a single shared variable. This restriction
is not suitable for all VMs. However, forcing explicit
synchronization primitives into programs increases their
length and places the onus of correctness on the program-
mer, who may not be an expert on concurrency. Instead,
the runtime should manage concurrency automatically,
running handlers race-free and deadlock-free while al-
lowing safe parallelism.

Propagation: In Maté, handlers can explicitly forward
code with the forw and forwo instructions. As ev-
ery handler could fit in a single packet, these instruc-
tions were just a simple broadcast. One one hand, ex-
plicit code forwarding allows user programs to control
their propagation, introducing additional flexibility; on
the other, it requires every program to include propaga-
tion algorithms, which can be hard to tune and easy to
write incorrectly. Maté’s propagation data showed how
a naive propagation policy can easily saturate a network,
rendering it unresponsive and wasting energy. As not all
programming models can fit their programs in a single
packet, a runtime needs to be able to handle larger data
images (e.g., between 20 and 512 bytes), and should pro-
vide an efficient but rapid propagation service.

Our prior work on the Trickle [17] algorithm deals
with one part of the propagation requirement, proposing
a control algorithm to quickly yet efficiently detect when
code updates are needed. The propagation results in that
work assumed code could fit in a single packet and just
broadcasts updates three times. This leaves the need for

VM Template s

il
|
T T

Capsule
Store

Code
Capsules

Concurrency Manager

Scheduler <

Operations

Figure 1: The ASVM architecture.

a protocol to send code updates for larger programs: we
present our solution to this problem in Section 3.4.

To provide useful systems support for a wide range of
programming models, a runtime must meet these three
requirements without imposing a large energy burden.
Flexibility requires a way to build customized VMs —
a VM generator — so a VM can be designed for an ap-
plication domain. The next section describes our appli-
cation specific virtual machine (ASVM) architecture, de-
signed to take this next step.

3. DESIGN

Figure 1 shows the ASVM functional decomposition.
ASVMs have three major abstractions: handlers, oper-
ations, and capsules. Handlers are code routines that
run in response to system events, operations are the units
of execution functionality, and capsules are the units of
code propagation. ASVMs have a threaded execution
model and a stack-based architecture.

The components of an ASVM can be separated into
two classes: the femplate, which every ASVM includes,
and extensions, the application-specific components that
define a particular ASVM. The template includes a sched-
uler, concurrency manager, and capsule store. The sched-
uler executes runnable threads in a FIFO round-robin
fashion. The concurrency manager controls what threads
are runnable, ensuring race-free and deadlock-free han-
dler execution. The capsule store manages code storage
and loading, propagating code capsules and notifying the
ASVM when new code arrives.

Building an ASVM involves connecting handlers and
operations to the template. Each handler is for a spe-
cific system event, such as receiving a packet. When
that event occurs, the handler triggers a thread to run its
code. Generally, there is a one-to-one mapping between
handlers and threads, but the architecture does not re-
quire this to be the case. The concurrency manager uses

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

345

interface Bytecode {

/* The instr parameter is necessary for primitives
with embedded operands (the operand is instr
- opcode). Context is the executing thread. */

command result_t execute(uint8_t instr,
MateContext* context) ;
command uint8_t byteLength() ;
}

Figure 2: The nesC Bytecode interface, which all op-
erations provide.

a conservative, flow insensitive and context insensitive
program analysis to provide its guarantees.

The set of operations an ASVM supports defines its
instruction set. Just as in Maté, instructions that encap-
sulate split-phase TinyOS abstractions provide a block-
ing interface, suspending the executing thread until the
split-phase call completes. Operations are defined by the
Bytecode nesC interface, shown in Figure 2, which has
two commands: execute and byteLength. The for-
mer is how a thread issues instructions, while the latter
lets the scheduler correctly control the program counter.
Currently, ASVMs support three languages: TinyScript,
motlle, and TinySQL, which we present in Sections 4.3
and 4.4.

There are two kinds of operations: primitives, which
are language specific, and functions, which are language
independent. The distinction between primitives and func-
tions is an important part of providing flexibility. An
ASVM supports a particular language by including the
primitives it compiles to, while a user tailors an ASVM
to a particular application domain by including appro-
priate functions and handlers. For functions to work in
any ASVM, and correspondingly any language, ASVMs
need a minimal common data model. Additionally, some
functions (e.g., communication) should be able to sup-
port language specific data types without knowing what
they are. These issues are discussed in Section 3.1. In
contrast, primitives can assume the presence of data types
and can have embedded operands. For example, con-
ditional jumps and pushing a constant onto the operand
stack are primitives, while sending a packet is a function.

The rest of this section presents the ASVM data model
and the three core components of the template (sched-
uler, concurrency manager, and capsule store). It con-
cludes with an example of building an ASVM for region
programming.

3.1 Data Model

An ASVM has a stack architecture. Each thread has
an operand stack for passing data between operations.
The template does not provide any program data stor-
age beyond the operand stack, as such facilities are lan-
guage specific, and correspondingly defined by primi-

Operation | Width | Name | Operand Bits | Description

rand 1 rand 0 Random 16-bit number
pushc6 1 pushc 6 Push a constant on stack
2jumps10 2 jumps 10 Conditional jump

Table 1: Three example operations: rand is a func-
tion, pushc6 and 2jumps10 are primitives.

tives. The architecture defines a minimal set of standard
simple operand types as 16-bit values (integers and sen-
sor readings); this is enough for defining many useful
language-independent functions.

However, to be useful, communication functions need
more elaborate types. For example, the bcast function,
which sends a local broadcast packet, needs to be able
to send whatever data structures its calling language pro-
vides. The function takes a single parameter, the item
to broadcast, which a program pushes onto the operand
stack before invoking it. To support these kinds of func-
tions, languages must provide serialization support for
their data types. This allows bcast’s implementation
to pop an operand off the stack and send a serialized
representation with the underlying TinyOS sendMsg ()
command. When another ASVM receives the packet, it
converts the serialized network representation back into
a VM representation.

3.2 Scheduler: Execution

The core of an ASVM is a simple FIFO thread sched-
uler. This scheduler maintains a run queue, and inter-
leaves execution at a very fine granularity (a few oper-
ations). The scheduler executes a thread by fetching its
next bytecode from the capsule store and dispatching to
the corresponding operation component through a nesC
parameterized interface. The parameter is an 8-bit un-
signed integer: an ASVM can support up to 256 dis-
tinct operations at its top-level dispatch. As the sched-
uler issues instructions through nesC interfaces, their se-
lection and implementation is completely independent of
the template and the top level instruction decode over-
head is constant.

