
EigenSpeed: Secure Peer-to-peer Bandwidth Evaluation

Robin Snader

rsnader2@cs.uiuc.edu

Dept. of Computer Science

University of Illinois at Urbana–Champaign

Nikita Borisov

nikita@uiuc.edu

Dept. of Electrical & Computer Engineering

University of Illinois at Urbana–Champaign

Abstract

Many peer-to-peer systems require a way of accurately

assessing the bandwidth of their constituent peers. How-

ever, nodes cannot be trusted to accurately report their

own capacity in the presence of incentives to the con-

trary and thus self-reporting can lead to poor network

performance and security flaws. We present EigenSpeed,

a secure and accurate peer-to-peer bandwidth evaluation

system based on opportunistic bandwidth measurements,

combined using principal component analysis. We test

EigenSpeed using data gathered from a real peer-to-peer

system and show that it is efficient and accurate. We also

show that it is resistant to attacks by colluding groups of

malicious nodes.

1 Introduction

In many peer-to-peer systems, nodes need estimates of

the available bandwidth to each of its peers in the net-

work. Such estimates are used for many purposes: to

load balance routing in the network, or to select a peer

from which to download a particular resource, or to en-

force upload/download ratios, or even to simply measure

network characteristics.

Although each peer is in the best position to determine

its own bandwidth, it cannot be trusted to report accu-

rate data when an incentive to lie exists, such as when a

network preferentially allocates resources to nodes with

higher bandwidths. If self-reported information is used

to make security-sensitive decisions, dramatic reductions

in overall security can result [2]. Thus, there is a need for

a system enabling nodes to evaluate their peers’ band-

widths that is resistant to manipulation by malicious

nodes.

In this paper, we show how principal component anal-

ysis (PCA), a well-studied technique in other areas [8],

can be applied to this problem. We show that unmod-

ified PCA contains significant vulnerabilities to mali-

cious nodes, and introduce modifications that exploit the

specifics of the bandwidth estimation problem and resist

attacks. We show that our final system, EigenSpeed, is

secure, efficient, and accurate by testing it with band-

width data collected from the Tor network [7].

2 Consensus Bandwidth Evaluation

We first define the specifics of the problem we are try-

ing to address. Our goal is to come up with a consen-

sus evaluation of the bandwidth of each peer in a peer-

to-peer network. In a fully general network, each peer

would need to maintain bandwidth information regarding

each other peer. However, on the Internet, a bottleneck

link on a connection between two hosts is likely to be

close to one of the endpoints, rather than in the network

core [1, 10]. This means that we can treat bandwidth as

a node, rather than link, property and still obtain useful

results. This view will allow nodes to pool their observa-

tions of a particular node and obtain more accurate and

globally useful bandwidth assessment. A consensus view

is also helpful to ensure that all nodes maintain a sim-

ilar behavior, preventing partitioning attacks that draw

selected nodes towards a particular behavior for further

exploitation.

One naı̈ve method for a node to determine the band-

width of its peers is simply to track the performance of

each as it communicates with them. However, this ap-

proach is far from ideal: first of all, it will take a long

time for a node to gather accurate information about all

of its peers, and decisions made before that time will be

far from optimal. Additionally, this scheme is vulnera-

ble to partition attacks: a malicious node that wishes to

attract the traffic of one of its peers can reserve all or

most of its bandwidth for communication with that peer.

The target node will then have a greatly skewed view of

the network and preferentially choose the malicious node

over honest peers. Using this technique, an attacker can,

for example, force a particular user in a peer-to-peer sys-

tem to download a malicious version of whatever file it

requests, while hiding this attack from the rest of the net-

work.

In addition to a consensus view, our goal is to satisfy

the following requirements:

• The system should introduce low overhead.

• The system should work well even when there are

sparse observations in order to be successful in

restricted-routing or high-churn networks.

• The system should be resilient to attacks by colluding

groups of malicious nodes.

