
A Walkable Kademlia Network for Virtual Worlds
Matteo Varvello†⋆, Christophe Diot†, Ernst Biersack⋆

† Thomson, Paris, France
⋆ Institut Eurecom, Sophia-Antopolis, France

{matteo.varvello,christophe.diot}@thomson.net, ernst.biersack@eurecom.fr

Abstract—Virtual worlds are digitalizations of the real world
where users can live a virtual life. Commercial virtual worlds
rely on a Client/Server architecture, which has serious scalability
limitations. Peer-to-Peer (P2P) and Distributed Hash Tables
(DHTs) are a cheap and scalable alternative to a Client/Server
approach. However, current DHT designs are not flexible enough
to support such complex applications. We introduce Walkad,a
Kademlia extension specifically designed to efficiently manage
virtual worlds. The Walkad design leverages on the Kademlia
DHT and on a novel indexing algorithm based on a reverse
binary trie. We evaluate Walkad via emulation, and using traces
extracted from Second Life. Our preliminary results show that
Walkad is an efficient P2P design for virtual worlds. Walkad
guarantees to its users a fast discovery of the virtual world, while
load balancing the virtual land responsibilities among peers.

I. I NTRODUCTION

In the last years, we observed an explosive growth of virtual
worlds. A virtual world consists of a virtual land populatedby
objectswhere human-controlledavatarscan move, interact, or
even trade. Second Life is probably the most popular virtual
world with more than 15 Millions registered users [17].

Virtual worlds are implemented using a Client/Server (C/S)
architecture. A server stores a copy of all objects that reside
on the virtual land. The clients run stateless applicationsthat
allow users to explore the virtual world through the eyes of
their avatar. To do so, the clients sendrange queriesto the
server, i.e., requests for the objects which spatial coordinates
are located within a given range. In practice, avatars identify
the set of objects, e.g., trees, cars or buildings, located in their
surroundings by sending to the server a range query with range
equal to the avatar visibility area.

Range queries in virtual worlds can be divided intolocal
andnon-local. A local query consists in a request for objects
located in the avatar surroundings, i.e., the query’s rangeis
close to the avatar coordinates. For example, avatars generate
local queries when they walk, run or fly, in order to constantly
update their visibility area. A non-local query is a request
for virtual objects that are located far away from the avatar
coordinates. For example, avatars generate non-local queries
when they suddenly cover a very large distance via the teleport
operation. Local queries must be answered quickly to ensurea
good user experience. Conversely, a higher delay in answering
non-local queries may be tolerable [16].

Both local and non-local queries in virtual worlds are easy
to manage with a C/S architecture. However, this architecture
exhibits poor scalability and high cost [17]. A scalable alterna-
tive is to use a Peer-to- Peer (P2P) approach, where the virtual

world is maintained exploiting the users’ resources [2][5].
Distributed Hash Tables (DHTs) are popular P2P archi-

tectures used to store and retrieve content [7][11]. DHTs
use a hash function (e.g., SHA-1 [9]) to distribute content
fairly among peers. This design is very efficient to build
a scalable P2P lookup system, but allows only to address
content specifically. Thus, is not flexible enough to handle
range queries. This limitation of DHTs is a bottleneck for
their applicability to new applications such as virtual worlds.

In this work, we design and evaluate Walkad, a distributed
architecture for the management of range queries in virtual
worlds (Section IV). We design Walkad as an extension of the
Kademlia DHT [7]. The reasons for this are twofold. First,
the Kademlia design is very convenient for an extension to
support range queries. Second, Kademlia is a very popular
DHT successfully adopted by Kad [12], the P2P network used
to locate content in the eMule filesharing application. Kad
can also be an interesting platform for testing new distributed
applications under realistic conditions [16].

Walkad organizes the Kademlia keyspace in areverse binary
trie, i.e., a tree-based data structure where nodes of each level
of the tree are labeled using the Gray Code [4]. In this way,
Walkad maps closeby portions of the virtual world, named
cells, to keys that are closeby in the Kademlia keyspace. In
other words, a Walkad peer responsible of a cell maintains
routing information towards peers responsible for closeby
cells. Therefore, local queries, which are the most popular
[6], are quickly answered by “walking” across the Kademlia
routing tables.