Primitives can have embedded operands, which can
cause them to take up additional opcode values. For ex-
ample, the pushc6 primitive, which pushes a 6-bit con-
stant onto the operand stack, has six bits of embedded
operand and uses 64 opcode slots. Some primitives, such
as jump instructions, need embedded operands longer
than 8 bits. Primitives can therefore be more than one
byte wide.

When the ASVM toolchain generates an instruction
set, it has to know how many bits of embedded operand
an operation has, if any. Similarly, when the toolchain’s
assembler transforms compiled assembly programs into
ASVM-specific opcodes, it has to know how wide in-
structions are. All operations follow this naming con-
vention:

346

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

[width] <name> [operand]

Width and operand are both numbers, while name is a
string. Width denotes how many bytes wide the opera-
tion is (this corresponds to the by tewidth command of
the Bytecode interface), while operand is how many bits
of embedded operand the operation has. If an operation
does not have a width field, it defaults to 1; if it does not
have an operand field, it defaults to zero. Table 1 shows
three example operations.

Beyond language independence, the function/primitive
distinction also determines which operations can be called
indirectly. Some languages have first class functions or
function pointers: a program must be able to invoke them
dynamically, rather than just statically through an instruc-
tion. To support this functionality, the scheduler main-
tains a function identifier to function mapping. This al-
lows functions to be invoked through identifiers that have
been stored in variables. For example, when the motlle
language calls a function, it pushes a function ID onto the
operand stack and issues the mcall instruction, which
creates a call stack frame and invokes the function through
this level of indirection.

3.3 Concurrency Manager: Parallelism

Handlers run in response to system events, and the
scheduler allows multiple handler threads to run concur-
rently. In languages with shared variables, this can eas-
ily lead to race conditions, which are very hard to di-
agnose and detect in embedded devices. The common
solution to provide race free execution is explicit syn-
chronization written by the programmer. However, ex-
plicit synchronization operations increase program size
and complexity: the former costs energy and RAM, the
latter increases the chances that, after a month of deploy-
ment, a scientist discovers that all of the collected data is
invalid and cannot be trusted. One common case where
ASVMs need parallelism is network traffic, due the lim-
ited RAM available for queuing. One handler blocking
on a message send should not prevent handling message
receptions, as their presence on the shared wireless chan-
nel might be the reason for the delay.

The concurrency manager of the ASVM template sup-
ports race free execution through implicit synchroniza-
tion based on a handler’s operations. An operation com-
ponent can register with the concurrency manager (at
compile time, through nesC wiring) to note that it ac-
cesses a shared resource. When the ASVM installs a new
capsule, the concurrency manager runs a conservative,
context-insensitive and flow-insensitive analysis to deter-
mine which shared resources each handler accesses. This
registration with the concurrency manager is entirely op-
tional. If a language prefers explicit synchronization,
then its operations can not declare shared resources, and
the concurrency manager will not limit parallelism.

Hear newer version status
or fragment packet

Request timeout’

Receive complete
capsule

Hear older version or
status for current

Figure 3: ASVM capsule propagation state machine.

When a handler event occurs, the handler’s implemen-
tation submits a run request to the concurrency manager.
The concurrency manager only allows a handler to run
if it can exclusively access all of the shared resources
it needs. The concurrency manager enforces two-phase
locking: when it starts executing, the handler’s thread has
to hold all of the resources it may need, but can release
them as it executes. When a handler completes (executes
the halt operation), its thread releases all of the held
resources. Releases during execution are explicit opera-
tions within a program. If a thread accesses a resource it
does not hold (e.g., it incorrectly released it) the VM trig-
gers an error. Two phase locking precludes deadlocks, so
handlers run both race free and deadlock free.

When new code arrives, a handler may have variables
in an inconsistent state. Waiting for every handler to
complete before installing a new capsule is not feasible,
as the update may, for example, be to fix an infinite loop
bug. Therefore, when new code arrives, the concurrency
manager reboots the ASVM, resetting all variables.

The implicit assumption in this synchronization model
is that handlers are short running routines that do not hold
onto resources for very long. As sensor network nodes
typically have very low utilization, this is generally the
case. However, a handler that uses an infinite loop with a
call to sleep (), for example, can block all other han-
dlers indefinitely. Programming models and languages
that prefer this approach can use explicit synchroniza-
tion, as described above.

3.4 Capsule Store: Propagation

Field experience with current sensor networks has shown
that requiring physical contact can be a cause of many
node failures [25]; network programming is critical. Thus,
ASVMs must provide reliable code propagation. As men-
tioned earlier (Section 2.4), Maté’s explicit code forward-
ing mechanism is problematic. As demonstrated in our
work on Trickle [17], the cost of propagation is very
low compared to the accompanying control traffic, so
selective dissemination enables few energy gains. The
ASVM template’s capsule store therefore follows a pol-
icy of propagating new code to every node. Rather than
selective propagation, ASVMs use a policy of selective
execution: everyone has the code, but only some nodes
execute it.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

347

Trickle is a suppression algorithm for detecting when
nodes need code updates. The algorithm dynamically
scales its suppression intervals to rapidly detect inconsis-
tencies but sends few packets when the network is con-
sistent. Trickle does not define how code itself propa-
gates, as the protocol greatly depends on the size of the
data item. Deluge, for example, transfers entire TinyOS
binaries, and so uses a cluster formation algorithm to
quickly propagate large amounts of data [11]. In the
Maté virtual machine, with its single packet programs,
propagation was just a simple local broadcast.

ASVM programs are between these two extremes. As
they are on the order of one to twenty packets long, Del-
uge is too heavy-weight a protocol, and simple broad-
casts are not sufficient. To propagate code, the ASVM
capsule store maintains three network trickles (indepen-
dent instances of the Trickle algorithm):

e Version packets, which contain the 32-bit version
numbers of all installed capsules,

o Capsule status packets, which describe what frag-
ments a mote needs (essentially, a bitmask), and

o Capsule fragments, which are pieces of a capsule.

An ASVM can be in one of three states: maintain (ex-
changing version packets), request (sending capsule sta-
tus packets), or respond (sending fragments). Nodes start
in the maintain state. Figure 3 shows the state transition
diagram. The transitions prefer requesting over respond-
ing; a node will defer forwarding capsules until it thinks
it is completely up to date.

