Power Virtualization in Multi-tenant Networks

Srini Seetharaman

Deutsche Telekom R&D Lab USA Clean Slate Lab, Stanford University Oct 2010

Consumption

					uting			
1 1		$\mathbf{\gamma}$			tı.	1		
	JI		U	u	u		u	
							J	

Networking

In datacenter, ~45%

Billed by hourly rate of use

Power aware

More energy proportional; Idle power = ~30% peak

Multiple power modes

In datacenter, ~15%

Flat-fee, or byte-based

Power oblivious

Least energy proportional; Idle power = ~80% peak;

2 power modes: on/off

ElasticTree

 Based on a given workload, pack flows into fewer devices and turn-off unused elements

Workload

Proposal

- Can we provide incentive to align workload in a power-aware manner?
 - By making usage charge of tenant proportional to its energy consumed
 - Virtual power
 - How to determine virtual power in a nonproportional network?

Heuristics

Virtual_power tenant i

 $= \Sigma Virtual_power_{element j}$

= Σ Power _{element j}# sharing tenants

 \cdot T

Consequences

- Tenant penalized for being only occupant
- Encourages reuse of pre-paid / prepowered-on elements
- One tenant unaware of other tenants
- One step closer to virtualizing networks

Implementation

- PowerVisor acts as a metering proxy between switches and tenants
 - Translates true power to virtual power

Billing

Multiple ways of monetizing the energy consumed:

- Directly proportional to the energy footprint
- Auction resources to tenants for flow usage
- Finite energy allocated that depletes in a capacitor model

 \cdots ${f T}$

Fineprint

Infrastructure

- Conserve by powering down devices (or choosing other available low energy states)
- Fair across tenants; No cheating

Tenant

- Nothing blocks a tenant with infinite finances
- Can possibly do the following:
 - Load-based conflict
 - Collusion among tenants
 - Masquerading as multiple tenants
 - Energy trading

Future

- Build emulation prototype over mininet and then extend to an actual cluster
 - To understand the dynamics and interactions

 How can we achieve good network performance, while conserving power?

Backup

Previous analysis

Energy Dumpster Diving

Previous analysis (contd.)

 Power Benchmarking Framework for Network Devices

Previous analysis (contd.)

 The cost of a cloud: Research problems in data center networks

Amortized Cost	Component	Sub-Components
~45%	Servers	CPU, memory, storage systems
~25%	Infrastructure	Power distribution and cooling
\sim 15%	Power draw	Electrical utility costs
\sim 15%	Network	Links, transit, equipment