In this paper, we focus on an attacker or colluding

group of attackers attempting to increase their measured

bandwidth. This is a common case in peer-to-peer net-

works where nodes are provided with service in propor-

tion to the service they provide to others. It is also appli-

cable to the Tor network, where routers are selected with

probability proportional to their bandwidth; if an attacker

can artificially inflate their bandwidth enough, they can

with high probability insert themselves a path of interest

and attempt to link sources and destinations, thus violat-

ing anonymity.

3 Principal Component Analysis

Our main approach for creating a bandwidth evaluation

system is to use opportunistic observations based on reg-

ular interactions between peers. This results in low over-

head, as measurements are integrated into the normal op-

eration of the P2P system. We further combine the obser-

vations across multiple nodes and arrive at a consensus

bandwidth value using principal component analysis.

Each node in the overlay network maintains a vector

of the observed performance of other nodes; for each

node, we store the bandwidth achieved while commu-

nicating with that node. Note that this observation vector

does not attempt to measure the total bandwidth of the

peer nodes, but rather their current, per-flow bandwidth.

In addition to being more responsive to fluctuations in

available bandwidth, this serves as a rough proxy for the

bandwidth an additional flow through that node can ex-

pect. This vector provides a starting point for evaluating

bandwidth, but it can be too sparse, as a node may com-

municate with only a subset of its peers. Furthermore,

the vectors observed at each node will be different, en-

abling partitioning of the nodes.

To address the first problem, a node can take into ac-

count not only its own observations but those made by

other nodes. However, we weight the remote observa-

tions based on the observed bandwidth of the remote

node. This is because a high-bandwidth node can better

evaluate the bandwidth of other nodes, whereas a low-

bandwidth node is limited by its own bottleneck link.

If we represent the initial observations as a matrix1 T ,

1In this paper, we assume symmetric links for convenience. This

does not represent a limitation of the technique we propose, however;

if separate upstream and downstream observations are required, two

with Tij representing the observation of node j by node

i, then the new observation, taking remote vectors into

account is:

T ′

ij =
N

∑

k=1

Tkj

Tik
∑N

l=1
Til

If we let T be a normalized version of the matrix T where

each row sums to 1, it is easy to see that T ′ = TT , or

T
′

= T
2
. Given the new observation vector T ′, we can

iterate this process to better weight the remote observa-

tions: T ′′ = T ′T = TT
2
, T ′′′ = TT

3
.

This process will eventually converge, so long as the

communication graph (i.e., the graph of which nodes talk

to each other) is connected and not bipartite. The final

(normalized) matrix, limn→∞ T
n

, will have each of its

rows equal to the principal eigenvector of the matrix T ,

e0. We can therefore use this eigenvector to represent

the consensus bandwidth evaluation. In most cases, the

convergence will be quite fast as well2, so e0 can be ap-

proximated by computing T
n

for relatively small n.

The general technique of computing (or rather approx-

imating) the principal eigenvector is known as principal

component analysis. It has been successfully used by

several reputation systems, such as EigenTrust [9] and

Google’s PageRank [3]. In Section 4, we will describe

our modifications to PCA that use properties specific to

the problem of bandwidth evaluation and make it more

resilient to subversion by malicious nodes.

3.1 Evaluations of the Basic Algorithm

We evaluate the basic PCA-based algorithm using a sim-

ulated 1000-node network, with node bandwidths based

on measurements of the Tor network [7]. We then cre-

ated a workload consisting of 10 000 flows between the

nodes. The flows either directly connected two nodes

(representing communication between peers), or were re-

layed by a third, intermediate node (representing anony-

mous tunnels in Tor); thus each node was a part of 20 or

30 flows respectively. In each case, peers allocated their

bandwidth to each flow using fair queuing.

We then repeated this experiment over multiple

rounds, or “ticks,” creating 10 000 new flows each time.

Peers were chosen either at random, or weighted by their

available bandwidth, using the bandwidth estimation re-

sults from the previous round. Multiple observations

were combined using an exponentially-weighted moving

average (α = 0.25). We ran the experiment for a total

of 1 440 ticks, representing a day’s worth of one-minute

observation matrices, U and D can be maintained. In this case, the

PairMin constraint described in Section 4.2 would ensure that Dij =

Uji.
2The exact requirement is that the Markov process represented by

T be fast mixing. This will be true if the communication patterns be-

tween nodes are random; most structured P2P overlays also exhibit

fast-mixing communication patterns.