We evaluate Walkad via network emulation [13] (Section
V). We build a Walkad network with a maximum of1024 peers
and we use object traces from Second Life [17] to simulate
a realistic virtual world. Finally, we use synthetic tracesof
avatar movements to study different types of range queries.

Our preliminary results show that in a virtual world made
of five Second Life regions indexed in a Walkad network of
1024 peers, local queries are answered in less than150 ms (in
average), while non-local queries require about200 ms. This
result is very promising if we consider that acceptable latency
values in C/S virtual worlds varies between300 ms and1 sec

[3]. In addition, Walkad distributes equally the object load to
peers as the network and virtual world sizes increase.

II. RELATED WORK

Range-queries over DHTs have been a very fertile research
area. We have identified two pieces of work that are relevant

to Walkad. Ramabhadran et al. [10] design the Prefix Hash
Tree (PHT), a distributed data structure that enables range
queries over any DHT. PHT organizes keys in the DHT as a
binary trie, and uses the DHT lookup operation to handle range
queries. Walkad is different from [10] since it integrates the
indexing algorithm with the underlying routing algorithm.This
design rational is similar to the one used in P-Grid [1]. P-Grid
uses a self-organization process to structure peers in a binary
trie. Thus, P-Grid dramatically reduces the number of routing
hops to answer range queries compared to PHT. Walkad is
different from P-Grid since it is designed as a Kademlia
extension and leverages on a reverse binary trie. Moreover,
Walkad performance are optimized for the management of
local queries.

III. B ACKGROUND

We now introduce Kademlia and the Gray code. Then, we
describe a simple approach to range queries over a DHT-based
virtual world such as found in [16].

A. Kademlia

Kademlia is a structured P2P network, where peers and
content are identified by a random 160-bit identifier [7]. Given
two identifiers,a andb, Kademlia defines thedistancebetween
them as their bitwise exclusive or (XOR).

A Kademlia peer keeps for each0 ≤ i < 160 bit of its
identifier a list of peers with XOR distance2i ≤ d < 2(i+1)

from itself. These lists are calledk-buckets, wherek defines
the maximum number of entries per bucket. The entries in the
nth k-bucket have a differentnth bit from the peer identifier.

Routing in Kademlia is done iteratively. A message to a
destination key is simply forwarded to one of the peers from
the bucket with the longest common prefix to the target key.
To store and search a<key,value> pair, a peer locates the
closest peers to a key. The k-bucket structure allows Kademlia
to contact onlyO(log(N)) peers during a lookup.

B. Gray Code

The Gray Code [4] is a binary numeral system where two
successive values differ in only one digit. The(n+1)-bit Gray
Code is constructed as follows: (1) wereflect the bits of the
n-bit Gray Code, i.e., we list them in the reverse order, (2) we
prefix the original bits with a0, and the reflected bits with a
1, (3) we concatenate the reverse list to the original list.

Figure 1 shows an example of a3-bit Gray Code compu-
tation. On the left portion of Figure 1, we can see the1-bit
Gray Code, i.e., the most basic Gray Code,G = {0, 1}. In
order to compute the2-bit Gray Code, we reflectG = {0, 1}
obtainingG

′

= {1, 0}. Then, we prefix the original bits (G)
with a 0, and the new bits (G

′

) with a 1, obtaining the2-
bit Gray Code,G = {00, 01, 11, 10}. The same procedure is
applied to compute the3-bit Gray Code.

C. A Simple Approach to Range Queries

A binary trie is a tree-based data structure that uses prefix
bits to direct branching in a tree. Conventionally, a0 represents

Fig. 1. Example of the Gray Code computation

a left branch and a1 represents a right branch. Each node in
the trie is associated to a label composed by the set of bits
indicating the path in the trie to reach the node.

Ramabhadran et al. [10] were the first to propose the usage
of a trie to handle range queries over a DHT. Successively,
Varvello et al. [16] use a similar approach to deploy a virtual
world over the Kad DHT [12]. In the following, we refer to
the architecture described in [16] as asimpleapproach. This
architecture is also representative of [10].

We call acell a portion of the virtual world, and we say that
originally the virtual world is composed of a single cell. Then,
the world is recursively divided into multiple cells as objects
are created. A cell division occurs when the number of virtual
objects becomes larger than a thresholdDmax. Assuming a
two dimensional space, a cell is first split on the vertical
dimension, then on the horizontal, and so on. Similarly, two
adjacent cells are merged when the sum of the virtual objects
they contain is smaller thanDmin, with Dmin < Dmax. In
this way, we avoid the system to oscillate between splitting
and merging cells in case of very dynamic environments.

