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Abstract

Researchers have long faced a fundamental tension be-
tween the experimental realism of wireless testbeds on
one hand, and the control and repeatability of simula-
tion on the other hand. To overcome the stark tradeoff of
these traditional alternatives, we are developing a wire-
less emulator that enables both realistic and repeatable
experimentation by leveraging physical layer emulation.

We discuss the design and implementation of a proto-
type wireless emulator, and show how this emulator can
be leveraged to provide insight into wireless network and
application behavior. Our experience shows that, com-
pared to simulation, our emulator-based approach pro-
vides us with a better understanding of real-world wire-
less network performance, and enables us to quickly de-
ploy our research into an operational wireless network,
while still allowing us to enjoy the benefits of a con-
trolled experimental environment.

1 Introduction

As wireless network deployment and use become ubiq-
uitous, it is increasingly important to make efficient use
of the finite bandwidth provided. Unfortunately, research
aimed at evaluating and improving wireless network pro-
tocols and applications is hindered by the inability to per-
form repeatable and realistic experiments. Experimen-
tal techniques that have proven successful for wired net-
works are inadequate for wireless networks since a wire-
less physical layer fundamentally affects operation at all
layers of the protocol stack in complex ways. Links are
no longer constant, reliable, and physically isolated from
each other, but are variable, error-prone, and share a sin-
gle medium with each other and with external uncon-
trolled sources.

An ideal method of wireless experimentation would
possess the following properties: repeatability and ex-
perimental control, layer 1-4 realism, the ability to run
real applications, configurability, the ability to modify
wireless device behavior, automation and remote man-
agement, support for a large number of nodes, isolation
from production networks, and integration with wired
networks and testbeds. We now discuss how alternative

*This research was funded in part by the NSF under award num-
bers CCR-0205266 and CNS-0434824. Additional support was also
provided by Intel. Glenn Judd is supported by an Intel Fellowship.

methods of experimentation fare with respect to this list
of desirable properties.

The most direct method of addressing realism is to
conduct experiments using real hardware and software
in various real world environments. Unfortunately, this
approach faces serious repeatability and control issues
since the behavior of the physical layer is tightly cou-
pled to the physical environment and precise conditions
under which an experiment is conducted. The mobility
of uncontrolled radio sources, physical objects, and peo-
ple makes these conditions nearly impossible to repro-
duce. Even repeating the same experiment twice can be
a daunting task when anything in the surrounding envi-
ronment is in motion; remote researchers face an even
bleaker situation trying to reproduce an experiment. It
is also difficult to avoid affecting colocated production
networks. Moreover, configurability and management of
even a small number of mobile nodes distributed in three
dimensions is cumbersome.

For these reasons, many researchers have understand-
ably embraced simulation. This approach solves the
problems of repeatability, configurability, manageability,
modifiability, and (potentially) integration with external
networks, but faces formidable obstacles in terms of real-
ism. Wireless simulators are confronted with the difficult
task of recreating the operation of a system at all lay-
ers of the network protocol stack as well as the interac-
tion of the system in the physical environment. To make
the problem tractable, simplifications are typically made
throughout the implementation of the simulator. Even
fundamental functions such as deciding what a received
frame looks like [1] diverge greatly from the operation
of real hardware. Evaluating real applications running
over wireless networks is typically very difficult using a
simulator. In addition, while wireless technology is un-
dergoing rapid advances, wireless simulators, in particu-
lar open source wireless simulators, have lagged signifi-
cantly behind these advances as discussed in Section 7.

The aforementioned issues with simulators, and a de-
sire to avoid long simulation times, have caused some
researchers to adopt emulation as a means of evaluation.
Emulation retains simulation’s advantages of repeatabil-
ity and manageability, while potentially mitigating the is-
sue of realism. Unfortunately, as discussed in Section 7,
most emulators have adopted extremely simplified MAC
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and physical layers. As the operation of these layers is
fundamental to the operation of a wireless network, it is
unclear that these emulators gain any realism over exist-
ing simulators.

We are developing a wireless emulator that enables
both realistic and repeatable wireless experimentation
by accurately emulating wireless signal propagation in
a physical space. Unlike previous approaches, this emu-
lator utilizes a real MAC layer, provides a realistic phys-
ical layer, and supports real applications while avoid-
ing adopting an uncontrollable or locale-specific archi-
tecture. The key technique we use to accomplish this is
digital emulation of signal propagation using an FPGA.

Our emulator’s high degree of control and fidelity al-
low signal propagation to be modeled in several ways:
first, widely used statistical models of signal propagation
can be used; in addition, traces of observed signal prop-
agation can be “replayed” on our emulator; lastly, man-
ual control of signal propagation can be used to analyze
behavior in artificially created situations that would be
difficult or impossible to reproduce in an open system.
Section 4 will discuss signal modeling in more detail.

This emulator provides an attractive middle ground
between pure simulation and wireless testbeds. To a
large degree, this emulator should be able to maintain
the repeatability, configurability, isolation from produc-
tion networks, and manageability of simulation while re-
taining the support for real applications and much of the
realism of hardware testbeds. As a result, this emulator
should provide a superior platform for wireless experi-
mentation.

This emulator is not, however, a complete replace-
ment for simulation and real world evaluation. Simu-
lation is still useful in cases where a very large-scale ex-
periment is needed or in certain cases where functional-
ity not available in hardware is required (e.g. changing
the MAC firmware). Real world evaluation is still useful
when radio channel fidelity beyond the capabilities of the
emulator is required, or for verifying the operation of the
emulator in real-world settings.

