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Abstract—Virtual worlds are digitalizations of the real world ~ world is maintained exploiting the users’ resources [2][5]
where users can live a virtual life. Commercial virtual worlds Distributed Hash Tables (DHTs) are popular P2P archi-
rely on a Client/Server architecture, which has serious sdability tectures used to store and retrieve content [7][11]. DHTs

limitations. Peer-to-Peer (P2P) and Distributed Hash Tabés . L
(DHTs) are a cheap and scalable alternative to a Client/Seer use a hash function (e.g.,, SHA-1 [9]) to distribute content

approach. However, current DHT designs are not flexible enogh  fairly among peers. This design is very efficient to build
to support such complex applications. We introduce Walkada a scalable P2P lookup system, but allows only to address

Kademlia extension specifically designed to efficiently mawe content specifically. Thus, is not flexible enough to handle
virtual worlds. The Walkad design leverages on the Kademlia 546 queries. This limitation of DHTS is a bottleneck for
DHT and on a novel indexing algorithm based on a reverse ; . L . .

binary trie. We evaluate Walkad via emulation, and using treces their appllcablllty to new applications such as VIrtuaI_ Wl_er
extracted from Second Life. Our preliminary results show that In this work, we design and evaluate Walkad, a distributed
Walkad is an efficient P2P design for virtual worlds. Walkad architecture for the management of range queries in virtual
guarantees to its users a fast discovery of the virtual worldwhile  worlds (Section IV). We design Walkad as an extension of the
load balancing the virtual land responsibilities among pees. Kademlia DHT [7]. The reasons for this are twofold. First,
the Kademlia design is very convenient for an extension to
support range queries. Second, Kademlia is a very popular

In the last years, we observed an explosive growth of vituBHT successfully adopted by Kad [12], the P2P network used
worlds. A virtual world consists of a virtual land populated to locate content in the eMule filesharing application. Kad
objectswhere human-controllegvatarscan move, interact, or can also be an interesting platform for testing new disteitiu
even trade. Second Life is probably the most popular virtugpplications under realistic conditions [16].
world with more than 15 Millions registered users [17]. Walkad organizes the Kademlia keyspace ie\gerse binary

Virtual worlds are implemented using a Client/Server (C/Syie, i.e., a tree-based data structure where nodes of each level
architecture. A server stores a copy of all objects thateesiof the tree are labeled using the Gray Code [4]. In this way,
on the virtual land. The clients run stateless applicatitias \Walkad maps closeby portions of the virtual world, named
allow users to explore the virtual world through the eyes @klls to keys that are closeby in the Kademlia keyspace. In
their avatar. To do so, the clients serahge queriesto the other words, a Walkad peer responsible of a cell maintains
server, i.e., requests for the objects which spatial coatds routing information towards peers responsible for closeby
are located within a given range. In practice, avatars iflentcells. Therefore, local queries, which are the most popular
the set of objects, e.g., trees, cars or buildings, locateleir [6], are quickly answered by “walking” across the Kademlia
surroundings by sending to the server a range query witheranguting tables.
equal to the avatar visibility area. We evaluate Walkad via network emulation [13] (Section

Range queries in virtual worlds can be divided indsal V). We build a Walkad network with a maximum 0624 peers
andnon-local A local query consists in a request for objectand we use object traces from Second Life [17] to simulate
located in the avatar surroundings, i.e., the query’s raagea realistic virtual world. Finally, we use synthetic tracefs
close to the avatar coordinates. For example, avatars @eneavatar movements to study different types of range queries.
local queries when they walk, run or fly, in order to constantl  Our preliminary results show that in a virtual world made
update their visibility area. A non-local query is a requesif five Second Life regions indexed in a Walkad network of
for virtual objects that are located far away from the avatan24 peers, local queries are answered in less ti@nmns (in
coordinates. For example, avatars generate non-localegueaverage), while non-local queries require ab2ud ms. This
when they suddenly cover a very large distance via the telepesult is very promising if we consider that acceptablenaye
operation. Local queries must be answered quickly to ersur@alues in C/S virtual worlds varies betwegd) ms and1 sec
good user experience. Conversely, a higher delay in ansgver|3]. In addition, Walkad distributes equally the objectdo@
non-local queries may be tolerable [16]. peers as the network and virtual world sizes increase.

