USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




SUS — An Object Reference Model for
Distributing UNIX Super User Privileges

Peter D. Gray — University of Wollongong

ABSTRACT

This paper describes a system administration tool which allows a user to run a command as
root or as some other user after authenticating. Unlike most other commands of that ilk, SUS
attempts to treat the command and its arguments as references to system objects, and allows for
relatively powerful matching on the attributes of those objects to determine if the user should or
should not be allowed to execute the desired command. In addition, SUS has a mode to help limit
the number of setuid utilities needed to provide user services via the web.

General Issues

It has long been known that the “all or nothing™
traditional UNIX security model can be a serious
inconvenience for many sites [1, 2]. The super user
account (usually “root”) has practically unlimited
administrative powers while normal users are subject
to all security restrictions. There are very few system
administration tasks which can be performed without
super user privileges.

At larger sites, it is common to have a team of
system administrators of varying seniority, skill and
experience, some performing fairly mundane tasks
such as changing forgotten passwords.

Having a large number of people knowing the
“root” password is not only inconvenient but is an
obvious security hazard. In addition, permitting inex-
perienced or untrained staff to have access to such
high levels of power and functionality poses a real risk
to the integrity of computer systems. Simple typing
mistakes can cause havoc.

There have been several packages written, both
open source and commercial, to address this problem
with various degrees of success [3, 4, 5]. To use these
systems a user invokes the application (which runs
with super user privileges via setuid) and passes argu-
ments to indicate which command they wish to run
and what arguments they wish to pass. The application
consults a configuration file. Depending on the invok-
ing user and the requested (target) command (and pos-
sibly other factors) the application will either allow
the request and run the target command or inform the
user that they do not have sufficient privileges to run
the command they requested.

The criteria used in the above determination can
be simple or complex depending on the tool being
used. The paper by Hill [3] on the tool PRIV gives an
excellent overview of the above issues and lists the
capabilities of several such systems, both commercial
and open source.

With the exception of PRIV, most such systems
fail to examine the arguments of the target command

2001 LISA XV — December 2-7, 2001 — San Diego, CA

with any degree of sophistication. PRIV offers a rich
set of functionality along with some attempt to treat
the arguments as references to system objects. It
allows for command arguments to be restricted to
objects which satisfy simple criteria.

SUS takes some of the ideas of PRIV and
extends the concepts by adding the ability to treat all
commands and arguments as references to objects.
Such objects include users, files, groups, hosts and
processes. Each such object has a set of attributes. For
example, a file has an owner, a group and a type, etc.
Objects on which the command will operate are exam-
ined, their attributes retrieved and compared with a
selection criteria found in the configuration file.

Only if the selection criteria match the attributes
of the objects is the command allowed. For example, it
is possible to restrict a user to deleting regular files
owned by any member of the group “admin” or only
allow them to send a HUP signal to a process owned
by a user whose UID is in the range 100-200.

Operation

SUS is installed as a setuid binary. When
invoked to run a command it reads a single configura-
tion file. The configuration file is preprocessed via a
CPP-like macro preprocessor [9] with many prede-
fined macros to allow for simplification of the control
file syntax. For example, it is possible to restrict
access to commands by time of day using SUS, even
though there is no such capability in the SUS control
language. The combination of conditional output in
the macro preprocessor plus judicial use of the prede-
fined macros set to the time of invocation provides the
necessary functionality.

The presence of the macro preprocessor also
allows for an easy mechanism for controlling the vari-
ous operational aspects of SUS. By setting values of
special macros in the control file, all configurable
aspects of operation can be easily controlled. For
example, the location of the log file can be set by sim-
ply setting the macro “LOG_FILE” to any desired
location.

15



SUS

The configuration file syntax is similar to the
popular sudo [4] product from the University of Col-
orado. Lines are composed of a user selector and a
command selector. Each line is read and the user
selector used to determine if this line applies to the
current user. If so, the command selector is compared
with the target command. If a match is found, the
command is executed.

Objects and Attributes

SUS allows for commands (including arguments)
and users to be matched as simple regular expressions.
However, the real power of the system is its ability to
treat command names and arguments as references to
system objects. For example, in the command

$ sus rm a.out
SUS can treat the name “‘a.out” as a reference to a file
object.

The object types supported by SUS are:

e USER, defined by the information returned by
the getpwXXX(3) routines. Attributes which can
be used for matching are the username, user id,

Gray

group id, gecos field, home directory and shell.
The home directory may be treated as a refer-
ence to a FILE (see below) and the primary and
secondary groups may be treated as references
to a GROUP object (see below).

e FILE, defined by the information returned by
the stat(2) system call. Attributes for matching
are the type, user id, group id, device, raw
device and the file’s real name. The owner may
be treated as a reference to a USER object (see
above) and the group to a GROUP object (see
below). The parent directory may be treated as
a reference to a FILE, PFILE or RFILE objects
(see below).