Each type of packet (version, capsule status, and cap-
sule fragment) is a separate network trickle. For exam-
ple, a capsule fragment transmission can suppress other
fragment transmissions, but not version packets. This
allows meta-data and data exchanges to occur concur-
rently. Trickling fragments means that code propagates
in a slow and controlled fashion, instead of as quickly as
possible. This is unlikely to significantly disrupt any ex-
isting traffic, and prevents network overload. We show in
Section 4.2 that because ASVM programs are small they
propagate rapidly across large multi-hop networks.

3.5 Building an ASVM

Building an ASVM and scripting environment requires
specifying three things: a language, functions, and han-
dlers. Figure 4 shows the description file for RegionsVM,
an ASVM that supports programming with regions [28].
We evaluate RegionsVM versus a native regions imple-
mentation in Section 4.2. The final HANDLER line spec-
ifies that this ASVM executes in response to only one
event, when the ASVM boots (or reboots). ASVMs can
include multiple handlers, which usually leads to multi-
ple threads; RegionsVM, following the regions program-

<VM NAME="KNearRegions" DIR="apps/RegionsVM">
<LANGUAGE NAME="tinyscript">

<FUNCTION NAME="send">

<FUNCTION NAME="mag">

<FUNCTION NAME="cast">

<FUNCTION NAME="id">

<FUNCTION NAME="sleep">
<FUNCTION NAME="KNearCreate">
<FUNCTION NAME="KNearGetVar">
<FUNCTION NAME="KNearPutVar">
<FUNCTION NAME="KNearReduceAdd">
<FUNCTION NAME="KNearReduceMaxID">
<FUNCTION NAME="locx">

<FUNCTION NAME="locy">

<HANDLER NAME="Boot">

Figure 4: Minimal description file for the Re-
gionsVM. Figure 7 contains scripts for this ASVM.

ming model of a single execution context, only includes
one, which runs when the VM reboots. From this file,
the toolchain generates TinyOS source code implement-
ing the ASVM, and the Java classes its assembler uses to
map assembly to ASVM opcodes.

3.6 Active Sensor Networking

In order to support in-network processing, ASVMs must
be capable of operating on top of a range of single-hop
and multi-hop protocols. Currently, the ASVM libraries
support four concrete networking abstractions through
functions and handlers: single hop broadcasts, any-to-
one routing, aggregated collection routing, and abstract
regions [28]. Based on our experiences writing library
ASVM components for these protocols — 80 to 180 nesC
statements — including additional ones as stable imple-
mentations emerge should be simple and painless.

4. EVALUATION

We evaluate whether ASVMs efficiently satisfy the re-
quirements presented in Section 2: concurrency, propa-
gation, and flexibility. We first evaluate the three require-
ments through examples and microbenchmarks, then eval-
uate overall application level efficiency in comparison to
alternative approaches.

In our microbenchmarks, cycle counts are from a mica
node, which has a 4MHz 8-bit microcontroller, the AT-
MegalO3L; some members of the mica family have a
similar MCU at a faster clock rate (§MHz). Words are
16 bits and a memory access takes two cycles: as it is an
8-bit architecture, moving a word (or pointer) between
memory and registers takes 4 clock cycles.

4.1 Concurrency

We measured the overhead of ASVM concurrency con-
trol, using the cycle counter of a mica mote. Table 2
summarizes the results. All values are averaged over 50

348

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

Operation | Cycles [Time (us) |

Lock 32 8
Unlock 39 10
Run 1077 269
Analysis 15158 3790

Table 2: Synchronization Overhead. Lock and un-
lock are acquiring or releasing a shared resource.
Run is moving a thread to the run queue, obtaining
all of its resources. Analysis is a full handler analysis.

[[Mean | Std. Dev. | Worst |

[Mote Retasking [208s | 74s [858s |

| Network Retasking [3955 | 104s | 858s |
Vector Packets Sent 1.0 1.1 13
Status Packets Sent 32 24 19
Fragment Packets Sent 3.0 2.5 22
Total Packets Sent 7.3 3.6 30

Table 3: Propagation data. Mote retasking is across
all motes in all experiments. Network retasking is the
retasking times in all the experiments, based on the
time for the last mote to reprogram. The Packets Sent
are all on a per-mote basis.

samples. These measurements were on an ASVM with
24 shared resources and a 128 byte handler. Locking and
unlocking resources take on the order of a few microsec-
onds, while a full program analysis for shared resource
usage takes under a millisecond, approximately the en-
ergy cost of transmitting four bits.

These operations enable the concurrency manager to
provide race-free and deadlock-free handler parallelism
at a very low cost. By using implicit concurrency man-
agement, an ASVM can prevent many race condition
bugs while keeping programs short and simple.

4.2 Propagation

To evaluate code propagation, we deployed an ASVM
on a 71 mote testbed in Soda Hall on the UC Berke-
ley campus. The network topology was approximately
eight hops across, with four hops being the average node
distance. We used the standard ASVM propagation pa-
rameters.! We injected a one hundred byte (four frag-
ment) handler into a single node over a wired link. We
repeated the experiment fifty times, resetting the nodes

'Status and version packets have a 7 range of one second to
twenty minutes, and a redundancy constant of 2. Fragments use
Trickle for suppression, but operate with a fixed window size
of one second repeating twice, and have a redundancy constant
of 3. The request timeout was five seconds.

[[Native | RegionsVM |

Code (Flash) 19kB 39kB
Data (RAM) 2775B 3017B
Tr itted Program 19kB 71B

Table 4: Space utilization of native and RegionsVM
regions implementations (bytes).

buffer packet;
bclear (packet) ; bpush3 3
bclear
light
pushcé 0
bpush3
bwrite
bpush3 3
send

packet [0] = light();

w

send (packet) ;

(a) TinyScript (b) ASVM Bytecodes

Figure 5: TinyScript function invocation on a sim-
ple sense and send loop. The operand stack passes
parameters to functions. In this example, the script-
ing environment has mapped the variable “packet”
to buffer three. The compiled program is nine bytes
long.

after each test to restore the trickle timers to their stable
values (maximums).

Table 3 summarizes the results. On the average, the
network reprogrammed in forty seconds, and the worst
case was eighty-five seconds. To achieve this rate, each
node, on the average, transmitted seven packets, a total of
five hundred transmissions for a seventy node network.
The worst case node transmitted thirty packets. Check-
ing the traces, we found this mote was the last one to
reprogram in a particular experiment, and seems to have
suffered from bad connectivity or inopportune suppres-
sions. It transmitted eleven version vectors and nineteen
status packets, repeatedly telling nodes around it that it
needed new code, but not receiving it. With the param-
eters we used, a node in a stable network sends at most
three packets per hour.