Both local and non-local queries in virtual worlds are easy
to manage with a C/S architecture. However, this architectu
exhibits poor scalability and high cost [17]. A scalableaia- Range-queries over DHTs have been a very fertile research
tive is to use a Peer-to- Peer (P2P) approach, where thalirtarea. We have identified two pieces of work that are relevant

|. INTRODUCTION

II. RELATED WORK



1-bit | 2-bit | 3-bit

to Walkad. Ramabhadran et al. [10] design the Prefix Hash | I (0)00
Tree (PHT), a distributed data structure that enables range

queries over any DHT. PHT organizes keys in the DHT as a | I (0)01
binary trie, and uses the DHT lookup operation to handleeang I (00 | (0)11
queries. Walkad is different from [10] since it integratée t 1 O1 (0)10
indexing algorithm with the underlying routing algorithirhis 0 | W I (110
design rational is similar to the one used in P-Grid [1]. RdGr 1 (1)0 (1)1
uses a self-organization process to structure peers inaybin I L Y S
trie. Thus, P-Grid dramatically reduces the number of rauti I | ((1))8(1)

|

hops to answer range queries compared to PHT. Walkad is
different from P-Grid since it is designed as a Kademlia
extension and leverages on a reverse binary trie. Moreover,
Walkad performance are optimized for the management Qfiatt phranch and a represents a right branch. Each node in
local queries. the trie is associated to a label composed by the set of bits

indicating the path in the trie to reach the node.

, ) Ramabhadran et al. [10] were the first to propose the usage
We now introduce Kademlia and the Gray code. Then, W§ 5 e to handle range queries over a DHT. Successively,

d_escribe a simple approach _to range queries over a DHT-baggf oo et al. [16] use a similar approach to deploy a virtua
virtual world such as found in [16]. world over the Kad DHT [12]. In the following, we refer to
the architecture described in [16] assimpleapproach. This

A. Kademlia 7 : -
architecture is also representative of [10].

Kademlia. Is a ;tructured P2P netwo.rk., wh.e.re peers ande call acell a portion of the virtual world, and we say that
cont_ent are identified by a ran_dom :_LGO'b't |Qent|f|er [7]. &iv originally the virtual world is composed of a single cell.ém
two identifiers,a andb, Kademlia defines theistancebetween " \orid is recursively divided into multiple cells as attie

them as their bitwise exclusive or (XOR). are created. A cell division occurs when the number of virtua

. A K_adem!ia peer keep; for ea(thg i < 160 bit CEEJF'S objects becomes larger than a threshblg,,.. Assuming a
identifier a list of peers with XOR distanck < d < 2 two dimensional space, a cell is first split on the vertical

from itself. These lists are callektbucketswherek defines i ansion. then on the horizontal. and so on. Similarly, two
the maximum number of entries per bucket. The entries in i, cent cells are merged when the sum of the virtual objects
nt" k-bucket have a different*” bit from the peer identifier. they contain is smaller tham,in, With Dyin < Dimas. IN
Routing in Kademlia is done iteratively. A message {0 gis ay, we avoid the system to oscillate between splitting
destination k_ey is simply forwarded to one of the peers frog}, 4 merging cells in case of very dynamic environments.
the bucket with the longest common_preﬂx to the target key. 1o sequence of splits that generate a cell identify a path
To store and search akey,value- pair, a peer locates thej, he trie. A cell is uniquely identified by the label of the
closest peers to a key. The k-bucket structure allows Kadempa¢ corresponding to the computed path in the trie. We call
to contact onlyO(log(N)) peers during a lookup. cell-ID the key of the DHT associated to a cell. The cell-
B. Gray Code ID is computed by hashing the label of the leaf in the trie