2

flows. To compute the consensus evaluation, we iterated

the matrix multiplication until

∣

∣

∣

∣

∣

∣
T

n~t0 − T
n−1~t0

∣

∣

∣

∣

∣

∣
< ε,

where ~t0 is a uniform vector. We used a value of ε =
10−10 for all experiments in the paper.

Figures 1 and 2 show the fractional bandwidth esti-

mated by EigenSpeed plotted against the actual band-

width of each node. We find that two-hop flows (the

“Tor scenario”) give less accurate results, as a flow’s

bandwidth can be impacted by an unrelated bottleneck;

bandwidth-weighted router selection also decreases ac-

curacy due to non-uniform sampling. But even in

the worst case, the log–log correlation between Eigen-

Speed’s estimation and actual node capacity exceeds 0.9.

In some cases, the relative rank of a node is more im-

portant than its absolute bandwidth [14]. Figures 3 and 4

plot the estimated rank vs. the actual rank. The accuracy

is once again quite good, with a correlation of over 0.99

in the worst case and over 0.9995 in the best case.

Finally, we examined the convergence time of Eigen-

Speed, i.e., the number of iterations n such that
∣

∣

∣

∣

∣

∣
T

n
t0 − T

n−1
t0

∣

∣

∣

∣

∣

∣
< ε. Figure 5 plots this n for each

tick of the simulation. Initially, the observation matrix

is sparse, resulting in slower convergence. However,

within less than 15 ticks (each of which represents a

minute), convergence time is down to 10 iterations or

fewer. Our unoptimized Perl implementation of Eigen-

Speed can perform an iteration for 1 000 routers in ap-

proximately one second, so for the medium-sized peer-

to-peer networks we are targeting, the expected CPU

load of EigenSpeed should be quite low. When the num-

ber of routers is increased five-fold, to 5 000, this time

compute a single iteration increases to approximately

26 seconds, which is in line with the time complexity

(O(log(n)) iterations, each taking O(n2) to complete

for n routers) of EigenSpeed. For larger but less dense

graphs, the per-iteration time can be reduced to O(m)
operations for m non-zero entries in the observation ma-

trix by using sparse matrix techniques.

4 Practical and Security Considerations

In this section, we extend the basic algorithm to handle

nodes joining and leaving (i.e., network churn) and to

exploit some features of bandwidth estimation in order

to better resist attacks by malicious nodes.

4.1 New Nodes and Churn

As discussed above, the PCA algorithm functions well

with a sparse graph; i.e., one where nodes have com-

municated with relatively few other nodes. However,

it does require that the observation matrix represent a

connected graph. This is potentially problematic, since

new nodes joining the network have not yet communi-

cated with any other nodes, corresponding to an all-zero

row in the matrix. Complicating the situation is the pos-

sibility that some new nodes have communicated only

with each other, forming a nontrivial disconnected com-

ponent. EigenSpeed accounts for this by detecting the gi-

ant component in the communication graph and labeling

nodes outside the component as “unevaluated,” leaving

them out of the main PCA computation.

Figure 6 shows the effect of churn on the convergence

rate of EigenSpeed; the vertical line corresponds to an

average node lifetime of 16 minutes that has been ob-

served in P2P networks [11]. The convergence time re-

mains manageable even in the face of high churn rates.

4.2 Sinks and PairMin

So far we have seen how EigenSpeed works when all

nodes are being honest. Malicious nodes, however, can

skew the results of the basic algorithm. One possible at-

tack is for a node to become a “sink” by setting its band-

width observation vector for any other node to 0. It is

easy to see that such a node’s bandwidth estimate will in-

crease with each iteration at the expense of other nodes.