In this paper we present the design of a physical-layer
wireless emulator. We introduce the architecture of this
emulator in Section 2. In Section 3 we discuss an initial
proof-of-concept prototype, and our partially complete
implementation of a “Version 2” emulator based on this
proof-of-concept. Section 4 discusses how our emulator
can be used to emulate various signal propagation en-
vironments. Using both the prototype and the Version
2 emulator, we present several experiments in Section 5
and a case study in Section 6 that demonstrate the power
of our approach. Section 7 discusses related work, and
Section 8 concludes our discussion.

mulation Controller
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Figure 1. Emulator Architecture

2 Emulator Architecture

The architecture of our emulator is shown in Figure 1. A
number of “RF nodes” (e.g. laptops, access points, cord-
less phones, or any wireless device in the supported fre-
quency range) are connected to the emulator through a
cable attached to the antenna port of their wireless line
cards (each RF node corresponds to a single antenna,
so a single device can be represented by multiple RF
nodes). For each RF node, the RF signal transmitted by
its line card is “mixed” with the local oscillator (LO) sig-
nal. This shifts the signal down to a lower frequency
where it is then digitized, and fed into a DSP Engine that
is built around one or more FPGAs. The DSP Engine
models the effects of signal propagation (e.g. large-scale
attenuation and small-scale fading) on each signal path
between each RF node. Finally, for each RF node, the
DSP combines the appropriately processed input signals
from all the other RF nodes. This signal is then sent out
to the wireless line card through the antenna port. Given
the current state of technology, a DSP Engine based on a
single FPGA might support over 20 wideband RF nodes.
Using multiple FPGAs or lower bandwidth RF nodes,
even larger systems can be built.

The operation of the emulator is managed by the Em-
ulation Controller, which coordinates the movement of
RF nodes (and possibly physical objects) in the emu-
lated physical space. The Emulation Controller uses lo-
cation information (and other factors as dictated by the
signal propagation model in use) to control the emulation
of signal propagation within this emulated environment.
In addition, the Emulation Controller coordinates node
(and object) movement in physical space with the opera-
tion of RF node applications and sending of data. Each
RF node runs a small daemon that allows the Emulation
Controller to control its operation via a wired network.
RF nodes that are not capable of running code may re-
quire a proxy to run the daemon on their behalf.

Connecting the Emulation Controller to an external
network allows remote management of the emulator. In
addition, individual nodes in the emulator may be con-
nected to external networks in order to allow emulator
nodes access to the Internet at large or to allow the em-
ulator to be used in conjunction with testbeds such as
PlanetLab [2] or Emulab [3].
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3 Implementation

To demonstrate the feasibility of the wireless emulator,
we constructed a small prototype designed to validate
the emulator’s primary functionality by emulating signal
propagation between three laptops on a single 802.11b
“non-overlapping channel”. The results obtained with
our prototype [4], in conjunction with MIT’s Roofnet
project [5], and experiments discussed in Sections 5
and 6 show that the approach we advocate is capable of
providing powerful wireless emulation capabilities.

We first discuss our prototype’s hardware and soft-
ware implementation, and then discuss how Version 2
improves on the capabilities demonstrated by the proto-

type.
3.1 Proof-of-Concept Prototype

Hardware. Figure 2 shows the hardware architec-
ture of the prototype. Each laptop operates on a sin-
gle 802.11b channel centered at frequency F' which con-
tains its main spectral elements from F' — 11M Hz to
F' + 11M H z. The outgoing signal from each laptop is
first attenuated and then converted to a low frequency
by “mixing” each signal with an “LO” signal centered at
F' — 13M H z. The resulting output from the mixers (ig-
noring the signal image) is a signal ranging from 2 to 24
MHz. This signal is then fed into an A/D board for sam-
pling. Each A/D board generates 12-bit digital samples
of the incoming signal at 52 Msps, and sends them to the
FPGA for processing. The output signals from the FPGA
are converted to analog by the D/A and then “mixed up”
and attenuated before arriving at the destination wireless
card’s antenna port. We used two types of wireless NICs

in our prototype: antenna-less Orinoco Gold cards, and
Engenius NL-2511CD Plus Ext2 Prism 2.5 based cards
which both allow the connection of an external antenna
or coaxial cable.

DSP Engine. As shown in Figure 3, inside the FPGA,
the signals are first sent into a delay pipe where one or
more copies (“taps”) of the signal are pulled off after go-
ing through a programmable amount of delay. Each of
these signals is then scaled by a programmable factor.
Each outgoing signal, from the FPGA to an RF node, is
then computed by summing the scaled signals from the
other RF nodes. These outgoing signals are then sent to
the D/A board for reconstruction.

The programmable nature of this circuit allows us to
trade off resources such as the precise depth of the delay
pipes and number of signal copies supported. Thus, we
can customize the operation of the FPGA to the particu-
lar test being run.

For each signal path inside of the FPGA, the Emu-
lation Controller discussed below is capable of dynam-
ically adjusting both the attenuation and delay from the
source to the destination by dynamically setting the scal-
ing factors and delay mentioned previously at a rate of
approximately 1,000 scale factors or 2,000 delay settings
per second. Hence, for each signal path, the emulator can
recreate effects such as “large-scale path loss” (a fixed
attenuation that does not change unless RF node move-
ment is emulated) and “fading” (rapid variation in signal
strength that can occur even if the device antennas are
motionless).

As the DSP Engine is implemented in an FPGA, the
operation described above, and used in the experiments
presented in this paper, may be changed as needed for
particular signal propagation models. For instance, fad-
ing could be computed on the FPGA to allow for emula-
tion of even faster fading.

Emulation Controller. The Emulation Controller
controls and coordinates the operation of the DSP unit
and the RF nodes, and runs in one of two modes: script
or manual control.

In script mode, the Emulation Controller is driven
by scripts that specify each node’s movement, commu-
nication, and application behavior. As the RF nodes
move about in the emulated physical space, the Emu-
lation Controller continuously computes attenuation of
each signal path and the scaling factors required to emu-
late this attenuation (our prototype currently uses a sim-
ple large-scale path loss model based on measurements
in our local environment). After computation, these scal-
ing factors are sent to the DSP Engine. Emulation Con-
troller scripts can also generate network traffic between
any pair of nodes, and synchronize this traffic with node
movement and application behavior.
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Figure 4. Emulation Controller

The Emulation Controller also generates a visual dis-
play of node location in the emulated physical environ-
ment as shown in Figure 4.

In interactive mode, the GUI shown in Figure 4 may
be used to move nodes in the emulated physical envi-
ronment. As shown in the “Node View” and “Channel
View” windows of Figure 4, interactive mode also al-
lows manual control of both received signal strength and
delay for each channel.

The experiments we discuss in later sections make use
of both the scripted and the manual control modes of the
Emulation Controller.