corresponding to the cell. This hash operation [9] ensures t

The Qray Code [4] is_a binary nur_ne_zral system _Where MWgesired balanced distribution for the cell-IDs in the keysn
successive values differ in only one digit. The+1)-_b|tGray A range query spanning a portion of the virtual world
Code is constructed as follows: (1) weflectthe bits of the ;s goved as follows. First, we locate the leaves in the trie
"'b'_t Gray C_OO_'e' €., We_“St them in the reverse Ofder, _(2) orresponding to the virtual cells that intersect the gisery
prefix the original bits with &, and the reflected bits with arange. Then. we hash the labels of the leaves to obtain the

1, (3) we concatenate the reverse list to the original list. corresponding cell-IDs. Finally, we perform the lookup fret
Figure 1 shows an example of3bit Gray Code compu- KT of the derived cell-IDs.

tation. On the left portion of Figure 1, we can see fhbit

Gray Code, i.e., the most basic Gray Code= {0,1}. In IV. WALKAD

order to compute the-bit Gray Code, we refleatr = {0,1}  |n this Section, we describe the Walkad key indexing
obtainingG = {1,0}. Then, we prefix the original bits)  algorithm, as well as the main Walkad operations. Then, we

with a 0, and the new bits’) with a 1, obtaining the2- analyze the complexity of range queries in Walkad.
bit Gray Code,G = {00,01,11,10}. The same procedure is

Fig. 1. Example of the Gray Code computation

IIl. BACKGROUND

applied to compute th8-bit Gray Code. A. Key Indexing
] ] We first define the notion of “locality” in a cell-based virtua
C. A Simple Approach to Range Queries world as described in Section llI-C. Similarly, we say thabt

A binary trie is a tree-based data structure that uses prefiglls areneighborcells if: (1) they are adjacent, i.e., they have
bits to direct branching in a tree. Conventionally, epresents a side in common, or (2) they are symmetric according to the



axis used in previous split operations. We say that twol@l- peers. In order to restore the uniform distribution of thé-ce
areneighborswvhen their cell-IDs have a Hamming distance ofDs, we divide the world in regions (as in Second Life), and
one, i.e., when they differ only by one bit. By definition, dlce we allocate to each region ragion-ID. Then, we perform a

ID with [ significant bits hag neighbor cell-IDs. To illustrate XOR operation between the cell-IDs and the region-ID. In
this, we consider an example of a one-dimensional virtugdis way, the Hamming distance property defined among cell-
world (Figure 2). We denote theth cell/cell-ID generated IDs of the same region is maintained and load balancing is
by I splits respectively a&’ and k.. achieved among cell-IDs of different regions.