The sequence of splits that generate a cell identify a path
in the trie. A cell is uniquely identified by the label of the
leaf corresponding to the computed path in the trie. We call
cell-ID the key of the DHT associated to a cell. The cell-
ID is computed by hashing the label of the leaf in the trie
corresponding to the cell. This hash operation [9] ensures the
desired balanced distribution for the cell-IDs in the keyspace.

A range query spanning a portion of the virtual world
is solved as follows. First, we locate the leaves in the trie
corresponding to the virtual cells that intersect the query’s
range. Then, we hash the labels of the leaves to obtain the
corresponding cell-IDs. Finally, we perform the lookup in the
DHT of the derived cell-IDs.

IV. WALKAD

In this Section, we describe the Walkad key indexing
algorithm, as well as the main Walkad operations. Then, we
analyze the complexity of range queries in Walkad.

A. Key Indexing

We first define the notion of “locality” in a cell-based virtual
world as described in Section III-C. Similarly, we say that two
cells areneighborcells if: (1) they are adjacent, i.e., they have
a side in common, or (2) they are symmetric according to the

2

axis used in previous split operations. We say that two cell-IDs
areneighborswhen their cell-IDs have a Hamming distance of
one, i.e., when they differ only by one bit. By definition, a cell-
ID with l significant bits hasl neighbor cell-IDs. To illustrate
this, we consider an example of a one-dimensional virtual
world (Figure 2). We denote thei-th cell/cell-ID generated
by l splits respectively asCl

i andkl
i.

Fig. 2. 1-dimensional virtual world indexed by Walkad

The top portion of Figure 2 shows the initial cell organiza-
tion. At this stage, there is only one cell,C0

0 , which covers the
whole virtual world. The middle part of Figure 2 shows the
virtual world configuration after the first split, where two new
cells are created,C1

1 and C1
2 . These two cells are obviously

neighbors. The bottom part of Figure 2 shows the result of
splitting again both cells, obtaining cellsC2

3 , C2
4 , C2

5 andC2
6 .

Let’s consider cellC2
3 . Its neighbor cells are cellC2

4 which is
adjacent and cellC2

6 which is symmetric toC2
3 according to

the long dashed line crossing the middle of the line (indicating
a previous split). A generic cellCl

i generated afterl split
operations hasl neighbor cells in the virtual world.

Walkad organizes the cell-IDs in areverse binary trieto
associate neighbor cell-IDs to neighbor cells. In a reverse
binary trie, the nodes of each level of the trie are labeled
with the Gray Code [4] (Section III-B).

We now explain how we organize the cell-IDs in a re-
verse binary trie considering the example of Figure 2. For
convention, cellC0

0 is assigned cell-IDk0
0 = 0∗. When C0

0

splits, two neighbor sub-cells are created. We generate the
corresponding cell-IDs by takingk0

0 = 0∗, and setting the
least significant bit respectively to0 and 1. We thus obtain
two cell-IDs, k1

1 = 0∗ andk1
2 = 1∗, which have a Hamming

distance of one. The intuition is that to build a reverse binary
trie in some cases we need to reverse the added bits (i.e., add
a 1 to the left cell-ID). Figure 2 shows that splitting cellC1

2

required setting the least significant bit to0 for k2
6 = 10∗ and

to 1 for k2
5 = 11∗ to guarantee that cellsC2

3 andC2
6 , which

are neighbors, are assigned neighbor cell-IDs as well. We see
that the code generated at level2 of the trie is the 2-bit Gray
Code.

The generalization to the multi-dimensional case is straight-
forward, as the cell split mechanism is applied independently
to each dimension of the virtual world [15].

The Walkad indexing algorithm as described above gener-
ates a distribution of cell-IDs within the keyspace that follows
the shape of the trie. Therefore, an unbalanced trie will result
in an unbalanced distribution of cell-IDs and so of load among

peers. In order to restore the uniform distribution of the cell-
IDs, we divide the world in regions (as in Second Life), and
we allocate to each region aregion-ID. Then, we perform a
XOR operation between the cell-IDs and the region-ID. In
this way, the Hamming distance property defined among cell-
IDs of the same region is maintained and load balancing is
achieved among cell-IDs of different regions.