3.2 Version 2

Our prototype emulator confirmed the power of our
approach [4], and proved itself to be an extremely useful
tool in its own right. Nevertheless, the scale, fidelity, and
bandwidth of our prototype were limited by the fact that
we used an inexpensive off-the-shelf evaluation board for
the DSP Engine. The dynamic range of our emulator was
limited by the prototype Signal Conversion Module’s use
of simple connectorized components. “Version 2” of our
emulator addresses these key limitations of the proto-
type. We now describe this implementation; Section 3.3
then presents the results of experiments that show the fi-
delity of Version 2.

Our Version 2 DSP Engine is currently under develop-
ment. It will have the same fundamental architecture as
the prototype DSP Engine, but it will greatly improve on
the prototype by using a much larger FPGA on a custom
board with high-speed connectors to the Signal Conver-
sion Modules. It will be able to support 15 RF nodes and
100 MHz of bandwidth versus 3 nodes and 25 MHz for
the prototype, and will also allow for much finer grained
control of signal fading.

The Version 2 Signal Conversion Module is complete
and functional. A fully assembled Signal Conversion
Module is shown in Figure 5. The RF Front End board
on this module replaces the connectorized components
used in the prototype, and increases the dynamic range

Figure 5. Production Emulator Implementation

of Version 2 to 60 dB versus 40 dB for the prototype.
(Version 2 achieves 50 dB isolation from the strongest
spurious signal caused during emulation). The A/D and
D/A boards used in this module are capable of running
at 210 Msps which is over 3 times that of the prototype.
This allows us to capture around 100 MHz of bandwidth
directly, and is sufficient to capture all North American
802.11b/g channels or a portion of 802.11a.

Unlike the prototype, the Version 2 Signal Conversion
Module utilizes a “Digital Signal Conversion” (DSC)
board. The inclusion of this board arose from the need to
convert high-speed digital signals from the different sig-
naling requirements used by the A/D, D/A, and the DSP
Engine. For flexibility, this board was implemented us-
ing a modest FPGA, which allows each DSC to assist the
DSP Engine in certain cases.

3.3 Validation

Experiments demonstrating the performance of our
prototype were presented in [4]. We now present ex-
periments validating the fidelity and isolation of Version
2 which show significant improvement over the proto-
type’s performance.

As the DSP Engine operates entirely on digital sig-
nals, the fidelity of the emulator is determined by the
Signal Conversion Module. Hence, we may measure the
fidelity of our production emulator solely by measuring
the fidelity of the Signal Conversion Module. We em-
ployed this approach by using two Signal Conversion
Modules to emulate two RF signal paths. The FPGAs
on the DSC boards implement the signal attenuation re-
quired for these tests. These tests used Engenius NL-
2511CD Plus Ext2 wireless cards.

Fidelity. A signal’s physical layer fidelity is mea-
sured by comparing it with an ideal signal; the signal is
measured by periodically sampling the signal and plot-
ting the results on a polar graph as shown in Figure 6.
This is known as the signal’s “constellation”. (In the fig-
ure, each constellation contains four clusters of points.)
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We can then visually compare the measured constellation
against an ideal constellation.

We can quantify the difference between a measured
signal and an ideal signal by measuring “error vector
magnitude” (EVM). EVM is the relative difference be-
tween ideal signal constellation points and observed con-
stellation points. EVM measures the average magnitude
of the error vector (a vector from the ideal constellation
point to the observed point) as a percentage of the ideal
signal vector’s magnitude.

Figure 6 compares the modulation fidelity of a signal
generated by a digital signal generator (a) with that of
the same signal passed through our production emulator
(b) and (c¢). Comparing (a) with (b) we see that when
the emulator is digitizing in narrowband mode (a single
802.11b channel) the constallation loses some crispness,
but is still excellent; EVM increases slightly. (c) shows
that when digitizing a wideband signal (802.11b chan-
nels 1-11) the signal degrades slightly more, but is still
quite good. The EVM measurement in this case should
not be regarded as saying that there is no signal degrada-
tion in wideband mode, but merely shows that the degra-
dation is within the margin of measurement error.

Our earlier prototype work [4] demonstrated that our
emulator does not distort on-card measurements such as
received signal strength (RSSI). This previous work also
showed that the prototype link delivery performance was
close to that of a coaxial-based comparison, and that sig-
nal modeling was repeatable across experiments. We
omit similar tests from this work in the interest of space.

Figure 7 demonstrates that our prototype’s physical
and link layer fidelity translates into transport level fi-
delity by comparing the TCP throughput for two laptops
connected via coaxial cable and discrete attenuators ver-
sus two laptops connected via our production emulator.
Each data point is an average of 20 trials measuring one-
way TCP throughput for approximately 5 seconds. Con-
fidence intervals are omitted since they are tight, and the
SNR measurement error is dominant (about 1 dB). The
results match quite closely and are within the measure-
ment error of the experiment.

Isolation. An important benefit of our prototype is the
ability to conduct experiments in isolation from external
sources of interference. To measure this, we used a high
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Figure 7. Transport Layer Fidelity

power source (20 dBm) external to our emulator with a
strong omnidirectional antenna (5.5 dBi) to send traffic
at IMbps. We then moved this traffic source around our
immediate environment to see when our emulator could
not sense any of this traffic. Our results showed that our
emulator was isolated against this strong source when it
was at least 10 meters away. The current limitation on
this isolation is the need to sacrifice perfect shielding in
order to allow the RF nodes to be cooled. Additional
work should cut the interfering range down to a few me-
ters even for strong transmitters.

Building a large setup requires that we place RF nodes
in close proximity to each other. To allow for this while
maintaining internal isolation, each emulator node is
mounted inside of a shielded rack-mount chassis. By al-
tering the external isolation test to measure internal iso-
lation, we verified that nodes attached to the emulator
are effectively isolated against undesired transmission to
each other despite their close proximity (8.75 inches).

We next discuss how our emulator’s ability to faith-
fully control the wireless signal is used to model signal
propagation. We will then discuss several experiments
that demonstrate the range of experiments enabled by our
emulator.

4 Signal Propagation Modeling

With our ability to completely control wireless signal
propagation comes the challenge of modeling or recre-
ating propagation in an appropriate manner for a given
experiment. Our goal in this work is not to develop and
justify new physical models of signal propagation, but to
discuss how current and future models as well as signal
propagation trace playback can be used in our emulator.