Pure sinks are, of course, easy to detect, but a node can

also become a “near-sink” by setting its observations of

other nodes to be very low. More formally, a near-sink

in row i will have Tij ≪ Tji. Such nodes have tradition-

ally been a problem for PCA-based algorithms. PageR-

ank and EigenTrust address this attack by introducing a

minimum weight for any observation vector entry by ad-

justing the transition matrix:

T ′ = αT + (1 − α)
1

N
1N

However, this works poorly for bandwidth estimation be-

cause it compresses the range of observations, which, in

the case of bandwidth, spans several orders of magni-

tude. It also does not completely eliminate the effect of

malicious nodes; this can be seen in Figure 8. We created

a clique of nodes that pretend to have high bandwidth

for communicating with each other, and zero bandwidth

for communicating with the rest of the network. These

nodes appear as outliers above the y = x line and are still

evaluated as considerably higher than the honest nodes,

despite the PageRank defense.

We take a different approach to this problem, exploit-

ing the fact that the bandwidth between a pair of two

nodes is observed at each node independently. This

means that the matrix T (before normalization) should

be symmetric. We enforce this constraint by setting the

entries Tij and Tji to be the minimum of the two. We

also reset all entries on the diagonal to be 0, since we do

not trust a node to honestly represent its own bandwidth.

This means that a node that tries to become a sink will

end up cutting itself off from the rest of the network and

will be considered “unevaluated” by the giant component

3

10-6

10-5

10-4

10-3

10-2

1kB/s 10kB/s 100kB/s 1MB/s 10MB/s

E
s
ti
m

a
te

d
 F

ra
c
ti
o

n
a

l
B

a
n

d
w

id
th

Actual Available Bandwidth

Uniform Router Selection (r=0.997)
Bandwidth-weighted Router Selection (r=0.904)

Figure 1: The accuracy of EigenSpeed’s

bandwidth capacity estimation for 1-hop

routes

10-6

10-5

10-4

10-3

10-2

1kB/s 10kB/s 100kB/s 1MB/s 10MB/s

E
s
ti
m

a
te

d
 F

ra
c
ti
o

n
a

l
B

a
n

d
w

id
th

Actual Available Bandwidth

Uniform Router Selection (r=0.979)
Bandwidth-weighted Router Selection (r=0.909)

Figure 2: The accuracy of EigenSpeed’s

bandwidth capacity estimation for 2-hop

routes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 N

o
d

e
 R

a
n

k

Actual Node Rank

Bandwidth-weighted Router Selection
Uniform Router Selection

Figure 3: The accuracy of EigenSpeed’s

bandwidth rank estimation for 1-hop routes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 N

o
d

e
 R

a
n

k

Actual Node Rank

Bandwidth-weighted Router Selection
Uniform Router Selection

Figure 4: The accuracy of EigenSpeed’s

bandwidth rank estimation for 2-hop routes

 0

 20

 40

 60

 80

 100

 5 10 15 20 25

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 t

o
 C

o
n

v
e

rg
e

Ticks After Network Start

2-hop routes
1-hop routes

Figure 5: Typical convergence times for

EigenSpeed as nodes gather observations.

 0

 5

 10

 15

 20

 0 0.02 0.04 0.06 0.08 0.1

It
e

ra
ti
o

n
s
 R

e
q

u
ir
e

d
 t

o
 C

o
n

v
e

rg
e

 (
M

e
a

n
 –

 S
td

.
D

e
v
.)

Churn Rate per Tick

Figure 6: The effect of network churn on the

convergence time.

detector in the previous section. For near sinks, the ef-

fect is still mitigated by the PairMin approach: Figure 7

shows the effect of a clique with and without PairMin.

We simulated a “best possible” near-sink clique by set-

ting the observations of other nodes to 0 but turning off

giant component detection. With PairMin, the estimated

bandwidth for all nodes remains close to the y = x line.

4.3 Limited Convergence

With the PairMin modification, the normalized transi-

tion matrix T represents the transition matrix for a ran-

dom walk along an undirected, weighted graph, where

the edge between nodes i and j has the weight Tij . The

stationary distribution of this random walk (equivalently,

the principal eigenvector of T) is known to have the

form:

(e0)i =

∑n

j=1
Tij

∑n

j=1

∑n

k=1
Tkj

In other words, the probability of being at node i is the

sum of the weights of all edges of i, divided by twice the

sum of all the edge weights.

