
Chaotic Attractor Prediction for
Server Run-time Energy

 Consumption

Adam Lewis, Nian-Feng Tzeng, Soumik Ghosh
The Center for Advanced Computer Studies

The University of Louisiana at Lafayette

1

Agenda

• Introduction and problem statement

• CAP: prediction with chaotic time series

• Results

• Future work and next steps

• Summary

2

Full-system Power Models

Esystem = α0(Eproc + Emem)
+α1Eem

+α2Eboard

+α3Ehdd

Edc = Esystem

• Continuous model
time series approximation

• Linear regression

[Lewis 2008]

3

TABLE I
MODEL ERRORS FOR CAP, AR(1), AND MARS ON AN AMD OPTERON SERVER

CAP (with n = 5, p = 200, r = 18) AR
Avg Max RMSE Avg Max RMSE

Benchmark Err % Err % Err % Err %
astar 0.9% 5.5% 0.72 3.1% 8.9% 2.26

games 1.0% 6.8% 2.06 2.2% 9.3% 2.06
gobmk 1.6% 5.9% 2.30 1.7% 9.0% 2.30
zeusmp 1.0% 5.6% 2.14 2.8% 8.1% 2.14

TABLE II
MODEL ERRORS FOR CAP AND AR ON INTEL NEHALEM SERVER

CAP (with n = 5, p = 200, r = 18) AR
Avg Max RMSE Avg Max RMSE

Benchmark Err % Err % Err % Err %
astar 1.1% 20.8% 1.83 5.9% 28.5% 4.94

games 1.0% 14.8% 1.54 5.6% 44.3% 5.54
gobmk 1.0% 21.5% 2.13 5.3% 27.8% 4.83
zeusmp 3.3% 20.6% 3.31 7.7% 31.8% 7.24

TABLE III
MODEL ERRORS FOR CAP, AR(1), AND MARS ON AN AMD OPTERON SERVER

AR
Avg Max RMSE

Benchmark Err % Err %
astar 3.1% 8.9% 2.26

games 2.2% 9.3% 2.06
gobmk 1.7% 9.0% 2.30
zeusmp 2.8% 8.1% 2.14

TABLE IV
MODEL ERRORS FOR AR ON INTEL NEHALEM SERVER

Avg Max RMSE
Benchmark Err % Err %

astar 5.9% 28.5% 4.94
games 5.6% 44.3% 5.54
gobmk 5.3% 27.8% 4.83
zeusmp 7.7% 31.8% 7.24

TABLE I
MODEL ERRORS FOR CAP, AR(1), AND MARS ON AN AMD OPTERON SERVER

CAP (with n = 5, p = 200, r = 18) AR
Avg Max RMSE Avg Max RMSE

Benchmark Err % Err % Err % Err %
astar 0.9% 5.5% 0.72 3.1% 8.9% 2.26

games 1.0% 6.8% 2.06 2.2% 9.3% 2.06
gobmk 1.6% 5.9% 2.30 1.7% 9.0% 2.30
zeusmp 1.0% 5.6% 2.14 2.8% 8.1% 2.14

TABLE II
MODEL ERRORS FOR CAP AND AR ON INTEL NEHALEM SERVER

CAP (with n = 5, p = 200, r = 18) AR
Avg Max RMSE Avg Max RMSE

Benchmark Err % Err % Err % Err %
astar 1.1% 20.8% 1.83 5.9% 28.5% 4.94

games 1.0% 14.8% 1.54 5.6% 44.3% 5.54
gobmk 1.0% 21.5% 2.13 5.3% 27.8% 4.83
zeusmp 3.3% 20.6% 3.31 7.7% 31.8% 7.24

TABLE III
MODEL ERRORS FOR CAP, AR(1), AND MARS ON AN AMD OPTERON SERVER

AR
Avg Max RMSE

Benchmark Err % Err %
astar 3.1% 8.9% 2.26

games 2.2% 9.3% 2.06
gobmk 1.7% 9.0% 2.30
zeusmp 2.8% 8.1% 2.14

TABLE IV
MODEL ERRORS FOR AR ON INTEL NEHALEM SERVER

Avg Max RMSE
Benchmark Err % Err %

astar 5.9% 28.5% 4.94
games 5.6% 44.3% 5.54
gobmk 5.3% 27.8% 4.83
zeusmp 7.7% 31.8% 7.24

Linear AR Model: AMD Opteron

Linear AR Model: Intel Nehalem

Linear methods - A good idea?

• Linear Regression

• Easy, simple

• Odd mis-predictions

• Corrective methods
required

4

Linear, non-linear, and chaotic

Fig. 4. Power trace for zeusmp benchmark on AMD

Opteron.

test systems. The linear regression-based predictors
for power drawwill occasionally mis-predict by large
amounts (up to 44%, as indicated in Table 9). The
physical behavior of the system uncovers that such
large swings in power draw cannot be completely
attributed to noise and, as result, must be accounted
for within our model.