Fortunately, unlike wireless simulators, we are freed
from the task of emulating radio behavior in conjunc-
tion with signal propagation modeling: we simply pick
a suitable signal propagation model, compute each re-
ceiver’s received signal, and let the radio decide what
happens. We do not need to make any assumptions re-
garding any radio issues such as “sensing range”or “in-
terfering range”.
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We now discuss several different methods of model-
ing wireless signal propagation in our emulator. We be-
gin with signal propagation models that require no site
specific information, and then discuss models that use
increasing amounts of site specific information. Some of
these techniques are completely operational in our em-
ulator (large-scale path loss, signal capture and replay),
some are partially operational (small-scale fading), while
others require some external tools before they can be
used in our emulator (ray-tracing, channel sounding).

4.1 Large-scale Path Loss

The signal propagation model most commonly used
by simulators is a large-scale path loss model. Specifi-
cally, the received signal strength at each receiver (RSS)
is computed as RSS = Pt + Gt — PL + Gr. Where
Pt and Gt are the transmit power and antenna gain at the
transmitter, PL is the path loss, and Gr is the antenna gain
at the receiver. Large-scale path loss models simply com-
pute PL as a function of distance between the transmitter
and the receiver.

The Emulation Controller implements large-scale
path loss by simply calculating the loss between nodes
whenever the distance between them changes. These loss
values are then sent into the emulator where they are used
to control the attenuation of the signal path between two
nodes.

4.2 Small-scale Fading

While large-scale fading models can accurately cap-
ture the average path loss between two points, on a short
time scale the path loss between these points may vary
substantially. To support this behavior, we are currently
adding the ability in our emulator to emulate this small-
scale fading.

We are leveraging the technique presented in [6] to
incorporate the Ricean and Raleigh statistical models of
small-scale fading in our emulator. In our implementa-
tion, the fading parameters are computed offline, and are
then loaded into our emulator’s FPGA before emulation
begins. At run time, these parameters are added to the
large-scale path loss which causes short term variation
with the desired statistical properties. Independent use
of fading parameters should allow independent, on-line
modification of small-scale fading for each RF node.

4.3 Ray Tracing

The previous two methods required no site specific in-
formation other than picking the correct path loss models
and model parameters. By incorporating site-specific in-
formation, it is possible to generate more accurate signal
propagation models.

One technique that can be implemented in the emu-
lator is to leverage ray tracing techniques. If the motion
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of nodes can be pre-computed off-line, ray-tracing tech-
niques can be used to precisely compute all rays incident
on each receiver at a given point in time. If motion can-
not be pre-computed, then approximations can be made.

At runtime, the pre-computed series of attenuation
over time values for each signal path would then be used
to set path attenuation inside the DSP Engine.

4.4 Capturing and Replaying Signal Behavior

One simple method of accurately modeling signal
propagation is to measure the signal propagation in a
given environment and then to replay it. We have imple-
mented a signal capture system using standard wireless
NICs that measures path loss in a physical environment.
This system works by constantly sending small packets
from each transmitter to be emulated and receiving these
packets on each receiver being emulated.

Our emulator then simply replays the observed traces
of signal strength. To demonstrate this capability, we
captured path loss from a car driving along a freeway
at 60 MPH to a base station located at a fixed point near
the freeway.

The traffic source was a 23 dBm 802.11b source at-
tached to a 5 dBi isotropic antenna placed on the roof of
the passing car. The receiver used the same hardware as
the sender, but with the antenna placed on the roof of a
stationary car at the side of the freeway. As the sender
passed, it continuously broadcast small 1 Mbps broad-
cast packets which were recorded by the receiver. The
result of this test was signal strength measurements with
1 ms granularity. We then post-processed this trace to
extract the timestamped signal and noise measurements.

Figure 8 shows the trace extracted using this method.
Our emulator then simply reads, and recreates the ob-
served path loss at the given time. Our current trace re-
playing software is limited to 2.5 ms granularity.

4.5 Channel Sounding

A more sophisticated method of measuring signal
propagation in a physical environment is to use spe-
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cialized hardware to precisely measure the “impulse re-
sponse” of the channel. Such measurements can be dif-
ficult to obtain since they require specialized hardware.
Once obtained, however, our emulator is capable of re-
playing these measurements by setting the attenuation
and delay of each signal path in the DSP Engine accord-
ing to the values extracted from the channel sounding.

4.6 Discussion

Before presenting experimental results, we briefly dis-
cuss the capabilities and limitations of signal propagation
modeling using our approach.

Simulation. Many of the signal propagation models
that we utilize can be also be used in simulation. This su-
perficial similarity, however, belies a massive difference
in how these models are used. Computational constraints
placed on a simulator, force the simulator to work at a
very coarse timescale. Our emulator, on the other hand,
uses a statistical propagation model to manipulate a real
modulated signal on the timescale of 5 ns. This is then
sent to a real receiver to determine the reception behav-
ior. Accurate receiver behavior in a simulator would re-
quire transistor level simulation which is completely in-
feasible for the number of nodes that we are looking at.
Realtime simulation of such behavior is out of the ques-
tion.

Similarly, while a simulator can replay a captured
channel trace, it can only do so at a very coarse timescale
and with far less fidelity than a physical layer emulator.

Real-world experimentation. The ability to pre-
cisely recreate a signal propagation environment is a
huge advantage compared to real-world experimentation.
This power, however, comes with a price of reduced re-
alism and scale in signal propagation.

Our approach necessarily models a wireless channel
using discrete elements (e.g. one line-of-sight ray and
two reflections) whereas a true wireless channel is a con-
tinuous phenomenon. Also, as the number of RF nodes
attached to our DSP Engine increases, the number and
length of delayed signal paths that we can implement
drops. Hence our approach is a compromise between the
fidelity of the real-world and the control of simulation.

Noise. The term noise is frequently used to refer to
both true noise (e.g. receiver noise) and interference
from other wireless devices. Receiver noise is naturally
present in our system since we use real receivers. Inter-
ference from other wireless devices can be supported in
several ways. First, if RF Node ports are free and the de-
vices are available, these devices can simply be attached
to our emulator. Secondly, it is possible to record noise
resulting from interference and to replay this in the emu-
lator. Third, a white noise generator can be implemented
in either the DSP Engine or the DSC card to generate
noise.