The resulting eigenvector is, intuitively, a very good

estimate of a node’s bandwidth, since it corresponds

to the sum of all external observations of a node. In

addition, we can compute this eigenvector much more

quickly than with the standard PCA approach. However,

the eigenvector is subject to manipulation by malicious

nodes. PairMin guarantees that a single node cannot

meaningfully alter its observation vector without being

penalized; however, a group of colluding nodes can in-

flate their observations of each other arbitrarily. Since

the estimated bandwidth is the sum of all observations for

a node, setting even a single observation to a very high

value can severely affect the sum. This suggests a mod-

ification to the clique attack, which we will call a “fat

pipe” attack: the malicious nodes state a very high band-

width in their observations of each other, and retain the

correct bandwidth values in their observations of other

nodes (to address PairMin).

This attack can be slightly mitigated by reducing the

maximum reportable bandwidth, though at some point

this will start to underweight highly provisioned nodes. It

turns out that a better defense can be found in our original

approach to estimating the principal eigenvector. Our es-

timate converges quickly when the graph is fast-mixing,

which is true whenever all observations are honest. How-

ever, under the above attack, the graph will have two fast-

mixing components—the honest nodes and the malicious

clique—that have a narrow link between them—the nor-

malized values of T ij where i is malicious and j is honest

will be quite low. Thus mixing between the components

will happen very slowly and many iterations will be re-

quired to reach the stationary vector.

We can exploit this by using a starting vector t0 that

contains a small set of p trusted nodes, with (t0)i = 1/p
for each trusted node i and 0 otherwise. (If it is hard

to find trusted nodes, each node can in fact use itself as

the only trusted node.) We then estimate the consensus

vector by performing a limited number of iterations of

the PCA algorithm; i.e., we compute T
n
t0, for a small n.

If we pick n correctly, T
n

will have good mixing within

each component, but limited flow between the honest and

4

10-12

10-10

10-8

10-6

10-4

10-2

1

10-5 10-4 10-3 10-2

B
a

n
d

w
id

th
 E

s
ti
m

a
ti
o

n
 w

it
h

 M
a

lic
io

u
s
 N

o
d

e
s

Bandwidth Estimation in the Absence of Malicious Nodes

Without PairMin
With PairMin

Figure 7: EigenSpeed in the presence of ma-

licious users with and without PairMin; the

x = y line is plotted for convenience.

10-5

10-4

10-3

10-2

1kB/s 10kB/s 100kB/s 1MB/s 10MB/s

E
s
ti
m

a
te

d
 F

ra
c
ti
o

n
a

l
B

a
n

d
w

id
th

Actual Available Bandwidth

Clique attack mitigated by PageRank-like approach
Clique attack mitigated by EigenSpeed

Figure 8: A comparison of a PageRank-like

algorithm (α = 0.85) and EigenSpeed in the

presence of malicious nodes.

 0.0005

 0.001

 0.002

 0.0005 0.001 0.002

B
a

n
d

w
id

th
 E

s
ti
m

a
ti
o

n
 w

it
h

 M
a

lic
io

u
s
 N

o
d

e
s

Bandwidth Estimation in the Absence of Malicious Nodes

Without Liar Detection
With Liar Detection

x=y

Figure 9: The attack of Section 4.3, with and

without Liar Detection, zoomed to show ma-

licious nodes.

malicious components. Thus, if all the trusted nodes are

honest, the consensus vector will put limited weight on

the malicious nodes.

In practice, we found that we can estimate a good

choice for n by using our normal termination condition,

i.e., the smallest n such that ||~tn − ~tn+1|| < ε. The al-

gorithm turns out to be not very sensitive to the choice

of ε: we use ε = 10−10, but 10−5 still results in quite

accurate estimation and 10−15 still limits the bandwidth

of the malicious clique. Figure 9 shows the effect of the

limited number of iterations on the fat pipe attack.

4.4 Liar Detection

As can be seen in Figure 9, malicious nodes still ben-

efit from misreporting their bandwidth. The estimation

factor for these nodes is inflated by a factor of 4. This

is a relatively minor problem in absolute terms, but if a

node’s relative rank is used [14], one of the nodes was

able to increase its rank from 287 to 3.