B. Walkad Operations

Walkad uses only the classic Kademlia operations without
requiring any changes to the routing algorithm. Moreover,
Walkad nodes perform some additional operations related to
the construction and management of the virtual world. We now
describe these operations.

A generic cell-ID in Walkad is coded into a 160-bit Kadem-
lia key by setting the non prefix bits to0, e.g., obtaining100...0
for cell-ID 1∗. We call acoordinator the peer responsible for
a cell. The coordinator for a cellCl

i indexed by the cell-ID
kl

i is the XOR closest peer tokl
i as defined by Kademlia.

For each (cell/cell-ID) pair there areR coordinators, i.e., each
object and consequently cell is replicated atR peers. This
replication factor allows Walkad to sustain churn [16].

Initialization - A Walkad bootstrap node identifies theR
coordinators of the initial cellC0

0 by performing a Kademlia
lookup for cell-IDk0

0 . At this time, these peers are responsible
for the entire virtual world. They store all objects createdin
C0

0 and answer all range queries.
Split - When a cellCl

i is split in cellsCl+1
2i+1 and Cl+1

2i+2,
its coordinators do the following operations: (1) select the
coordinators forCl+1

2i+1 andCl+1
2i+2 by performing a Kademlia

lookup for cell-IDs kl+1
2i+1 and kl+1

2i+2, (2) transfer to the
coordinators ofCl+1

2i+1 and Cl+1
2i+2 the list of Cl

i neighbor
cell/cell-IDs , (3) distribute the virtual objects currently located
in Cl

i to the coordinators of cellCl+1
2i+1 andCl+1

2i+2 according
to the object coordinates. Note that a merge operation can be
done similarly.

Coordinator Selection- A peer selected to be a coordinator
for a cell Cl

i with cell-ID kl
i does the following operations:

(1) derive thel cell-IDs with Hamming distance equal to
1 from kl

i, (2) compare each of these cell-IDs with the list
of cell-IDs received during the split in order to identify the
existing neighbor cell-IDs, (3) perform a Kademlia lookup for
each existing neighbor cell-ID to populate its k-buckets with
the routing information towards the neighbor coordinators, (4)
inform the coordinators of the neighbor cells that a new cell
was created.

Range Query- We suppose that a peerP submitting a range
query already knows theR coordinators of the cell where
its own avatar is located.P sends the range query to one
of these coordinators. The coordinator answers the query or
a portion of it according to the information it has about the
neighbor cells. Then, it sends back toP the information it
may know, i.e., routing information towards the coordinators
for the cells intersecting with the query’s range. In case a
coordinator has not a complete view of the entire range, it
forwards the query to the coordinators it knows that manage

3

the closest cells to this range. Intuitively, these coordinators
will have a more detailed view of this portion of the virtual
world. This procedure is done iteratively until the range is
completely covered. Finally,P directly contacts the set of
coordinators responsible of the query’s range to retrieve the
information about the virtual objects located in this portion of
the virtual world.

C. Range Queries Cost Analysis

We now analyze the cost of range queries in Walkad in
terms of number of routing hops. Letk be the size of a k-
bucket andR the number of coordinators per cell.N is the
number of active peers andm the number of cells composing
a region of the virtual world. We assumeN >> (R∗m) such
that each cell-ID is stored atR different coordinators.

In case of a uniform distribution of cells within the world,
all the leaves of the trie are at the same levell. In this case,
every cell hasl neighbor cells associated tol different cell-
IDs. Therefore, local queries are answered in a single routing
hop, while non local queries requirelog(m) routing hops.

Figure 4 shows an example of a two dimensional virtual
world composed by a uniform distribution of cells. The arrows
indicate neighbor (cell/cell-ID) pairs as well as routing infor-
mation, e.g., the coordinators for cell-ID001∗ keeps routing
links towards the coordinators for cell-IDs000∗, 011∗ and
101∗. We clearly see that all local queries require a single
routing hop. Let’s consider a non-local query, e.g., an avatar
P located in the cell identified by the cell-ID001∗ that wants
to teleport to the cell identified by cell-ID110∗. In this case,
the query goes through the coordinators of cell-IDs101∗, 111∗
and110∗ to be solved, i.e., it requireslog(m) routing hops.