(€. k= 0%) B. Walkad Operations

Walkad uses only the classic Kademlia operations without
requiring any changes to the routing algorithm. Moreover,
! (k=1 Walkad nodes perform some additional operations related to
: the construction and management of the virtual world. We now
: describe these operations.
(€L =009 (CLh; =01, (G =11) | (CLh =109 A generic cell-ID in Walkad is coded into a 160-bit Kadem-
| : | lia key by setting the non prefix bits & e.g., obtaining 00...0
: for cell-ID 1x. We call acoordinatorthe peer responsible for
Fig. 2. 1-dimensional virtual world indexed by Walkad a cell. The coordinator for a cell’! indexed by the cell-ID
The top portion of Figure 2 shows the initial cell organizak! is the XOR closest peer té! as defined by Kademlia.
tion. At this stage, there is only one celly, which covers the For each (cell/cell-ID) pair there ate coordinators, i.e., each
whole virtual world. The middle part of Figure 2 shows th@bject and consequently cell is replicated /atpeers. This
virtual world configuration after the first split, where twew replication factor allows Walkad to sustain churn [16].
cells are created;] and Ci. These two cells are obviously Initialization - A Walkad bootstrap node identifies thie
neighbors. The bottom part of Figure 2 shows the result obordinators of the initial celC) by performing a Kademlia
splitting again both cells, obtaining cell&;, C7, C2 andC?. lookup for cell-IDkJ. At this time, these peers are responsible
Let's consider cell’3. Its neighbor cells are cell’ which is for the entire virtual world. They store all objects created
adjacent and celC’? which is symmetric toC3 according to C§ and answer all range queries.
the long dashed line crossing the middle of the line (indigat ~ Split - When a cellC! is split in cells Céjjl and Cé‘{jz,
a previous split). A generic cell’! generated aftet split its coordinators do the following operations: (1) seleat th
operations has neighbor cells in the virtual world. coordinators forC’éjjl and CéﬁQ by performing a Kademlia
Walkad organizes the cell-IDs in @verse binary trieto lookup for cell-IDs kéﬁl and kéﬁQ (2) transfer to the
associate neighbor cell-IDs to neighbor cells. In a reverseordinators ofC!!, and Ci!, the list of C! neighbor
binary trie, the nodes of each level of the trie are labelagll/cell-IDs, (3) distribute the virtual objects currgnbcated
with the Gray Code [4] (Section IlI-B). in C! to the coordinators of cell’s!, and Cl!, according
We now explain how we organize the cell-IDs in a reto the object coordinates. Note that a merge operation can be
verse binary trie considering the example of Figure 2. Fdone similarly.
convention, cellC§ is assigned cell-IDk§ = 0x. When C§ Coordinator Selection A peer selected to be a coordinator
splits, two neighbor sub-cells are created. We generate foe a cell C! with cell-ID k! does the following operations:
corresponding cell-IDs by taking) = 0x, and setting the (1) derive thel cell-IDs with Hamming distance equal to
least significant bit respectively t0 and 1. We thus obtain 1 from k!, (2) compare each of these cell-IDs with the list
two cell-IDs, k} = 0% and ki = 1%, which have a Hamming of cell-IDs received during the split in order to identifyeth
distance of one. The intuition is that to build a reverse hjnaexisting neighbor cell-1Ds, (3) perform a Kademlia looka f
trie in some cases we need to reverse the added bits (i.e., addh existing neighbor cell-ID to populate its k-bucketthwi
a1 to the left cell-ID). Figure 2 shows that splitting ceéll}  the routing information towards the neighbor coordingt(43
required setting the least significant bit@dor k2 = 10« and inform the coordinators of the neighbor cells that a new cell
to 1 for k2 = 11x to guarantee that cell§? andC3, which was created.
are neighbors, are assigned neighbor cell-IDs as well. We se Range Query We suppose that a pe€rsubmitting a range
that the code generated at lezebf the trie is the 2-bit Gray query already knows thé? coordinators of the cell where
Code. its own avatar is locatedP sends the range query to one
The generalization to the multi-dimensional case is slftaig of these coordinators. The coordinator answers the query or
forward, as the cell split mechanism is applied indeperigent portion of it according to the information it has about the
to each dimension of the virtual world [15]. neighbor cells. Then, it sends back i the information it
The Walkad indexing algorithm as described above genenay know, i.e., routing information towards the coordimato
ates a distribution of cell-IDs within the keyspace thatdas for the cells intersecting with the query’s range. In case a
the shape of the trie. Therefore, an unbalanced trie willltescoordinator has not a complete view of the entire range, it
in an unbalanced distribution of cell-IDs and so of load aghorforwards the query to the coordinators it knows that manage