Note that our effective receiver noise floor will be
slightly higher than a coaxial based system since we use
additional amplifiers etc. that introduce noise. This level
will still be much lower than the noise floor of a true
free-space wireless system.

Scale. As hardware is finite, the richness of chan-
nel modeling possible using hardware-based emulation
drops as the scale of the network being emulated in-
creases. The limiting factor is typically the number of
multipliers in the DSP Engine’s FPGA.

For much of our discussion, we have assumed the de-
sire to support the independent pairwise emulation of
all pairs of RF Nodes attached to an emulator. Clearly
this approach becomes infeasible at a certain point as the
complexity of pairwise interaction is order n?.

It is important to observe, however that emulating
complete interaction is not always necessary. Clearly, if
nodes are out of range with respect to each other, then no
emulation between them is necessary. In addition, com-
plexity may be reduced by simplifying and aggregating
the emulation of channels for distant nodes.

Multi-element Air Interface Support. Current wire-
less networks are pushing the limits of the throughput
that are possible with a single element antenna. Future
networks will increase throughput by using multiple ele-
ments to support techniques such as steerable antennas,
MIMO, and “time reversal”.

Our emulator can support such emerging technologies
in two ways. First, where hardware exists, our emulator
can support these multi-element experiments by simply
treating each element as an independent RF node. The
control software then simply controls these RF nodes in
a coordinated fashion which also opens up some room
for reducing FPGA resources consumed. Second, in cer-
tain circumstances, it may be possible for the emulator
to emulate the effect of a given technology. For instance,
a steerable antenna can be completely emulated without
necessarily using a true steerable NIC.

5 Experiments

Our emulator enables a broad set of experiments to be
conducted in a controlled and automated environment.
To give a feel for the power of our emulator as a research
tool, we now present several experiments that illustrate
various types experimentation that our emulator enables.

We first discuss how our emulator can improve under-
standing of the impact of the physical layer on higher lay-
ers. We then discuss our emulator’s support for emerging
antenna and air interface technologies. Finally, we dis-
cuss how our emulator can be used to conduct micro and
system level benchmarks of wireless performance. Sec-
tion 6 will then present a case study showing how our
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emulator can be used to analyze a wireless protocol im-
provement.

These experiments were all conducted using one or
more of three RF Nodes connected to our prototype: “Or-
chid”, “Hermes”, and an interferer (“Nice” or a Blue-
tooth source). For experiments conducted in an emu-
lated physical environment (i.e. where manual control of
channel parameters is not required), we use a log-based
path loss model derived from our local environment. For
each of the experiments discussed, obtaining realistic re-
sults using traditional methods would be difficult or in-
accurate.

5.1 Physical Layer Impact on Higher Layer
Performance

5.1.1 Hidden Terminal

“ S0m "‘ 30m "
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Figure 9. Hidden Terminal Topology
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Figure 10. Hidden Terminal Results

A well known example of a low layer issue that has
potentially serious ramifications for application perfor-
mance in wireless networks is the “hidden terminal”
problem. Evaluating the hidden terminal problem in a
real world environment is troublesome since it is difficult
to determine if nodes are in carrier sensing range of each
other. Moreover, carrier sensing range constantly fluc-
tuates in the real world. This experiment highlights our
prototype’s ability to overcome these difficulties by pro-
viding precise, independent control over the signal paths
between all nodes. This allows us to evaluate the hidden
terminal problem by simply commanding the emulator
to “disconnect” the desired nodes while leaving the com-
munication between other nodes unaffected.

As illustrated in Figure 9 we arranged our three nodes
in a line with all nodes in range of each other. (For sim-
plicity we will speak of spatial relationships in our virtual
physical environment as if they were based in a real phys-
ical environment). We then measured TCP throughput

from Hermes to Orchid while Nice was used to generate
interfering traffic using a unicast ping flood directed at
Orchid. Orinoco cards were used for these tests.

As shown in the Figure 10 “No RTS, No Interference”
test, throughput between Orchid and Hermes is excellent
when there is no interference (each value is an average
of 25 trials with 95% confidence intervals shown). In
the “No RTS, Interference, Not Hidden” test, we see that
when Nice begins interfering, throughput is still quite
good (ping packets are much smaller than the TCP pack-
ets).

We then created a hidden terminal situation by ar-
tificially “severing” the link between Hermes and Nice
while leaving the other communication paths unaffected.
(The ability to create a hidden terminal situation with-
out “moving” the nodes allows us to directly compare
results between the hidden and non-hidden tests.) The
“No RTS, Interference, Hidden™ test shows that through-
put between Orchid and Hermes drops dramatically in
this case.

We next analyzed the efficacy of 802.11°s RTS/CTS
mechanism at overcoming the hidden terminal problem
by repeating the previous tests with Hermes set to always
use RTS/CTS for frames over 200 bytes. The “RTS, In-
terference, Hidden” test shows that RTS/CTS is able to
double throughput; nevertheless throughput is still much
lower than when the interferer was not hidden. Compar-
ing the final “RTS, No Interference” test with the “No
RTS, No Interference” case shows that the overhead of
RTS/CTS alone is roughly 1 Mbps. Further investigation
(and coaxial-based verification) revealed that the cause
of this underwhelming improvement was the failure of
RTS/CTS to prevent rate fallback. The ability to analyze
this type of subtle behavior in a controlled environment
is a key advantage of our emulator.

5.1.2 External Interference

Another well known problem that can afflict wireless net-
works in a license free band is interference from external
sources. To illustrate our ability to investigate interfer-
ence from arbitrary sources we conducted a simple ex-
periment involving two 802.11b nodes communicating
in the face of interference from a Bluetooth source. As
shown in Figure 11, each node was positioned 50 meters
from the other two nodes.

Figure 12 shows the results of communication be-
tween Hermes and Orchid for four scenarios (each value
is an average of 25 trials with 95% confidence intervals
shown), two of which - the “Yagi” cases - will be dis-
cussed in the next section.

In the “Isotropic, No Interference” test, Hermes and
Orchid communicate with omnidirectional antennas with
no interference (using a TCP benchmark with traffic
from Orchid to Hermes). Communication is only around
1.25 Mbps due to the distance between the nodes.
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Figure 12. Directional Antenna Results

In the “Isotropic, Interference” test, Hermes and Or-
chid communicate as before, but the Bluetooth source
is configured to broadcast a constant 15 dBm signal with
Bluetooth modulation. TCP communication between Or-
chid and Hermes is not possible in this case.