Fig. 4. Uniform cell division of a 2-D virtual world

A skewed distribution of cells within the virtual world
results in anunbalancedtrie. In this case, a cell which is
close to the root of the trie may have more neighbor cells
than neighbor cell-IDs. Let’s consider two cell-IDskl

i andk
f
j

respectively located at levell and f of the trie with f < l.
In this case, there are(R ∗ 2(l−f)) coordinators “colliding”
on the same k-bucket of the coordinators for cell-IDkf

j . If
k < (R ∗ 2(l−f)), the coordinators ofkf

j will select only a
subset of the2(l−f) neighbor cells to maintain a direct route
towards their coordinators.

Figure 5 shows an example of a two dimensional virtual
world composed by a skewed distribution of cells. The arrows
indicate routing links among the coordinators, respectively in

the case ofk = R (Figure 5(a)) andk = 2R (Figure 5(b)). We
can see that the neighbor cells for the cell identified by cell-ID
1∗ are the cells indexed by011∗ and00∗, which are adjacent,
and 010∗ which is symmetric to the vertical split. However,
by definition, cell-ID 1∗ has only a single neighbor cell-ID
that is0∗. Therefore, ifk = R the coordinators for cell-ID1∗
keep a single link towards the coordinators for cell-ID00∗,
whereas ifk = 2R these coordinators keep two links towards
the coordinators for respectively cell-ID010∗ and00∗.

(a) k=R (b) k=2R

Fig. 5. Skewed cell division of a 2-D virtual world

We now derive an expression for the number of routing hops
in Walkad in case of an unbalanced trie. Let’s consider again
two generic cell-IDskl

i andk
f
j located at levell andf of the

trie. In casekl
i andk

f
j are neighbor cell-IDs, a query fromkl

i

to k
f
j or vice-versa is local and require(|l−f |)

⌊log(k

R
)⌋

routing hops.

In casekl
i andk

f
j are not neighbor cell-IDs, the query is non-

local and require an intermediate step at a cell-IDkc
k that has

routing information towards the destination cell-ID. Therefore,
the number of routing hops is equal to(|l−c|+|c−f |)

⌊log(k

R
)⌋

. Note that

in the worst case the number of routing hops isO(m) for both
local and non-local queries.

In conclusion, the number of routing hops in Walkad varies
betweenO(1) and O(m) according to the skewness of the
cell distribution and the type of range query. Intuitively,prefix
expansion [14] can be used to reduce the number of routing
hops in case of a very unbalanced trie. For comparison,
the simple approach (Section III-C) and P-Grid [1] require
respectivelylog(N) ∗ log(m) and log(N) routing hops for
both local and non-local queries.

V. EXPERIMENTAL EVALUATION

We now perform a preliminary evaluation of Walkad applied
to Second Life. We focus on routing hops and latency to
answer range queries, and on load balancing properties1. For
comparison, we also present some results obtained with the
simple approach described in Section III-C.

We deploy up to1024 peers (i.e., avatars) on a local cluster,
and we use Modelnet [13] to emulate wide-area latencies and
bandwidths. We use a synthetic Internet topology generated
by Inet [18]. We use a classic Kademlia setup with k-bucket
sizek = 20 [7], andR = 10 [16].

We construct a realistic virtual world using object traces
from five popular Second Life regions [17]. The number of

1The analysis of the cost for the retrieval of the objects, as well as the
virtual world consistency and persistency under churn is left for future work.

4

(a) Dmax = [10; 30; 60; 100] ; N = 1024
; Avatar=[Walk]

(b) Dmax = 10 ; N = [16 − 1024] ;
Avatar=[Walk; Run; F ly;Teleport]

(c) Dmax = 10 ; N = 1024 ; Na =
[10; 20; 40; 80; 100]% ; Avatar=[Walk]

Fig. 3. Routing Hops and Latency ; 5 Second Life regions

objects per region varies between70 and 350 objects. A
bootstrap Walkad node computes the virtual world division
in cells, and informs all coordinators of their role.

When an avatar moves out of a cell, it generates a range
query that spans the cell containing the new avatar coordinates,
i.e., we approximate the visibility area of an avatar to the cell
where its coordinates are contained. We use synthetic traces
for avatar movements generated via the Random Waypoint
Mobility model [8] with different speeds to simulate avatar
walking (1 m/s), running (3 m/s), flying (10 m/s) and tele-
porting (100 m/s). The avatar traces lasts for one hour. We
use synthetic traces for avatar movements and not real avatar
traces [17] in order to define bounds of Walkad performance
under controlled avatar behaviors.