(Clh =0




the closest cells to this range. Intuitively, these coatbns the case ok = R (Figure 5(a)) and: = 2R (Figure 5(b)). We
will have a more detailed view of this portion of the virtuakan see that the neighbor cells for the cell identified byl
world. This procedure is done iteratively until the range isx are the cells indexed hyl1x and00x, which are adjacent,
completely covered. FinallyP directly contacts the set of and 010« which is symmetric to the vertical split. However,
coordinators responsible of the query’s range to retriéne tby definition, cell-ID 1« has only a single neighbor cell-ID
information about the virtual objects located in this pomtof that isOx. Therefore, ift = R the coordinators for cell-10 %

the virtual world. keep a single link towards the coordinators for cell-0Dx,
whereas ifk = 2R these coordinators keep two links towards
C. Range Queries Cost Analysis the coordinators for respectively cell-IDL0x and 00x.
We now analyze the cost of range queries in Walkad in
terms of number of routing hops. Lét be the size of a k- — T~
bucket andR the number of coordinators per cell is the 010:——’011* 010:“’011*
number of active peers and the number of cells composing| ~, " A 1
a region of the virtual world. We assumé >> (Rx*m) such v v v
that each cell-ID is stored &t different coordinators. 00* 00
In case of a uniform distribution of cells within the world, ™ xal ™. =
all the leaves of the trie are at the same levdh this case,
every cell hag neighbor cells associated todifferent cell- (a) k=R (b) k=2R

IDs. Therefore, local queries are answered in a single mguti

: . . . Fig. 5. Skewed cell division of a 2-D virtual world
hop, while non local queries requiteg(m) routing hops. ) ) )
Figure 4 shows an example of a two dimensional virtual We now derive an expression for the number of routing hops

world composed by a uniform distribution of cells. The arsow" Walkad in case oflan untf)alanced trie. Let's consider again
indicate neighbor (cell/cell-ID) pairs as well as routimgar- WO generic cell-IDsi; and; located at level and f of the
mation, e.g., the coordinators for cell-I1+ keeps routing trie. In casek; andk! are neighbor cell-IDs, a query froif
links towards the coordinators for cell-ID&0*, 011x and to k{ or vice-versa is local and requi% routing hops.
101}’?' We clearly see t_hat all local queries require a singlm casek! andk! are not neighbor ceII—I'Dg, the query is non-
routing hop. Lets co_nmdgr_ a non-local query, e.g., an @Vl ca) and requi?e an intermediate step at a cellkfPthat has
P located in the cell identified by the cell-ID01+ that wants routing information towards the destination cell-ID. Téfre,
to teleport to the cell identified by cell-ID10«. In this case, the number of routing hops is equal gh—cltle—fD Note that
the query goes through the coordinators of cell-1ID$*, 111% Log(5)]

in the worst case the number of routing hop®)ign) for both

and110x to be solved, i.e., it requirds routing hops. .
d 9(m) g hop local and non-local queries.

In conclusion, the number of routing hops in Walkad varies
betweenO(1) and O(m) according to the skewness of the

“ b b

010* | 011* 11* | 110* cell distribution and the type of range query. Intuitivgdyefix

A 4 A A expan§ion [14] can be used to reduce the number of ro_uting
vV dBVah Y 5 v hops in case of a very unbalanced trie. For comparison,
000* 001* | 101* | 100 the simple approach (Section 11I-C) and P-Grid [1] require

. P respectivelylog(N) = log(m) and log(N) routing hops for

both local and non-local queries.

V. EXPERIMENTAL EVALUATION

We now perform a preliminary evaluation of Walkad applied
A skewed distribution of cells within the virtual worldto Second Life. We focus on routing hops and latency to
results in anunbalancedtrie. In this case, a cell which is answer range queries, and on load balancing properfies
close to the root of the trie may have more neighbor cel@mparison, we also present some results obtained with the
than neighbor cell-IDs. Let's consider two cell-ID% andk:f simple approach described in Section IlI-C.
respectively located at levéland f of the trie with f < [. We deploy up tal024 peers (i.e., avatars) on a local cluster,
In this case, there aréR * 2(!~/)) coordinators “colliding” and we use Modelnet [13] to emulate wide-area latencies and

on the same k-bucket of the coordinators for ceII-A:g). If bandwidths. We use a synthetic Internet topology generated
k < (R 20-9), the coordinators ok-f will select only a DY Inet [18]. We use a classic Kademlia setup with k-bucket

subset of thee(-/) neighbor cells to maintain a direct route>2€ & = 20 [7], and 2 = 10 [16]. _ .
towards their coordinators. We construct a realistic virtual world using object traces

Figure 5 shows an example of a two dimensional virtutfalrlOm five popular Second Life regions [17]. The number of

World compqsed _by a skewed dIStl’Ibutlpn of cells. The _arrOW51The analysis of the cost for the retrieval of the objects, &l as the
indicate routing links among the coordinators, respeltiire  virtual world consistency and persistency under churnfisfée future work.