To evaluate the effect ASVM code conciseness has on
propagation efficiency, we compare the retasking cost of
the native implementation proposed for regions versus
the cost of retasking a system with RegionsVM. In the
regions proposal, users write short nesC programs for a
single, synchronous “fiber” that compile to a TinyOS bi-
nary. Reprogramming the network involves propagating
this binary into the network. As regions compiles to na-
tive TinyOS code, it has all of the safety issues of not
having a protection boundary.

Abstract regions is designed to run in TOSSIM, a sim-
ulator for TinyOS [16]. Several assumptions in its pro-
tocols — such as available bandwidth — prevent it from
running on motes, and therefore precluded us from mea-
suring energy costs empirically. However, by modifying
a few configuration constants the two implementations
share, we were able to compile them and measure RAM
utilization and code size. Table 4 shows the results. The
fiber’s stack accounts for 512 bytes of the native runtime
RAM overhead.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

349

An ASVM doubles the size of the TinyOS image, but
this is a one time cost for a wide range of regions pro-
grams. Reprogramming the native implementation re-
quires sending a total of nineteen kilobytes: reprogram-
ming the RegionsVM implementation requires sending a
seventy byte ASVM handler, less than 0.5% of the size of
the binary. Additionally, handlers run in the sandboxed
virtual environment, and benefit from all of its safety
guarantees. If, after many retaskings, the user decides
that the particular networking abstractions an ASVM pro-
vides are not quite right, a new one can always be in-
stalled using binary reprogramming.

Deluge is the standard TinyOS system for disseminat-
ing binary images into a network [11]. Reported ex-
perimental results on a network similar to the one we
used in our propagation experiments state that dissemi-
nating 11kB takes 10,000 transmissions: disseminating
the 19kB of the native implementation would take ap-
proximately 18,000 transmissions. In contrast, from the
data in Table 3, a RegionsVM program takes fewer than
five hundred transmissions, less than 3% of the cost, while
providing safety. The tradeoff is that programs are in-
terpreted bytecodes instead of native code, imposing a
CPU energy overhead. We evaluate this cost in Sec-
tions 4.5-4.6, using microbenchmarks and an application
level comparison with TinyDB.

4.3 Flexibility: Languages

ASVMs currently support three languages, TinyScript,
motlle and TinySQL queries. We discuss TinySQL in
Section 4.4, when presenting Query VM.

TinyScript is a bare-bones language that provides min-
imalist data abstractions and control structures. It is a
BASIC-like imperative language with dynamic typing and
a simple data buffer type. TinyScript does not have dy-
namic allocation, simplifying concurrency resource anal-
ysis. The resources accessed by a handler are the union
of all resources accessed by its operations. TinyScript
has a one to one mapping between handlers and capsules.
Figure 5 contains sample TinyScript code and the corre-
sponding assembly it compiles to.

Motlle (MOTe Language for Little Extensions) is a
dynamically-typed, Scheme-inspired language with a C-
like syntax. Figure 6 shows an example of heavily com-
mented mottle code. The main practical difference with
TinyScript is a much richer data model: motlle supports
vectors, lists, strings and first-class functions. This al-
lows significantly more complicated algorithms to be ex-
pressed within the ASVM, but the price is that accurate
data analysis is no longer feasible on a mote. To pre-
serve safety, motlle serializes thread execution by report-
ing to the concurrency manager that all handlers access
the same shared resource. Motlle programs are trans-
mitted in a single capsule which contains all handlers.

settimer0(500) ; // Epoch is 50s
mhop_set_update (100); // Update tree every 100s

// Define Timer0O handler
any timer0_handler() { // ’'any’ is the result type
// 'mhop_send’ sends a message up the tree
// ’encode’ encodes a message
// 'next_epoch’ advances to the next epoch
// (snooped value may override this)
send (encode (vector (next_epoch (), id(), parent(),
temp ())));

// Intercept and Snoop run when a node forwards

// or overhears a message.

// Intercept can modify the message (aggregation).

// Fast-forward epoch if we’re behind

any snoop_handler () heard(snoop_msg()) ;

any intercept_handler () heard(intercept _msg()) ;

any heard (msg) {
// decode the first 2 bytes of msg into an integer.
vector v = decode(msg, vector(2));

// ’snoop_epoch’ advances epoch if needed
snoop_epoch (v[0]) ;

Figure 6: A motlle data collection query: return node
id, routing tree parent and temperature every 50s.

Motlle-based ASVMs therefore do not support incremen-
tal changes to running programs.

4.4 Flexibility: Applications

We have built two sample ASVMs, RegionsVM and
QueryVM. RegionsVM, designed for vehicle tracking,
presents the abstract regions programming abstraction of
MPI-like reductions over shared tuple spaces. Users write
programs in TinyScript, and RegionsVM includes ASVM
functions for the basic regions library; we obtained the
regions source code from its authors. Figure 7 shows
regions pseudocode proposed by Welsh at al. [28] next
to actual TinyScript code that is functionally identical (it
invokes all of the same library functions). The nesC com-
ponents that present the regions library as ASVM func-
tions are approximately 400 lines of nesC code.

QueryVM is designed for periodic data collection us-
ing the aggregated collection routing abstraction men-
tioned in Section 3.6. QueryVM provides a TinySQL
programming interface, similar to TinyDB, presenting a
sensor network as a streaming database. TinySQL’s main
extension to SQL is a ‘sample period’ at which the query
is repeated. TinySQL supports both simple data collec-
tion and aggregate queries such as

SELECT AVG(temperature) INTERVAL 50s

to measure the average temperature of the network. The
latter allow in-network processing to reduce the amount
of traffic sent, by aggregating as nodes route data [20].
In our implementation, TinySQL compiles to motlle
code for the handlers that the aggregation collection tree
library provides. This has the nice property that, in ad-

350

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

location = get_location() ;
/* Get 8 nearest neighbors */
region = knearest._region._create(8) ;

while(true) {
reading = get_sensor_reading() ;