A. Routing Hops and Latency

We analyze first the number of routing hops as a function of
Dmax, the maximum number of objects per cell. By varying
Dmax we simulate different divisions of the virtual world. We
consider a Walkad network composed by1024 peers and a
single avatar walking in the virtual world. This means that all
range queries are local and the “load” in terms of concurrent
number of queries in the network is small.

Figure 3(a) shows that90% of the local queries in Walkad
require only one or two routing hops to be solved. This per-
centage becomes even larger as we increaseDmax, e.g., when
Dmax = 100 all local queries are answered in a single hop
with no exception. In fact, increasing the number of objectsper
cell systematically results in a more simple cell organization of
the virtual world. However, if we focus on the curves obtained
with Dmax = [30; 10] we notice that the number of routing
hops is comparable or even smaller forDmax = 10 which
seems contradictory. The cause of this phenomenon is that for
Dmax = 10, the conditionN >> (R ∗ m) is not verified.
Therefore, peers are coordinators of multiple cells, and the
Walkad indexing algorithm tends to aggregate closeby cellsat
the same peer. The side effect is a reduction in the number of
effective routing hops especially for local queries.

We now evaluate thelatency, i.e., the time required to
answer range queries, as a function of the network sizeN

and type of range query (see Figure 3(b)). To generate different

range queries, we consider a single avatar walking, running,
flying and teleporting in the virtual world. Figure 3(b) plots
also the latency values for a simple approach (see Section
III-C). For the simple approach, we only consider the case of
an avatar walking as the type of range query does not impact
the way routing performs.

Figure 3(b) shows that range queries generated by an avatar
walking, running or flying are all resolved in about the same
time, i.e.,100 − 130 ms in average. In fact, all these move-
ments generate local queries. Conversely, non local queries
generated by an avatar teleporting in the virtual world require
about twice the time, e.g., up to200 ms. For comparison, the
average latency for the simple approach is between800 ms

and1500 ms, i.e., 8 times larger than in Walkad. Figure 3(b)
shows also that the overall latency only slightly increaseswith
the size of the networkN . In fact, the number of routing
hops to solve range queries in Walkad depends on the size of
the virtual world rather than on the size of the network (see
Section IV-C). However, when the network is very small, peers
are coordinators of multiple cells, thus reducing the number
of routing hops and latency as well.

We now evaluate the impact of load, i.e., the concurrent
number of range queries, on the latency. We setDmax = 10,
N = 1024, and we varyNa, i.e., the fraction of peers whose
associated avatar walks in the virtual world. We consider
only the case of local queries. Figure 3(c) shows different
percentiles of the distribution of latency values as a function
of load. We observe that Walkad is very robust to load, as
the overall latency is not impacted by a large value ofNa.
The fluctuations we observe for each curve depend on the
different overlay organizations in the experiments. Figure 3(c)
shows another interesting result:75% of the latency values
are smaller than200 ms. This confirms that Walkad is very
efficient in managing local queries as already observed in
Figure 3(a) and 3(b). Only1% of the latency values are
significantly higher, and reach a maximum of1000 ms. These
values occur when local queries involve cells at different levels
in the trie. However, even the largest latency value we observe
in Walkad is significantly smaller than the average latency
value we observe with the simple approach (see Figure 3(b)).

5

B. Load Balancing

We now analyze the Walkad load balancing properties,
i.e., how the responsibility of the virtual world is distributed
among peers. We chooseDmax = 10. Figure 6 shows several
percentiles of the distribution of the fraction of cells perpeer
as a function ofN . Load balancing is achieved when each
peer manages the same fraction of the cell-IDs, i.e., when all
percentiles of the distribution for a givenN assume the same
value. Note that this is always the case for the simple approach.

Figure 6 shows that increasing the size of the Walkad
network the load is rapidly distributed fairly among the active
peers. For example, whenN is larger than256, for about
90% of the peers the difference in the fraction of cell-IDs
they manage is smaller than1%. The remaining10% of the
peers are responsible of a larger fraction of cell-IDs. Thisis
due to the fact that we are considering a small virtual world
composed by only five Second Life regions. Therefore, the
global cell-ID organization is still impacted by the specific
cell-ID organization within each region.