Fig. 4. Uniform cell division of a 2-D virtual world
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Fig. 3. Routing Hops and Latency ; 5 Second Life regions

objects per region varies betweéi) and 350 objects. A range queries, we consider a single avatar walking, running

bootstrap Walkad node computes the virtual world divisioftying and teleporting in the virtual world. Figure 3(b) pdot

in cells, and informs all coordinators of their role. also the latency values for a simple approach (see Section
When an avatar moves out of a cell, it generates a ranigleC). For the simple approach, we only consider the case of

query that spans the cell containing the new avatar cocesnaan avatar walking as the type of range query does not impact

i.e., we approximate the visibility area of an avatar to thé c the way routing performs.

where its coordinates are containeq. We use syntheticstra<_:e|:igure 3(b) shows that range queries generated by an avatar
for avatar movements generated via the Random Waypoiliing, running or flying are all resolved in about the same
Mobility model [8] with different speeds to simulate avatafi e ie. 100 — 130 ms in average. In fact, all these move-
walking (1 m/s), running (3 m/s), flying (10 m/s) and teléf,anis generate local queries. Conversely, non local querie
porting (109 m/s). The avatar traces lasts for one hour. Vg%nerated by an avatar teleporting in the virtual world nexqu
use synthetic traces for avatar movements and not realravalgy ¢ rwice the time e.g., up 90 ms. For comparison, the
traces [17] in order to define bounds of Walkad performan%@/erage latency for 'the s’imple approach is betweeh T'ns
under controlled avatar behaviors. and 1500 ms, i.e., 8 times larger than in Walkad. Figure 3(b)
A. Routing Hops and Latency shows also that the overall latency only slightly increasitis
g}e size of the networkV. In fact, the number of routing
ops to solve range queries in Walkad depends on the size of
he virtual world rather than on the size of the network (see

We analyze first the number of routing hops as a function
Doz, the maximum number of objects per cell. By varyin

D,.... We simulate different divisions of the virtual world. We ’ 8
consider a Walkad network composed by24 peers and a Section IV-C). However, when the network is very small, geer

single avatar walking in the virtual world. This means thiat ad'€ coordinators of multiple cells, thus reducing the numbe

range queries are local and the “load” in terms of concurrefit "0Uting hops and latency as well.
number of queries in the network is small. We now evaluate the impact of load, i.e., the concurrent

Figure 3(a) shows thai0% of the local queries in Walkad number of range queries, on the latency. We Bgf,.. = 10,
require only one or two routing hops to be solved. This peN = 1024, and we varyN,, i.e., the fraction of peers whose
centage becomes even larger as we incréasg., e.g., when associated avatar walks in the virtual world. We consider
Dimaz = 100 all local queries are answered in a single hopnly the case of local queries. Figure 3(c) shows different
with no exception. In fact, increasing the number of objpets percentiles of the distribution of latency values as a fiomct
cell systematically results in a more simple cell organarabf of load. We observe that Walkad is very robust to load, as
the virtual world. However, if we focus on the curves obtdinethe overall latency is not impacted by a large valueN\qf.
with D,,,... = [30;10] we notice that the number of routingThe fluctuations we observe for each curve depend on the
hops is comparable or even smaller ., = 10 which different overlay organizations in the experiments. Fg8(c)
seems contradictory. The cause of this phenomenon is that$bhows another interesting resuts% of the latency values
Dinae = 10, the conditionN >> (R % m) is not verified. are smaller thar200 ms. This confirms that Walkad is very
Therefore, peers are coordinators of multiple cells, aral tefficient in managing local queries as already observed in
Walkad indexing algorithm tends to aggregate closeby eglisFigure 3(a) and 3(b). Onlyi% of the latency values are
the same peer. The side effect is a reduction in the numbersainificantly higher, and reach a maximumi®00 ms. These
effective routing hops especially for local queries. values occur when local queries involve cells at differemels