/* Store local data as shared variables */
region.putvar (reading.key, reading) ;
region.putvar (reg.x.key, reading * location.x)
region.putvar (reg.y.key, reading * location.y)

if (reading > threshold) {
/* ID of the node with the max value */

max_.id = region.reduce (OP.MAXID, reading.key) ;
/* If I am the leader node... */
if (max-id == my-id) {

sum = region.reduce (OP_SUM, reading.key) ;
sum_x = region.reduce (OP_.SUM, reg.x.key);
sum.y = region.reduce (OP_SUM, reg.y-key) ;
centroid.x = sum.x / sum;

centroid.y = sumy / sum;
send_to_basestation (centroid) ;

}
}

sleep (periodic._delay) ;

(a) Regions Pseudocode

!l Create nearest neighbor region
KNearCreate () ;

for i = 1 until 0
reading = int (mag()) ;

!l Store local data as shared variables
KNearPutVar (0, reading) ;

KNearPutVar (1, reading * LocX());
KNearPutVar (2, reading * LocY());

if (reading > threshold) then
!l ID of the node with the max value
max-id = KNearReduceMaxID(0) ;

'l If I am the leader node

if (max-id = my-id) then
sum = KNearReduceAdd (0) ;
sum.x = KNearReduceAdd (1) ;
sum.y = KNearReduceAdd (2) ;

buffer[0] = sumx / sum;
buffer[1l] = sumy / sum;
send (buffer) ;
end if
end if
sleep (periodic_delay) ;
next i
(b) TinyScript Code

Figure 7: Regions Pseudocode and Corresponding TinyScript. The pseudocode is from “Programming Sensor
Networks Using Abstract Regions.” The TinyScript program on the right compiles to 71 bytes of binary code.

dition to TinySQL, QueryVM also supports writing new
attributes and network aggregates in motlle. In contrast,
TinyDB is limited to the set of attributes and aggregates
compiled into its binary.

4.5 Efficiency: Microbenchmarks

Our first evaluation of ASVM efficiency is a series of
microbenchmarks of the scheduler. We compare ASVMs
to Maté, a hand-tuned and monolithic implementation.

Following the methodology we used in Maté [15], we
measured the bytecode interpretation overhead an ASVM
imposes by writing a tight loop and counting how many
times it ran in five seconds on a mica mote. The loop
accessed a shared variable (which involved lock checks
through the concurrency manager). An ASVM can is-
sue just under ten thousand instructions per second on
a 4MHz mica, i.e., roughly 400 cycles per instruction.
The ASVM decomposition imposes a 6% overhead over
a similar loop in Maté, in exchange for handler and in-
struction set flexibility as well as race-free, deadlock-free
parallelism.

We have not optimized the interpreter for CPU effi-
ciency. The fact that high-level operations dominate pro-
gram execution [15], combined with the fact that CPUs
in sensor networks are generally idle, makes this over-
head acceptable, although decreasing it with future work
is of course desirable. For example, a KNearReduce
function in the RegionsVM sends just under forty pack-

None | Operation | Script
Iteration 16.0 16.4 62.2
Sort Time - 0.4 46.2

Table 5: Execution time of three scripts, in millisec-
onds. None is the version that did not sort, operation
is the version that used an operation, while script is
the version that sorted in script code.

ets, and its ASVM scripting overhead is approximately
600 CPU cycles, the energy overhead is less than 0.03%.
However, a cost of 400 cycles per bytecode means that
implementing complex mathematical codes in an ASVM
is inefficient; if an application domain needs significant
processing, it should include appropriate operations.

To obtain some insight into the tradeoff between in-
cluding functions and writing operations in script code,
we wrote three scripts. The first script is a loop that fills
an array with sensor readings. The second script fills the
array with sensor readings and sorts the array with an
operation (buf sorta, which is an insertion sort). The
third script also insertion sorts the array, but does so in
TinyScript, rather than using an operation. To measure
the execution time of each script, we placed it in a 5000
iteration loop and sent a UART packet at script start and
end. Table 5 shows the results. Sorting the array with
script code takes 115 times as long as sorting with an
operation, and dominates script execution time. Inter-
pretation is inefficient, but pushing common and expen-

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

351

// Initialise the operator
expdecay_make = fn (bits) vector(bits, 0);
// Update the operator (s is result from make)
expdecay_get = fn (s, val)
// Update and return the average (s[0]
s[1] = s[1] - (s[1] >> s[0]) + (attr()

is BITS)
>> s[0]);

Figure 8: An exponentially decaying average opera-
tor for TinySQL, in motlle.

[Name [TinySQL |
Simple SELECT id,parent, temp INTERVAL 50s
Conditional SELECT id, expdecay (humidity, 3)

WHERE parent > 0 INTERVAL 50s
SpatialAvg SELECT AVG (temp) INTERVAL 50s

Table 6: The three queries used to evaluate data col-
lection implementations. TinyDB does not directly
support time-based aggregates such as expdecay, so
in TinyDB we omit the aggregate.

sive operations into native code with functions minimizes
the amount of interpretation. Section 4.7 shows that this
flexible boundary, combined with the very low duty cy-
cle common to sensor networks, leads to interpretation
overhead being a negligible component of energy con-
sumption for a wide range of applications.

4.6 Efficiency: Application

QueryVM is a motlle-based ASVM designed to sup-
port the execution of TinySQL data collection queries.

Our TinySQL compiler generates motlle code from queries

such as those shown in Table 6; the generated code is re-
sponsible for timing, data collection message layout and
how to process or aggregate data on each hop up the rout-
ing tree. The code in Figure 6 is essentially the same
as that generated for the Simple query. Users can write
new attributes or operators for TinySQL using snippets
of motlle code. For instance, Figure 8 shows two lines
of motlle code to add an exponentially-decaying average
operator, which an example in Table 6 uses.

Figure 9: Tree topology used in QueryVM/TinyDB
experiments. The square node is the tree root.

Size (bytes) Energy (mW) Yield
Query TinyDB VM TinyDB VM TinyDB VM
Simple 93 105 5.6 4.5 3% T4%
Conditional 124 167 4.2 4.0 65% 79%
Spatial Avg 62 127 33 3.1 46% 55%

Table 7: Query size, power consumption and yield
in TinyDB and QueryVM. Yield is the percentage of
expected results received.

TinySQL query results abstract the notion of time into
an epoch. Epoch numbers are a logical time scheme
that are included in query results and help support ag-
gregation. QueryVM includes functions and handlers to
support multi-hop communication, epoch handling and
aggregation. QueryVM programs can use the same tree
based collection layer, MintRoute [29], that TinyDB uses.
QueryVM includes epoch-handling primitives to avoid
replicating epoch-handling logic in every program (see
usage in Figure 6). Temporal or spatial (across nodes)
averaging logic can readily be expressed in motlle, but
including common aggregates in Query VM reduces pro-
gram size and increases execution efficiency.