5.2 Flexible Antenna and Multi-element Air In-
terface Support

Complete control over signal propagation also allows
our prototype to emulate arbitrary types of antennas. To
illustrate this, we analyzed the ability of directional an-
tennas to improve range and spatial reuse by minimiz-
ing the effects of interfering Bluetooth traffic (discussed
in 5.1.2). Orinoco cards were used for these tests.

The “Yagi” tests repeat the “Isotropic” tests discussed
previously, but with 18 dBi Yagi antennas [7] attached
to Orchid and Hermes. These antennas are aimed di-
rectly at each other. Figure 11 shows the radiation pat-
tern for these antennas. Note that for Orchid and Hermes,
the Bluetooth source lies along a side lobe with approx-
imately 22 dB and 18 dB respectively less gain than the
primary lobe. As shown in Figure 12 these directional
antennas successfully increase the communication rate
and also mitigate the effects of external interference.

5.3 Benchmark Experiments

We now consider “benchmark™ experiments that are
designed to measure particular aspects of wireless NIC
or link behavior. In additon to providing the control nec-
essary for these tests, the emulator allows these tests to
be automated which greatly reduces execution time while
eliminating the error associated with manually conduct-
ing similar experiments.

These capabilities also enabled us to compare wire-
less link behavior observed in Roofnet [5] against link
behavior in a controlled emulated environment. '

5.3.1 NIC Signal Measurement Characterization
Many researchers have proposed techniques that rely
on signal strength and/or noise floor measurements pro-
vided by the card. Two common examples are signal
strength based device location [8] and SNR based rate
selection [9]. The success of these proposed techniques
hinges on the accuracy of NIC signal measurement; very
little information, however, has been published regarding
the accuracy of these measurements in actual hardware.

To investigate the accuracy of signal measurements
made by current 802.11b cards, we tested the measure-
ment behavior of five wireless cards. Each card was the
exact same model: an Engenius NL-2511CD Plus Ext2
card. Using our emulator to connect a single transmitter-
receiver pair we were able to precisely control the re-
ceived signal strength (RSS) at each card (we held the
transmitter constant while alternately measuring each re-
ceiver). For each signal strength between -70 dBm and
-100 dBm at 2 dB intervals we sent 500 packets of 1500
bytes each at 1 Mbps. We then computed the average
signal strength (RSSI) and noise measured by each card
(along with 95 % confidance intervals).
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Figure 13. Per-card RSSI Variation

As shown in Figure 13 there is approximately 10 dB
of variation in the measurements even for the exact same
model of card. This is clearly inadequate for many pur-
poses. For most cards, however, this variation seems
to be caused by a constant bias. This implies that each
card’s measurement behavior, RSSI, for a given RSS can
be defined as: RSSI(RSS) = RSS + Ec+ E(RSS).
Where RSSI is the measured signal strength, RSS is the
actual signal strength, Ec is a constant (per-card) error
term, and E(RSS) is each card’s variation of from the

I'This was done in conjunction with the Roofnet project
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Figure 15. Per-card RSS Variation after Correction
base Ec for a particular RSS. Ideally, each card would
have a lookup table that would give the Ec as well as
E(RSS) for each RSS. Lacking such a table, however, we
can leverage the fact that most of the error is contained
in Ec to correct RSSI.

One very simple method of obtaining a good estimate
of Ec is to min-filter the noise measurements (the filter-
ing eliminates spurious noise measurements). As shown,
in Figure 14, the noise measurements over the same set
of tests shows very similar variation. That is, each card’s
variation in RSSI closely matches it’s variation in mea-
sured noise. Figure 15 shows the variation in RSS when
using this technique. With the exception of one card,
this lowers the variation to approximately 4 dB. This is
a greatly reduced variation, but may not be low enough
for some purposes (e.g. signal strength based location).
Complete card characterization of the relationship be-
tween RSSI and RSS is possible, but may not be worth
the per-card testing required.

5.3.2 NIC Delivery Rate Variation

We next measured the 1 Mbps packet delivery rates for
the same five cards discussed previously. We report de-
livery rate as the fraction of transmitted packets that were
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Figure 16. Per-card Delivery Rate Variation
received error free. We used the same experimental setup
described in 5.3.1 with the exception that we varied RSS
between -70 dBm and -102 dBm (we omit tests above
-88 dBm as there was no loss).

As shown in Figure 16, there seems to be less vari-
ation in delivery rates than in RSSI. Significantly, the
delivery rate performance measured roughly follows the
noise measurements in Figure 14: cards reporting lower
noise levels tend to have a higher delivery rate. Hence,
some of the noise floor measurement variation appears
to be due to real variation in the noise floors of the NICs.
This is probably due to variation in the amount of noise
generated by each NIC’s low noise amplifier.

= J = J

Transmitter Receiver

Primary Ray

Delayed Ray

Figure 17. Two-ray Test Topology

5.3.3 Multipath Performance
We now examine card performance in the presence mul-
tipath. To do this we configured our emulator to emulate
the signal propagation environment shown Figure 17 us-
ing three different primary ray strengths (-70 dBm, -90
dBm, and -95 dBm). For each primary ray strength, we
caused a delayed ray to be emulated at all 2 dB incre-
ments of attenuation between the primary ray strength
and -100 dBm. For each primary ray, secondary ray sig-
nal strength combination, we varied the secondary ray’s
delay between O and 2.22 us in 0.0185 us increments.
For each of these combinations, we conducted a test by
transmitting for 500 packets, of 1500-bytes each, from
the sender. The receiver then measured the packet de-
livery rate and other on-card statistics such as signal and
noise measurements (for successfully received frames).
RSSI measurements from this test (omitted in the in-
terest of space) showed that RSSI measured the sum of
all signals incident to the receiver, and was fairly insen-
sitive to the delay between the signals. The only signif-
icant exceptions being when the delayed ray completely
cancelled out the primary ray.
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As seen in Figure 18, the delivery rate exhibited
large variation for different delay spread, delayed sig-
nal strength combinations (each point represents a the
delivery rate for one primary ray strength, delayed ray
strength, delay spread combination). Hence, SNR may
be a very poor indicator of packet delivery rate when sig-
nificant multipath is present.