We now evaluate thdatency i.e., the time required to in the trie. However, even the largest latency value we ofeser
answer range queries, as a function of the network &ize in Walkad is significantly smaller than the average latency
and type of range query (see Figure 3(b)). To generate differ value we observe with the simple approach (see Figure 3(b)).



B. Load Balancing -.',::5‘ % oo
. . at % "

We now analyze the Walkad load balancing properties, 2 2 ,23}:

i.e., how the responsibility of the virtual world is distuited < W - ==100th

among peers. We chooge,,,,. = 10. Figure 6 shows several
percentiles of the distribution of the fraction of cells perer
as a function ofN. Load balancing is achieved when each
peer manages the same fraction of the cell-IDs, i.e., whien al ;
percentiles of the distribution for a gived assume the same T 2 3 4 5 10 20 40 80 100
value. Note that this is always the case for the simple amproa No. of Regions #]

Figure 6 shows that increasing the size of the Walkdde- 7 Some per.centiles of the distributi_on of the fractimincell-IDs per
network the load is rapidly distributed fairly among theiazt " 1Drmas =103 N = 1024 ; No. of regions1 — 100]

peers. For example, whelV is larger than256, for about \jth up to 1024 peers. We simulate a realistic virtual world
90% of the peers the difference in the fraction of cell-IDgsing object traces from Second Life. Our results show that
they manage is smaller thaiyo. The remainingl0% of the \ygikad efficiently handles range queries generated by mvata
peers are responsible of a larger fraction of cell-IDs. This moving in a virtual world. Moreover, the management load
due to the fact that we are considering a small virtual worlgk the virtual world is fairly distributed among peers astbot
composed by only five Second Life regions. Therefore, thge network and virtual world grow. As future work, we will
global cell-ID organization is still impacted by the spetifiextend the evaluation of Walkad and build a complete P2P
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cell-ID organization within each region.
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Fig. 6. Some percentiles of the distribution of the fractmicell-IDs per
peer; Five Second Life regionsDmaes = 10 ; N = [16 — 1024]

We also evaluate the distribution of the virtual world re—[3
sponsibilities as a function of the virtual world size, ,i.the  [4]
number of Second Life regions indexed with Walkad (Figuré5]
7). To do so, we seb,,,,. = 10, N = 1024 and we vary the 6]
number of Second Life regions betwénand 100 using the
dataset in [17]. Figure 7 shows that when the virtual world”]
is small, i.e., composed by less than five regions, we cannot
identify a general trend for the curves. In fact, the différe [8]
object compositions strongly impact the general distrdyut [l
of the cell-IDs. By focusing on a number of regionsl0, we |1
observe that the division of the virtual world responsitag
becomes more and more uniform as the size of the virtUaH
world increases. For example, in a virtual world composed by
100 Second Life regions only% of the peers store a larger[12]
portion of the virtual world, which consists in worst case o
only 1% of the entire virtual world.

1024

(2]

—

13]

VI. CONCLUSIONS ANDFUTURE WORK

This paper has presentdtlalkad a Kademlia-based Peer- 15
to-Peer (P2P) network designed to manage range querieé nln
virtual worlds. Walkad leverages on the Kademlia routingél
protocol and on an indexing algorithm based on a reverag]
binary trie. This indexing algorithm is designed to favocdb
queries which are the most frequent in virtual worlds [6]18]
We evaluate a prototype of Walkad via network emulation

[14]

architecture for virtual worlds.
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