We evaluate QueryVM’s efficiency by comparing its
power draw to the TinyDB system on the three queries
shown in Table 6. To reflect the power draw of a real
deployment, we enabled low-power listening in both im-
plementations. In low data rate networks — such as pe-
riodic data collection — low power listening can greatly
improve network lifetime [22, 26]. At this level of uti-
lization, packet length becomes an important determi-
nant of energy consumption, so we matched the size of
routing control packets between QueryVM and TinyDB.
However, TinyDB’s query result packets are still approx-
imately 20 bytes longer than QueryVM’s. On mica2
motes, this means that TinyDB will spend an extra 350.J
for each packet received, and 625.J for each packet sent.

We ran the queries on a network of 40 mica2 motes
spread across the ceiling of an office building. Motes
had the mts400 weather board from Crossbow Technolo-
gies. Environmental changes can dynamically alter ad-
hoc routing trees (e.g., choosing a 98% link over a 96%
link), changing the forwarding pattern and greatly affect-
ing energy consumption. These sorts of changes make
experimental repeatability and fair comparisons unfeasi-
ble. Therefore, we used a static, stable tree in our experi-
ments, to provide an even basis for comparison across the
implementations. We obtained this tree by running the
routing algorithm for a few hours, extracting the parent
sets, then explicitly setting node parents to this topology,
shown in Figure 9. Experiments run on adaptive trees
were consistent with the results presented below.

We measured the power consumption of a mote with
a single child, physically close to the root of the multi-
hop network. Its power reflects a mote that overhears a
lot of traffic but which sends relatively few messages (a

352

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

mTinyDB
ESynch
OStagger
HQueryVM

Power Draw (mW)
o Ll N w £ w (o))

Simple Conditional ~ SpatialAvg

Figure 10: Power consumption of TinyDB,
QueryVM, and nesC implementations. Synch is
the nesC implementation when nodes start at the
same time. Stagger is when the nodes start times are
staggered.

common case). In each of the queries, a node sends a data
packet every 50 seconds, and the routing protocol sends a
route update packet every two epochs (100 seconds). We
measured the average power draw of the instrumented
node over 16 intervals of 100 seconds, sampling at 100
Hz (10,000 instantaneous samples).

Table 7 presents the results from these experiments.
For the three sample queries, QueryVM consumes 5%
to 20% less energy than TinyDB. However, we do not
believe all of this improvement to be fundamental to the
two approaches. The differences in yield mean that the
measured mote is overhearing different numbers of mes-
sages — this increases QueryVM’s power draw. Con-
versely, having larger packets increases TinyDB’s power
draw — based on the 325uJ per-packet cost, we estimate
a cost of 0.2-0.5mW depending on the query and how
well the measured mote hears more distant motes.

However, these are not the only factors at work, as
shown by experiments with a native TinyOS implemen-
tation of the three queries. We ran these native imple-
mentations in two scenarios. In the first scenario, we
booted all of the nodes at the same time, so their oper-
ation was closely synchronized. In the second, we stag-
gered node boots over the fifty second sampling interval.
Figure 10 shows the power draw for these two scenarios,
alongside that of TinyDB and Query VM. In the synchro-
nized case, yields for the native implementations varied
between 65% and 74%, in the staggered case, yields were
between 90% and 97%. As these results show, details of
the timing of transmissions have major effects on yield
and power consumption. To separate these networking
effects from basic system performance, Section 4.7 re-
peats our experiments in a two-node network.

4.7 Efficiency: Interpretation

In our two-node experiments, the measured mote ex-
ecutes the query and sends results, and the second mote
is a passive base station. As the measured node does not
forward any packets or contend with other transmitters,

N

=
4]
\

W TinyDB
OnesC
EQueryVM

Power Draw (mW)
o
(4] -

Simple Conditional SpatialAvg

Figure 11: Average power draw measurements in a
two node network. For the Conditional query, the
monitored node has parent = 0, so sends no packets.
The error bars are the standard deviation of the per-
interval samples.

its energy consumption is the cost of query execution and
reporting. The extra cost of sending TinyDB’s larger re-
sult packets is negligible (.01mW extra average power
draw). We ran these experiments longer than the full net-
work ones: rather than 16 intervals of length 100 seconds
(25 minutes), we measured for 128 intervals (3.5 hours).
The results, presented in Figure 11, show that QueryVM

has a 5-20% energy performance improvement over TinyDB.

Even though an ASVM based on reusable software com-
ponents and a common template, rather than a hand-coded,
vertically integrated system, QueryVM imposes less of
an energy burden on a deployment. In practice though,
power draw in a real network is dominated by network-
ing costs — QueryVM’s 0.25mW advantage in Figure 11
would give at most 8% longer lifetime based on the
power draws of Figure 10.

To determine where QueryVM’s power goes, we com-
pared it to four hand coded TinyOS programs. The first
program did not process a query: it just listened for mes-
sages and handled system timers. This allows us to dis-
tinguish the cost of executing a query from the underly-
ing cost of the system. The other three were the nesC
implementations of the queries used for Figure 10. They
allow us to distinguish the cost of executing a query itself
from the overhead an ASVM runtime imposes. The basic
system cost was 0.76 mW. Figure 11 shows the compar-
ison between QueryVM and a hand-coded nesC imple-
mentation of the query. The queries cost 0.28-0.54 mW,
and the cost of the ASVM is negligible.

This negligible cost is not surprising: for instance, for
the conditional query, Query VM executes 49 instructions
per sample period, which will consume approximately
Sms of CPU time. Even on a mica2 node, whose CPU
power draw is a whopping 33 mW due to an external os-
cillator (other platforms draw 3-8 mW)), this corresponds
to an average power cost of 3.3uW. In the 40 node net-
work, the cost of snooping on other node’s results will in-
crease power draw by another 20uW. Finally, QueryVM
sends viral code maintenance messages every 100 min-

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

353

utes (in steady state), corresponding to an average power
draw of 1.6puW.

From the results in Table 7, with a power consumption
of 4.5mW, a pair of AA batteries (2700mAh, of which
approximately two thirds is usable by a mote) would last
for 50 days. By lowering the sample rate (every fifty
seconds is a reasonably high rate) and other optimiza-
tions, we believe that lifetimes of three months or more
are readily achievable. Additionally, the energy cost of
ASVM interpretation is a negligible portion of the whole
system energy budget. This suggests that ASVM-based
active sensor networking can be a realistic option for
long term, low-duty-cycle data collection deployments.