¢ PFILE, identical to file except matching is per-
formed on the referenced file’s parent directory.

e RFILE, identical to FILE except matching pro-
ceeds recursively up the file system tree until a
match is found or the root directory is reached.

e GROUP, defined by the information returned
by the getgrXXX(3)routines. Attributes used for
matching are the group name and group id.

e HOST, defined by the information returned by the
gethostbyXXX(3) and getipnodebyXXX(3) routines.

// Make sure the target environment excludes

// dynamic linker/loader variables.
ffdefine ENV_DELETE "LD_.*"

// Override the SHELL environment variable

jfdefine ENV_ADD "SHELL=/bin/false"

// Allow user joe to add a user via a script

joe : /usr/local/bin/add_user.sh

// Set up a class of users whose home directory

// is in /home/sales using a CPP macro

jfdefine sales USER (home=/home/sales/.*)

// Any user in the above group of users may change the
// ownership of any regular file to themselves

// (predefined macro SUS_USER) as long as

// the file was owned by another
// person in the sales group.

sales

chown SUS_USER FILE(type=reg, owner=sales)

// Trudy can send a TERM signal to any process whose
// group is "eng" or (because we use RPROC rather
// than PROC) has a process above it in the process tree

// whose group is "eng"

trudy kill -TERM RPROC(group=eng)

// On the hosts in 130.130.62 subnet, andy can run anything
// he wants except the shells (ANY_COMMAND is a predefined macro)

ffdefine SHELLS "/bin/sh | /bin/ksh"

jfdefine secure-hosts HOST (ip=130.130.62..*)

andy @ secure-hosts

I'SHELLS, ANY_COMMAND

// Bruce can run anything in the gurus directory with

// any arguments he likes

bruce

FILE (name=/share/gurus/bin/.*) ANY_ARGUMENTS

Listing 1: System capabilities.

16

2001 LISA XV — December 2-7, 2001 — San Diego, CA



Gray

Attributes for matching are the names and IP
addresses (both V4 and V6).

¢ PROC, defined by the information available in
/proc/<pid>/psinfo. Matching can be per-
formed on the process id, the parent process id,
the group id and effective group id, the session
1d, the user id and effective user id and the con-
trolling tty. The user id and effective user id
may be treated as references to a USER object,
the group id and effective group id may be
treated as references to GROUP objects.

e PPROC, identical to PROC except matching is
performed on the referenced process’s parent
process.

e RPROC, identical to PROC except matching
proceeds recursively up the process tree until a
match is found or the root of the tree is located.

¢ REGEXP, extended regular expression match-
ing. This is the default if no object class is
specified but may be called explicitly if desired.

All of the above classes except REGEXP have
an additional attribute “‘exists” which matches if the
referenced object actually exists. This allows restrict-
ing an operation to a existing or non-existing object.
For example, you may allow someone to create a new
file, but not edit existing files.

Example Configuration

The configuration file syntax is basically defined
as:

user-selector allowed-commands

The preprocessor [9] is general purpose and macros
may be defined to control its operation. In its default
configuration it closely resembles CPP. Other styles it
can support in terms of macro definition and com-
ments are TeX, HTML and PROLOG.

The fragments of configuration file in Listing 1
demonstrate some of the capabilities of the system.
C++ style comments are used for annotation.

Operational Notes

Some caveats are in order:

e all matching is done as strings.

e all string matching is performed as anchored,
extended regular expressions.

e command lists are matched left to right and
matching stops as soon as a match is found.

¢ if a command matches the entry in the file, but
the match expression is negated, searching
stops and the command is not allowed.

Target Command Environment

SUS allows practically complete control of the
environment of the target command, including the
ability to selectively remove or pass through environ-
ment variables from the environment of the invoking
user which match regular expressions defined in the
control file as well as adding or replacing environment
variables with new values.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

SUS

A current directory for the target command along
with resource limits may also be set if required. Signal
handlers and masks are set to default settings before
the target command is invoked.

Security

SUS has been written with care to avoid any
problems with buffer overflows or other potential
security problems. Buffer size checks are performed
on any operation where overrun could be possible. It
checks that the control file is owned by “root” and is
not writable by other users. Space for all data struc-
tures is dynamically allocated and there are no built-in
limits in data sizes other than those set by configura-
tion.

Logging

SUS logs all invocations for any reason, success-
ful or not, using either syslog or straight to a file or
both. All aspects of the logging operation are con-
trolled by the configuration file. Information in the log
records includes the invoking user, the current direc-
tory and the target command and arguments. Option-
ally, the resource usage and elapsed clock time for
each target command may be logged as well.