Fig. 6. Some percentiles of the distribution of the fractionof cell-IDs per
peer; Five Second Life regions ;Dmax = 10 ; N = [16 − 1024]

We also evaluate the distribution of the virtual world re-
sponsibilities as a function of the virtual world size, i.e., the
number of Second Life regions indexed with Walkad (Figure
7). To do so, we setDmax = 10, N = 1024 and we vary the
number of Second Life regions betwen1 and 100 using the
dataset in [17]. Figure 7 shows that when the virtual world
is small, i.e., composed by less than five regions, we cannot
identify a general trend for the curves. In fact, the different
object compositions strongly impact the general distribution
of the cell-IDs. By focusing on a number of regions≥ 10, we
observe that the division of the virtual world responsibilities
becomes more and more uniform as the size of the virtual
world increases. For example, in a virtual world composed by
100 Second Life regions only1% of the peers store a larger
portion of the virtual world, which consists in worst case of
only 1% of the entire virtual world.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presentedWalkad, a Kademlia-based Peer-
to-Peer (P2P) network designed to manage range queries in
virtual worlds. Walkad leverages on the Kademlia routing
protocol and on an indexing algorithm based on a reverse
binary trie. This indexing algorithm is designed to favor local
queries which are the most frequent in virtual worlds [6].
We evaluate a prototype of Walkad via network emulation

Fig. 7. Some percentiles of the distribution of the fractionof cell-IDs per
peer ;Dmax = 10 ; N = 1024 ; No. of regions=[1 − 100]

with up to 1024 peers. We simulate a realistic virtual world
using object traces from Second Life. Our results show that
Walkad efficiently handles range queries generated by avatars
moving in a virtual world. Moreover, the management load
of the virtual world is fairly distributed among peers as both
the network and virtual world grow. As future work, we will
extend the evaluation of Walkad and build a complete P2P
architecture for virtual worlds.

ACKNOWLEDGEMENTS

The authors would like to thank Fabio Picconi for his
precious help with the Modelnet setup and for his insightful
comments and suggestions. This research was supported by
the EU FP7 “Nano Data Centers” project.

REFERENCES

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: a Self-Organizing Structured P2P
System.SIGMOD Rec., 32(3):29–33, 2003.

[2] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A Distributed
Architecture for Online Multiplayer Games. San Jose, CA, May 2006.

[3] M. Claypool and K. Claypool. Latency and Player Actions in Online
Games.Commun. ACM, 49(11):40–45, 2006.

[4] F. Gray. Pulse Code Communication. U.S. Patent 2,632,05, March 1953.
[5] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. VON: A Scalable Peer-to-Peer

Network for Virtual Environments.Network, IEEE, 20(4):22–31, 2006.
[6] C.-A. La and P. Michiardi. Characterizing User Mobilityin Second Life.

In WOSN, Seattle, USA, August 2008.
[7] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peerInformation

System Based on the XOR Metric. InIPTPS, Cambridge, MA, USA,
March 2002.

[8] Mobility Models. http://ica1www.epfl.ch/RandomTrip/.
[9] NIST. Secure hash standard. Federal Information Processing Standard,

FIPS-180-1, April 1995.
[10] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S.Shenker. Brief

Announcement: Prefix Hash Tree. InPODC, page 368, 2004.
[11] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-

cation, and routing for large-scale peer-to-peer systems.In Middleware,
London, UK, 2001.

[12] M. Steiner, T. En Najjary, and E. W. Biersack. A Global View of KAD.
In IMC, San Diego,CA,USA, Oct 2007.

[13] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti, J.Chase, and
D. Becker. Scalability and Accuracy in a Large-Scale Network Emulator.
In OSDI, Boston, MA, USA, December 2002.

[14] G. Varghese.Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufman, 2006.

[15] M. Varvello. A Walkable Kademlia Network for Virtual Worlds.
Technical Report CR-PRL-2009-01-0002, Thomson, 2009.

[16] M. Varvello, C. Diot, and E. Biersack. P2P Second Life: experimental
validation using Kad. InInfocom, Rio De Janeiro, Brazil, April 2009.

[17] M. Varvello, F. Picconi, C. Diot, and E. Biersack. Is There Life in
Second Life? InConext, Madrid, Spain, Dec. 2008.

[18] J. Winick and S. Jamin. Inet-3.0: Internet Topology Generator. Technical
Report CSE-TR-456-02, University of Michigan, 2002.

6