5. RELATED WORK

The Maté virtual machine [15] forms the basis of the
ASVM architecture. ASVMs address three of Maté’s
main limitations: flexibility, concurrency, and propaga-
tion. SensorWare [5] is another proposal for program-
ming nodes using an interpreter: it proposes using Tcl
scripts. For the devices SensorWare is designed for —
iPAQs with megabytes of RAM — the verbose program
representation and on-node Tcl interpreter can be accept-
able overheads: on a mote, however, they are not.

SOS is a sensor network operating system that sup-
ports dynamic native code updates through a loadable
module system [8]. This allows small and incremental
binary updates, but requires levels of function call in-
direction. SOS therefore sits between the extremes of
TinyOS and ASVMs, where its propagation cost is less
than TinyOS and greater than ASVMs, and its execution
overhead is greater than TinyOS but less than ASVMs.
By using native code to achieve this middle ground, SOS
cannot provide all of the safety guarantees that an ASVM
can. Still, the SOS approach suggests ways in which
ASVMs could dynamically install new functions.

The Impala middleware system, like SOS, allows users
to dynamically install native code modules [18]. How-
ever, unlike SOS, which allows modules to both call a
kernel and invoke each other, Impala limits modules to
the kernel interfaces. Like ASVMs, these interfaces are
event driven, and bear a degree of similarity to Maté. Un-
like ASVMs, however, Impala does not provide general
mechanisms to change its triggering events, as it is de-

signed for a particular application domain, ZebraNet [13].

Customizable and extensible abstraction boundaries,
such as those ASVMs provide, have a long history in op-
erating systems research. Systems such as scheduler acti-
vations [3] show that allowing applications to cooperate
with a runtime through rich boundaries can greatly im-
prove application performance. Operating systems such
as exokernel [14] and SPIN [4] take a more aggressive
approach, allowing users to write the interface and im-
prove performance through increased control. In sen-

sor networks, performance — the general goal of more,
whether it be bandwidth, or operations per second
is rarely a primary metric, as low duty cycles make re-
sources plentiful. Instead, robustness and energy effi-
ciency are the important metrics.

ANTS, PLAN, and Smart Packets are example systems
that bring active networking to the Internet. Although
all of them made networks dynamically programmable,
each system had different goals and research foci. ANTS
focuses on deploying protocols in a network, PLANet
explores dealing with security issues through language
design [10, 9], and Smart Packets proposes active net-
working as a management tool [24]. ANTS uses Java,
while PLANet and Smart Packets use custom languages
(PLAN and Sprocket, respectively). Based on an Inter-
net communication and resource model, many of the de-
sign decisions these systems made (e.g., using a JVM)
are unsurprisingly not well suited to mote networks. One
distinguishing characteristic in sensor networks is their
lack of strong boundaries between communication, sens-
ing, and computation. Unlike in the Internet, where data
generation is mostly the province of end points, in sensor
networks every node is both a router and a data source.

Initial mote deployment experiences have demonstrated
the need for simple network programming models, at a
higher level of abstraction than per-node TinyOS code.
This has led to a variety of proposals, including TinyDB’s
SQL queries [19], diffusion’s aggregation [12], regions’
MPI-like reductions [28], or market based macroprogram-
ming’s pricings [21]. Rather than define a programming
model, ASVMs provide a way to implement and build
the runtime underlying whichever model a user needs.

6. DISCUSSION AND FUTURE WORK

Section 4 showed that an ASVM is an effective way to
efficiently provide a high-level programming abstraction
to users. It is by no means the only way, however. There
are two other obvious approaches: using a standard vir-
tual machine, such as Java, and sending very lightweight
native programs.

As a language, Java may be a suitable way to program
a sensor network, although we believe a very efficient
implementation might require simplifying or removing
some features, such as reflection. Java Card has taken
such an approach, essentially designing an ASVM for
smart cards that supports a limited subset of Java and dif-
ferent program file formats. Although Java Card supports
a single application domain, it does provide guidance on
how an ASVM could support a Java-like language.

Native code is another possible solution: instead of
being bytecode-based, programs could be native code
stringing together a series of library calls. As sensor
mote CPUs are usually idle, the benefit native code pro-
vides — more efficient CPU utilization — is minimal,

354

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

Programming Layer
SQL-like queries, data parallel operators, scripts
Expressivity, simplicity

Transmission Layer
Application specific VM bytecodes
Efficiency, safety

Execution Layer
nesC, binary code, changed rarely
Optimizations, resource management, hardware

Figure 12: A layered decomposition of in-situ repro-
gramming.

unless a user wants to write complex mathematical codes.
In the ASVM model, these codes should be written in
nesC, and exposed to scripts as functions. Additionally,

native code poses many complexities and difficulties, which

greatly outweigh this minimal benefit, including safety,
conciseness, and platform dependence. However, the
SOS operating system suggests ways in which ASVMs
could support dynamic addition of new functions.

ASVMs share the same high-level goal as active net-
working: dynamic control of in-network processing. The
sort of processing proposed by systems such as ANTS
and PLANet, however, is very different than that which
we see in sensor nets. Although routing nodes in an ac-
tive Internet can process data, edge systems are still pre-
dominantly responsible for generating that data. Corre-
spondingly, much of active networking focused on proto-
col deployment. In contrast, motes simultaneously play
the role of both a router and a data generator. Instead
of providing a service to edge applications, active sensor
nodes are the application.

Section 4.6 showed how an ASVM — QueryVM —
can simultaneously support both SQL-like queries and
motlle programs, compiling both to a shared instruction
set. In addition to being more energy efficient than a sim-
ilar TinyDB system, QueryVM is more flexible. Simi-
larly, RegionsVM has several benefits — code size, con-
currency, and safety — over the native regions imple-
mentation.

We believe these advantages are a direct result of how
ASVMs decompose programming into three distinct lay-
ers, shown in Figure 12. The highest layer is the code is
a user writes (e.g., TinyScript, SQL). The middle layer is
the active networks representation the program takes as
it propagates (ASVM bytecodes). The final layer is the
representation the program takes when it executes on a
mote (an ASVM).

TinyDB combines the top two layers: its programs are
binary encodings of an SQL query. This forces a mote
to parse and interpret the query, and determine what ac-
tions to take on all of the different events coming into the
system. It trades off flexibility and execution efficiency

for propagation efficiency. Separating the programming
layer and transmission layer, as QueryVM does, leads to
greater program flexibility and more efficient execution.