We next analyzed the potential of applications to esti-
mate the amount of multipath present using information
obtained from the NIC’s equalizer. On the Engenius NL-
2511CD Plus Ext2 cards (and all other cards based on
the same chipset), a register - “MPMetric” - is available
to estimate the amount of multipath interference present
during reception.
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Figure 19. Two-ray MP Metric vs. Delay

As the documentation on the Prism 2.5 MPMetric reg-
ister is scant, our emulator’s ability to measure the be-
havior of this register is critical in understanding its per-
formance. Figure 19 shows MPMetric as a function of
delay spread for two equal-strength rays. These mea-
surements were obtained from the two-ray test described
earlier, and use the five Engenius cards used previously.
From this test, we infer that if significant multipath re-
ception is present, MPMetric is likely to be high. We
then measured MPMetric in the presence of no multi-
path as shown in Figure 20. From this test we see that
the MPMetric register may also go high whenever the
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Figure 20. One-ray MP Metric vs. RSS
signal conditions are marginal irrespective of multipath.
This suggests that a high MPMetric reading is a likely
indicator of multipath when the received signal strength
is high, but it is not a useful indicator of multipath when
the received signal strength is weak.

6 Case Study: 802.11b Rate Selection

‘We now present a small case study that demonstrates how
our emulator can be used to analyze and improve wire-
less protocol performance.

When selecting a transmit rate, a fundamental trade-
off that wireless protocols must make is throughput vs.
range: higher transmit rates increase throughput but at
the cost of range and robustness to interference. Rather
than selecting a fixed point in this tradeoff, wireless pro-
tocols such as 802.11b support multiple transmit rates.
This allows wireless NICs to potentially select the best
transmit rate in a given environment and at a given mo-
ment.

Selecting the best rate, however, is a difficult problem
and several schemes have been proposed. Our emula-
tor allows a controlled comparison of the performance
of these schemes on real hardware. For illustrative pur-
poses we examine three schemes: ARF - auto rate fall-
back, SNR signal-to-noise ratio based scheme, and ERF
- Estimated Rate Fallback. We describe each of these
approaches below.

We based our transmission rate selection implemen-
tations on the HostAP mode Prism driver for Linux. We
made extensive alterations in order to take fine-grained
control of rate selection out of the firmware, and put it
into the driver. These alterations give us per-packet con-
trol over transmit rate, and effectively disable firmware
rate control.

ARF Implementation. Auto rate fallback attempts
to select the best transmit rate via in-band probing using
802.11’s ACK mechanism. ARF assumes that a failed
transmission indicates a transmit rate that is too high. A
successful transmission is assumed to indicate the cur-
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rent transmit rate is good, and that a higher rate might
possibly be useful.

Our ARF implementation works as follows. If a given
number of consecutive packets are sent, then increment
to the next highest transmission rate. If a given con-
secutive number of packets are dropped then decrement
the rate. If no traffic has been sent for a given amount
of time, then use the highest possible transmission rate
for the next transmission. In our implementation, the in-
crement threshold is set at 6, the decrement threshold at
3, and the timeout value at 10 seconds. (The Prism 2.5
firmware based ARF algorithm uses a decrement thresh-
old of 3 and a timeout of 10 seconds, but is somewhat dif-
ferent than our algorithm since retries are implemented
entirely in firmware.)

SNR Implementation. SNR based approaches at-
tempt to eliminate the overhead of probing for the correct
transmission rate by selecting the optimal transmission
rate for a given SNR. These schemes typically ignore
multipath interference, and assume that card RSSI/noise
floor measurements are completely characterized on a
per-card basis.

SNR based rate selection algorithms are faced with
the fundamental problem that the information they need
to make the rate selection decision is measured at the
receiver. Our SNR based implementation leverages re-
ceiver based reception information, like RBAR [9], but
eliminates the per-packet overhead and works with stan-
dard 802.11. The key insight that our SNR based algo-
rithm leverages is the fact that instantaneous path loss
between two given points is symmetric in both the send-
ing and receiving directions 2. Hence, it’s possible to
estimate SNR at the receiver by observing traffic in the
reverse direction. We omit further details of this scheme
as they are beyond the scope of this paper.

Estimated Rate Fallback. While signal based trans-
mission rate selection has the benefit of quickly setting
the transmission rate, this technique may be inadequate
in some situations. Auto rate fallback, on the other hand,
has the advantage of implicitly taking all relevant chan-
nel factors into consideration, but may probe more than
necessary. We developed a simple hybrid algorithm that
uses both SNR and ARF in conjunction the on-card mea-
surements of multipath. We call our scheme Estimated
Rate Fallback (ERF).

The basic idea of ERF is to run the ARF and SNR
based schemes in parallel, and then to select the appro-
priate estimate. We do this by using the SNR based es-
timate unless one of the following is true: multipath is
detected, or the SNR estimate is near a decision thresh-
old (2 dB in our implementation). This allows ERF avoid
the multipath weakness of the SNR based approach while

2We assume a single receive and transmit antenna. Our approach
can be modified to support the general case.

reducing the need for card characterization.

Rate Selection Algorithm Comparison We now
evaluate the performance of the previously discussed
transmission rate selection algorithms using three emu-
lated signal propagation environments. In all cases, we
use the same test to measure performance.

Under lightly loaded traffic conditions, optimal rate
selection is not strictly necessary since a lower transmis-
sion rate can simply be used. Rate selection becomes
critically important, however, when the wireless network
is running at capacity. For two of our tests, we examine
this fully loaded condition for a single transmit-receive
pair. For the third test, we examine a lightly loaded situ-
ation.

To measure performance of a single transmitter under
full load, we transmitted as many unicast UDP 1400-byte
packets as possible from the transmitting node to the re-
ceiving node under the given signal environment. For
the lightly loaded scenario, we sent 100 packets over 10
seconds and measured the number successfully received.