Timestamps

Normally, SUS will force each user to authenti-
cate by supplying their normal system password.
When invoked successfully, SUS stores a timestamp
for each user in a system directory, normally the root
directory, and (optionally) the user’s home directory.
If a user has invoked SUS successfully inside a short
period (configurable) then the user does not have to
authenticate. Storing the timestamp inside a user’s
home directory allows for SUS to remember invoca-
tion across multiple hosts, as long as the home direc-
tory is shared.

Timestamps include the username, the user id, a
SHAT [7] checksum of the user’s encrypted password
and a SHA1 checksum of the actual timestamp itself.
The root directory timestamp also includes a SHA1
checksum of a string based on the user’s plain text
password. This checksum field is empty in the home
directory timestamp but is included in the SHAI1
checksum of the home directory timestamp. This
means that it is impossible to compute the checksum
of the home directory timestamp without access to the
root timestamp. Thus any tampering with the home
directory timestamp is detectable. All checksums are
checked to ensure a timestamp is valid.

The authentication step is skipped if the root
timestamp is valid and current or the root timestamp is
valid and the home directory timestamp is valid and
current.

Any change to a user’s password, username or
user id cause all timestamps to become invalid.

17



SUS

CGI Support (Promiscuous Mode)

It is becoming increasingly necessary to allow
users to perform tasks previously only offered if the
user connected directly to a host (either via TTY style
or X11 protocols) via a web interface. Some simple
examples are the ability for a user to change their
password or query their disk quota. To solve these
sorts of problems CGI programmers often have to
resort to setuid wrappers or scripts with obvious secu-
rity ramifications.

SUS offers the capability to allow selected users
to run commands as another user on the system if they
can supply the target user’s username and password.
Effectively, user 1 can run a command as user 2 if user
1 can supply user 2’s username and password.

For example, SUS can be configured to allow the
web server user (say user WWW) to run a command
as a normal user. The user can supply their own user-
name and password, which is passed into SUS. SUS
will authenticate the target user, then run a command
(possibly a script) with appropriate arguments to per-
form the required operation. The command is run as
the authenticated user. This mode of operation goes by
the rather intimidating name of ‘““promiscuous mode.”

As an example, a site could write a script to
change a user’s password if run as that user. A CGI
script could call the password changing script via
SUS. If the user supplies their own username and
password to the CGI script (and hence SUS) the pass-
word changing script is run as the authenticated user.

The overall result is that any number of scripts
can be written which can run as any user who can sup-
ply their own username and password without
installing any additional setuid binaries other than
SUS. The overall number of setuid utilities is kept to a
minimum. Exactly the same sorts of controls on who
can run what exist for “promiscuous mode” as when
operating normally.

Conclusion and Future Work

SUS allows for very fine grained control over
what users may or may not do as root. Arguments to
commands are examined to determine which system
objects they refer to and the attributes of those objects
may be used as criteria to allow or disallow the com-
mand.

SUS is under active development. Possible future
work includes adding an ability to log a transcript of a
user’s TTY session with a target command and the
capability to reliably prevent shell escapes from target
commands such as editors.

Availability

SUS is freely distributable under the GPL and
available from http://pdg.uow.edu.au/sus It is devel-
oped and tested under SOLARIS 8 but is known to
compile and run under LINUX. It contains no depen-
dencies on non-standard libraries.

18

Gray

References

[1] Ritchie, Dennis, “On the Security of UNIX,”
UNIX Programmers Manual Volume 2, AT&T,
NJ, USA.

[2] Jordan, Carole S., “A Guide to Understanding
Discretionary Access Control,” Trusted Systems
(NCSC-TG-001) September, 1987.

[3] Hill, Brian C., “Priv: Secure and Flexible Privi-
leged Access Dissemination,” Proceedings of
the Tenth Systems Administration Conference
(LISA 96), USENIX Association, Berkeley, CA,
USA.

[4] “Sudo,” University of Colorado, ftp:/ftp.cs.
colorado.edu/pub/sudo .

[5] “PowerBroker,” FSA Corporation, http://www.
symark.com/ .

[5] Ramm, Karl, and Michael Grubb, “Exu — A Sys-
tem for Secure Delegation of Authority on an
Insecure Network,” Proceedings of the Ninth
Systems Administration Conference (LISA 95),
USENIX Association, Berkeley, CA, USA.

[6] Chris Thorpe, “SSU: Extending SSH for Secure
Root Administration,” Proceedings of the
Twelfth  Systems Administration Conference
(LISA 98), Usenix Association, Berkeley, CA,
USA.

[7] “Secure Hash Standard,” Federal Information
Standards Publication (FIPS) 180-1.

[8] “A Secure Environment for Untrusted Helper
Applications,” Proceedings of the Sixth USENIX
Security Symposium, Usenix Association, Berke-
ley, CA, USA.

[9] “GPP — Generic Preprocessor,” Ecole Polytech-
nique, http://math.polytechnique.fr/cmat/auroux/

prog/gpp.html .

2001 LISA XV — December 2-7, 2001 — San Diego, CA