Regions combines the bottom two layers: its programs
are TinyOS images. Using the TinyOS concurrency model,
rather than a virtual one, limits the native regions imple-
mentation to a single thread. Additionally, even though
its programs are only a few lines long — compiling to
seventy bytes in RegionsVM — compiling to a TinyOS
image makes its programs tens of kilobytes long, trading
off propagation efficiency and safety for execution effi-
ciency. Separating the transmission layer from the exe-
cution layer, as RegionsVM does, allows high-level ab-
stractions to minimize execution overhead and provides
safety.

7. CONCLUSION

The constrained application domains of sensor networks
mean that programs can be represented as short, high
level scripts. These scripts control — within the proto-
cols and abstractions a domain requires — when motes
generate data and what in-network processing they per-
form. Vision papers and existing proposals for sensor
network programming indicate that this approach will
not the exception in these systems but the rule. Push-
ing processing as close to the data sources as possible
transforms a sensor network into an active sensor net-
work. But, as sensor networks are so specialized, the ex-
act form active sensor networking takes is an open ques-
tion, a question that does not have a single answer.

Rather than propose a particular active networking sys-
tem, useful in some circumstances and not in others, we
have proposed using application specific virtual machines
to easily make a sensor network active, and described
an architecture for building them. Two sample VMs,
for very different applications and programming models,
show the architecture to be flexible and efficient. This
efficiency stems from the flexibility of the virtual/native
boundary, which allows programs to be very concise.
Conciseness reduces interpretation overhead as well as
the cost of installing new programs. “Programming motes
is hard” is a common claim in the sensor network com-
munity; perhaps we have just been programming to the
wrong interface?

Acknowledgements

This work was supported, in part, by the Defense Depart-
ment Advanced Research Projects Agency (grants F33615-
01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grants No. 0122599 and NSF IIS-033017),
California MICRO program, and Intel Corporation. Re-
search infrastructure was provided by the National Sci-
ence Foundation (grant EIA-9802069).

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

355

8.
(1]

[2

—

[3]

[4

—

[5

—_

[6]

[7

—

[8]

[9

—

(10]

[11]

[12]

[13]

(14]

[15]

REFERENCES

A. Acharya, M. Uysal, and J. Saltz. Active disks: programming
model, algorithms and evaluation. In ASPLOS-VIII: Proceedings
of the eighth international conference on Architectural support
for programming languages and operating systems, pages
81-91. ACM Press, 1998.

E. Amir, S. McCanne, and R. Katz. An active service framework
and its application to real-time multimedia transcoding. In
SIGCOMM ’98: Proceedings of the ACM SIGCOMM *98
conference on Applications, technologies, architectures, and
protocols for computer communication, pages 178—-189. ACM
Press, 1998.

T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler
activations: Effective kernel support for the user-level
management of parallelism. ACM Transactions on Computer
Systems, 10(1):53-79, February 1992.

B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,

M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP-15), 1995.

A. Boulis, C.-C. Han, and M. B. Srivastava. Design and
implementation of a framework for efficient and programmable
sensor networks. In Proceedings of the First International
Conference on Mobile Systems, Applications, and Services
(MobiSys 2003), 2003.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and

D. Culler. The nesC language: A holistic approach to networked
embedded systems. In SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’03), June 2003.
L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer. A system for simulation,
emulation, and deployment of heterogeneous sensor networks. In
SenSys '04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 201-213. ACM
Press, 2004.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A
dynamic operating system for sensor nodes. In MobiSYS '05:
Proceedings of the 3rd international conference on Mobile
systems, applications, and services, 2005.

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles.
Plan: A packet language for active networks. In Proceedings of
the International Conference on Functional Programming
(ICFP), 1998.

M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and

S. Nettles. Planet: An active internetwork. In Proceedings of
IEEE INFOCOM, 1999.

J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the Second International Conferences on
Embedded Network Sensor Systems (SenSys), 2004.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. In Proceedings of the International Conference
on Mobile Computing and Networking, Aug. 2000.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and

D. Rubenstein. Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with zebranet. In
Proceedings of the ACM Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
oct 2002.

M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceio,

R. Hunt, D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, and
K. Mackenzie. Application performance and flexibility on
Exokernel systems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ’97), October 1997.

P. Levis and D. Culler. Maté: a tiny virtual machine for sensor
networks. In Proceedings of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), Oct. 2002.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Simulating
large wireless sensor networks of tinyos motes. In Proceedings
of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), 2003.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and propagation
in wireless sensor networks. In First USENIX/ACM Symposium
on Network Systems Design and Implementation (NSDI), 2004.
T. Liu and M. Martonosi. Impala: a middleware system for
managing autonomic, parallel sensor systems. In PPoPP ’03:
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
107-118. ACM Press, 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: An acquisitional query processing system for sensor
networks. Transactions on Database Systems (TODS), 2005.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of the ACM Symposium on Operating System
Design and Implementation (OSDI), Dec. 2002.

G. Mainland, L. Kang, S. Lahaie, D. Parkes, and M. Welsh.
Using virtual markets to program global behavior in sensor
networks. In Proceedings of the 11th ACM SIGOPS European
Workshop, Leuven, Belgium, 2004.

J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proceedings of the
Second ACM Conferences on Embedded Networked Sensor
Systems (SenSys), 2004.

K. Romer, C. Frank, P. J. Marrén, and C. Becker. Generic role
assignment for wireless sensor networks. In Proceedings of the
11th ACM SIGOPS European Workshop, Leuven, Belgium,
2004.

B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D.
Rockwell, and C. Partridge. Smart packets: Applying active
networks to network management. ACM Transations on
Computer Systems, 2000.

C. Sharp, S. Shaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry,
and D. Culler. Design and implementation of a sensor network
system for vehicle tracking and autonomous interception.
Proceedings of the Second European Workshop of Wireless
Sensor Networks (EWSN 2005), 2005.

R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An
analysis of a large scale habitat monitoring application. In
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys 2004), 2004.

D. Tennenhouse and D. Wetherall. Towards an active network
architecture. In Computer Communication Review, 26(2), 1996.
M. Welsh and G. Mainland. Programming sensor networks with
abstract regions. In First USENIX/ACM Symposium on Network
Systems Design and Implementation (NSDI), 2004.

A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the first international conference on Embedded
networked sensor systems, pages 14-27. ACM Press, 2003.

356

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