To reduce the extent of this problem, we perform “liar

detection.” Once we obtain an estimate for the consensus

bandwidth vector e0, we can calculate the liar metric for

a node i by comparing it with the initial observation vec-

tor of that node: ||e0−T i||4.3 If the liar metric for a node

exceeds a threshold L, we call it a liar. We can then ei-

ther eliminate it from consideration completely, or, more

conservatively, add it to the unevaluated set. After this,

the computation of the consensus vector is repeated, and

a new round of liar detection is applied, iterating until no

more liars are identified.

The final algorithm is shown as Algorithm 1. In the ab-

sence of new or malicious nodes, it reduces to the simple

PCA algorithm. Figure 9 shows the effect of liar detec-

tion on the fat pipe attack. Seven out of the ten malicious

nodes are identified as liars and are removed from the

calculation (they do not appear on the graph). The re-

maining nodes are seen to obtain only a slight advantage

over telling the truth. Liar detection works hand-in-hand

with limited convergence: a node that severely misrep-

resents its observation vector will be detected as a liar,

3We use the ℓ4 norm to count smaller errors more lightly.

EVALUATE()
1 recalculate← true

2 for i← 0 to N − 1
3 do Tii ← 0
4 T ij ←

min(Tij ,Tji)
∑

k
min(Tik,Tki)

5 while recalculate = true

6 do ~t← GETINITIALVECTOR()
7 recalculate← false

8 C ← GETDISCONNECTEDNODES()
9 for each c in C

10 do MARKUNEVALUATED(c)
11 REMOVENODEFROMMATRIX(c, T)
12 while

∣

∣

∣

∣T~t− ~t
∣

∣

∣

∣ > ε

13 do ~t← T~t

14 for i← 0 to N − 1
15 do if

∣

∣

∣

∣t− t0i
∣

∣

∣

∣ > L

16 then MARKNODEMALICIOUS(i)
17 REMOVENODEFROMMATRIX(i, T)
18 recalculate← true

19 // ~t now holds final bandwidth estimates

Algorithm 1: Final evaluation algorithm

whereas a node that deviates only slightly will not obtain

much benefit due to limited convergence.

5 Related Work

Since their inception, peer-to-peer networks have used

heterogeneous bandwidth of nodes to improve their be-

havior. The original Napster peer-to-peer system allowed

users to report their connection type (from a list ranging

from “14.4 Modem” to “T3”) but made no effort to ver-

ify this information. Indeed, the data available [11] show

a considerably higher fraction of nodes reporting these

extrema than the observed bandwidths would support.

Tor, the second-generation onion-routing project, also

uses self-reported bandwidth to do load balancing and

increase network performance [6]. Routers altering their

self-reported bandwidth have been shown to be able to

effectively compromise a large fraction of Tor paths [2].

In previous work, we have proposed using a small

sample of randomly selected peers to make routing de-

cisions [14]. This approach is resilient to misreported

bandwidths, but it enables partitioning attacks and this

has prevented its adoption. A small sample also leads to

5

much lower accuracy than EigenSpeed.

The BitTorrent file-sharing protocol also uses direct

observations in its tit-for-tat protocol. However, since

data about these ratios is not shared between peers, at-

tacks such as the “Large View” exploit [13] can exploit

the optimistic feature of tit-for-tat to download at a high

speed from the network without ever uploading.

A related problem is the estimation of latency between

peers. Here, the dimensionality of the problem can be

reduced by creating virtual coordinates using spring re-

laxation techniques [5]. Veracity protects these coordi-

nates by introducing checks by a random (but verifiable)

set of monitor nodes [12]. The authors suggest that the

same approach could be used for bandwidth, but low-

bandwidth nodes will have difficulty monitoring high-

bandwidth ones. EigenSpeed, in essence, is able to use

all peers as monitors without introducing extra traffic.