These tests highlight the emulator’s ability to enable
controlled comparison of rate selection mechanisms with
a high degree of repeatability. For each experiment we
briefly discuss how the experiment would have fared us-
ing an alternate approach.
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Figure 21. Rate Selection for Fixed RSS

Fixed RSS. The first test that we conducted to eval-
uate our rate selection mechanisms was to measure per-
formance when the received strength was constant and
the source sent as much traffic as possible as described
above. Figure 21 shows our results. As expected, SNR
performs well. ARF, on the other hand, performs poorly
at intermediate signal levels where it is periodically prob-
ing for a higher bandwidth that will never be useful. ERF,
is able to match SNR performance quite closely.

Obtaining this result using real-world experimenta-
tion would be possible, but tedious since positioning
nodes to obtain a particular fixed RSS is difficult. Simu-
lation might be used, but would only yield useful results
if the hardware were modeled accurately.
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Multipath. Next, we measured rate selection perfor-
mance under in a multipath environment by commanding
the emulator to introduce a delayed copy of the primary
signal from the sender to the receiver (ideally this would
be both directions) with a fixed delay of 1 symbol pe-
riod. With the RSS of the primary ray set to -77 dBm,
we set the delayed ray strength to -84 dBm. As shown in
Figure 22, ERF and ARF perform much better than SNR
since SNR sends at 11 Mbps. This also masks the fact
that SNR uses multiple retries to even attain this through-
put. This test demonstrates that multipath can cause the
SNR based scheme to fail, although it is unclear whether
this situation is common enough to worry about in many
environments. Nevertheless, ERF is able to use hardware
information to eliminate even this situation.

Eliciting this result using real-world experimentation
would essentially require a highly controlled large-scale
RF test range. Using simulation would simply not be
feasible.
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Figure 23. Rate Selection for Driveby Emulation

Fast Fading. We next tested performance in a fast
fading environment, by measuring throughput during a
replay of a “drive by” scenario similar to that shown
in Figure 8. (In this experiment, we are simply emu-
lating the fast fading caused by multipath, and are not
actually emulating multiple signal copies. Hence, the
multipath differences in the various algorithms are not
demonstrated by this experiment.) Figure 23 shows that
in this scenario, all algorithms perform similarly though
ARF and ERF generally outperform SNR when the sig-
nal is marginal, while SNR and ERF generally outper-

form ARF when the signal is strong.

This experiment demonstrates the benefits of being
able to replay the exact same signal trace. Comparing
these rate selection algorithms in a real drive-by exper-
iment would be difficult since even slight variations in
mobility would cause channel inconsistency across ex-
periments. Hence, it would be difficult to separate the
effects on performance due to the different algorithms
from the effects due to RF channel variation.

In practice, experiments that include mobility are also
very cumbersome to execute in the real-world especially
as the number of mobile nodes increases.

A simulated test would result in a much coarser
grained use of the signal fading trace and fail to simu-
late the effects of rapid fading due to vehicle mobility.
Hence, confidence in the accuracy of such a simulated
test would be greatly reduced.

7 Related Work
7.1 Wireless Simulators

For several years now, ns-2 [10] has been the de facto
standard means of experimental evaluation for the wire-
less networking community. Yet ns-2’s wireless sup-
port has not kept pace with current technology, and
is targeted towards the original 802.11 standard devel-
oped in 1997. Even this support, however, is inexact
as ns-2 does not support automatic rate selection, uses a
non-standard preamble, and a non-standard 802.11 ACK
timeout value. In addition, ns-2’s physical layer is partic-
ularly simple [1]. As a result, some researchers are opt-
ing to use commercial simulators such as QualNet [11]
and OpNet [12] since they claim better support for cur-
rent standards. Despite these claims, however, it is un-
clear how well these simulators reflect actual hardware.

7.2 Wireless Emulators

Emulation has proven to be a useful technique in
wired networking research [3, 13, 14], and it has an even
larger potential in the wireless domain.

A common approach that has been taken for wire-
less emulation [15, 16, 17] is to capture the behavior of
a wireless network in terms of parameters such as ca-
pacity and error rates and then use a wired network to
emulate this behavior. This has the advantage of allow-
ing the use of real endpoints running real applications in
real time. The wireless MAC and physical layers, how-
ever, are only very crudely simulated. For this reason, it
is unclear whether or not this approach can obtain more
realistic results than pure simulation.

RAMON [18] uses three programmable attenuators to
allow emulation of the signals between a single mobile
node and two base stations. While useful for the intended
application of mobile IP roaming investigation, the in-
ability to independently control all signal paths severely
limits this annroach.
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7.3 Wireless Testbeds

More recently, several efforts such as Emulab [19],
WHYNET [20], Orbit [21], and MiNT [22] have begun
using controlled wireless testbeds. Though they mitigate
some of the issues with respect to control and isolation,
these approaches still inherit the benefits and shortcom-
ings of testbeds discussed in Section 1. In contrast, our
approach allows for much finer grained and repeatable
control of the physical layer.

7.4 Channel Emulators / Fading Simulators

The most functionally similar approach to the wireless
emulator that we are developing is provided by commer-
cial channel emulators [23, 24]. The goal of these emula-
tors, however, is quite different. Rather than supporting
emulation of all channels in a wireless network, com-
mercial channel emulators are designed to support very
fine-grained emulation of the wireless channel between
either a pair of devices or between a small number of
base stations and a small number of mobile devices (with
the total of both typically being less than 8). In addition,
these emulators lack direct support for half-duplex nodes
and require external components to support half-duplex
nodes. As a result, while these emulators are very useful
for equipment vendors evaluating a new device, the lim-
ited scale, lack of support for complete interaction be-
tween all nodes, and high cost make commercial channel
emulators an unattractive option.

8 Conclusion

Understanding and improving wireless network and ap-
plication performance is increasingly important. Unfor-
tunately, repeatable experimentation with real wireless
nodes running real applictions operating in a physical en-
vironment is not feasible. For this reason, most wireless
research has relied on evaluation via simulation. Wire-
less simulators do not, however, completely duplicate
real hardware in an operational environment, and the cor-
rectness of wireless simulation is difficult to validate.
We have addressed these obstacles by developing
a physically accurate wireless emulator that supports
real applications running on real wireless devices. We
have shown that this approach allows us to achieve fine
grained control over RF propagation. We have demon-
strated that this enables the analysis of higher layer per-
formance in real networks and facilitates the develop-
ment and evaluation of enhanced wireless protocols.
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