As mentioned above, PCA is used in many applica-

tions, including PageRank [3] and EigenTrust [9]. When

resilience to dishonest nodes is needed, the usual ap-

proach is to modify the transition matrix to include a

small chance of transitioning to a random node. This

is necessary since these applications cannot exploit the

symmetry of T as we do in this paper. The disadvantages

of this approach were discussed in Section 4.2.

6 Conclusions and Future Work

We have presented EigenSpeed, a novel algorithm for

distributed estimation of bandwidth in a peer-to-peer sys-

tem, that is accurate, efficient, and secure. We demon-

strated that EigenSpeed produces accurate results by test-

ing it with a set of peer bandwidths collected from the

Tor network and showed that it is resilient to both net-

work churn and malicious attacks. EigenSpeed can be

used to achieve consensus bandwidth estimation and bal-

ance load across all nodes in a peer-to-peer network in

a secure fashion while maintaining similar accuracy to

self-reporting.

In our future work, we will explore how to compute

the consensus bandwidth in a decentralized fashion, fol-

lowing an approach similar to that of EigenTrust. We will

also evaluate the accuracy of EigenSpeed as extended

to support asymmetric upload and download bandwidths

and investigate the possibility of new attacks introduced

by such a change.

We also plan to perform a whole-system evaluation of

EigenSpeed as a component of a peer-to-peer network

such as Tor in a testbed environment. Finally, we will

derive formal bounds on the influence of malicious peers.

References

[1] AKELLA, A., SESHAN, S., AND SHAIKH, A. An empirical eval-

uation of wide-area internet bottlenecks. In Crovella [4], pp. 101–

114.

[2] BAUER, K., MCCOY, D., GRUNWALD, D., KOHNO, T., AND

SICKER, D. Low-resource routing attacks against Tor. In Work-

shop on Privacy in Electronic Society (November 2007), T. Yu,

Ed., pp. 11–20.

[3] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-

tual Web search engine. In Proceedings of the 7th international

conference on World Wide Web (WWW’98) (1998).

[4] CROVELLA, M., Ed. 3rd ACM SIGCOMM Conference on Inter-

net Measurement, October 27–29, 2003, Miami Beach, FL, USA

(New York, NY, USA, 2003), ACM.

[5] DABEK, F., COX, R., KAASHOEK, F., AND MORRIS, R. Vi-

valdi: a decentralized network coordinate system. In SIGCOMM

(New York, NY, USA, 2004), E. Zegura and J. Rexford, Eds.,

ACM, pp. 15–26.

[6] DINGLEDINE, R., AND MATHEWSON, N. Tor path speci-

fication. http://www.torproject.org/svn/trunk/

doc/spec/path-spec.txt.

[7] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:

The second-generation onion router. In USENIX Security Sympo-

sium (Aug. 2004), M. Blaze, Ed., USENIX Association, pp. 303–

320.

[8] HOTELLING, H. Analysis of a complex of statistical variables

into principal components. Journal of Educational Psychology

17 (1933), 417–441.

[9] KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA,

H. The eigentrust algorithm for reputation management in P2P

networks. In International Conference on World Wide Web

(New York, NY, USA, 2003), Y.-F. R. Chen, L. Kovács, and

S. Lawrence, Eds., ACM, pp. 640–651.

[10] LAKSHMINARAYANAN, K., AND PADMANABHAN, V. N. Some

findings on the network performance of broadband hosts. In

Crovella [4], pp. 45–50.

[11] SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. D. A mea-

surement study of peer-to-peer file sharing systems. In MMCN

(Jan. 2002).

[12] SHERR, M., LOO, B. T., AND BLAZE, M. Veracity: A

fully decentralized service for securing network coordinate sys-

tems. In International Workshop on Peer-to-Peer Systems (2008),

A. Iamnitchi and S. Saroiu, Eds.

[13] SIRIVIANOS, M., PARK, J. H., CHEN, R., , AND YANG, X.

Free-riding in BitTorrent networks with the large view exploit.

In IPTPS (Feb. 2007).

[14] SNADER, R., AND BORISOV, N. A tune-up for Tor: Improving

security, performance and anonymity in the Tor network. In Net-

work and Distributed System Security Symposium (Feb. 2008),

C. Cowan and G. Vigna, Eds.

6