4.3 Chaotic predictors

The continuous system expressed in Eq. (2) can be
viewed as a multi-variate differential equation in the
time domain (energy being power used in a time
period). The time series approximation of the solution
of this system can be viewed as a projection of the
flow of Eq. (2)) onto a surface [32]. The behavior of the
projection operation is defined so that the behavior
of the dynamic system is reflected into our discrete
approximation, in this case, our time series data.

We performed an analysis on the data collected
from our test systems to determine if the behavior
of our time series can be attributed to some form of
chaotic behavior. A chaotic process is one which is
highly sensitive to a set of initial conditions. Small
differences in those initial conditions yield widely
diverging outcomes in such chaotic systems. In order
to determine whether a process is chaotic, we must
be able to show that it demonstrates high sensitivity
to initial conditions, topological mixing, and an in-
dication that its periodic orbits are dense [33]. After
analyzing our experimental data, we believe that the
power consumption of a server demonstrates chaotic
behavior.

In order to evaluate a server’s sensitivity to initial
conditions, we consider the Lyapunov exponents of
the time series data observed while running those
benchmarks described in the previous section. The
Lyapunov exponent quantifies the sensitivity of a sys-
tem such that a positive Lyapunov exponent indicates
that the system is chaotic [33]. The average Lyapunov

TABLE 4

Indications of chaotic behavior in power time series

(AMD, Intel)

Benchmark Hurst Average

Parameter Lyapunov

(H) Exponent

bzip2 (0.96, 0.93) (0.28, 0.35)
cactusadm (0.95, 0.97) (0.01, 0.04)

gromac (0.94, 0.95) (0.02, 0.03)
leslie3d (0.93, 0.94) (0.05, 0.11)

omnetpp (0.96, 0.97) (0.05, 0.06)
perlbench (0.98, 0.95) (0.06, 0.04)

exponent can be calculated using:

λ = lim
N→∞

1
N

N−1�

n=0

ln|f �(Xn)|.

We found a positive Lyapunov exponent when per-
forming this calculation on our data set ranging from
0.01 to 0.28 (or 0.03 to 0.35) on the AMD (or Intel) test
server, as listed in Table 4, where each pair indicates
the parameter value of the AMD server followed by
that of the Intel server. Therefore, our data has met
the first and the most significant criterion to qualify
as a chaotic process.

The second indication of the chaotic behavior of
the time series in Eq. (12) is an estimate of the
Hurst parameter H for the data sets collected in each
benchmark. A real number in the range of (0, 1), the
Hurst parameter is in the exponents of the covariance
equation for Fractional Brown motion (fBm) [33]. If
the value of the Hurst parameter is greater than 0.5,
an increment in the random process is positively
correlated and long range dependence exists in the
case of time series. In a chaotic system, a value of
H approaching 1.0 indicates the presence of self-
similarity in the system. As demonstrated in Table 4,
the time series data collected in our experiments all
have values of H close to 1.0, ranging from 0.93 to
0.98 (or 0.93 to 0.97) on the AMD (or Intel) test server.
From a predictive standpoint, the unpredictable de-

terministic behavior of chaotic time series means that
it is difficult to build a predictor that takes a global
parametric view of the data in the series. However,
it is possible to generate a highly accurate short-term
prediction by reconstructing the attractor in the phase
space of the time series and applying a form of least
square prediction to the resulting vector space [34]
[35].

4.3.1 Chaotic Attractor Predictors
Given the time series introduced in Eq. (12), we define
Xt to be the value of esystem at time t, and r to
be the total number of sensors and OS measures to
provide metric readings. According to Taken’s De-
lay Embedding Theorem [33], there exists a function
f̂(Xt) whose behavior in the phase space reflects

Non-linear?
Noise?
Error?

Chaotic behavior

5

Chaotic Time Series
• Time-delay reconstructed state space

• Uses Takens Embedding Theorem:

• Time-delayed partition of observations
to build function that preserves the
topological and dynamical properties of
our original chaotic system

• Find nearest neighbors on attractor to our
observations

• Perform least-square curve fit to find a
polynomial that approximates the attractor

6

Creating and using a CAP

• One time process for new hardware

• Create a training set for the process

• Use training set to reconstruct state
space

• Embed using Taken’s Theorem

• Nearest Neighbors

• Solve resulting linear least squares
problem

7

Kernel weighting

K(x) = (2π)−
m
2 exp(−�x�2/2)

Kβ(x) =
1

β
K(

x

β
)

1.

β =

�
4

3p

� 1
5

σ

σ̄ = median(|xi − µ̄|)/0.6745

2.

Op = (Xt−1, . . . , Xt−p)
T

3.

f̂(x) =

n+p�

t=p+1

Op ∗Kβ(Xt−1 − x)

n+p�

t=p+1

Kβ(Xt−1 − x)

8

f̂(X) = f̂(x) + f̂
�
(x)T (X − x)

n+p�

t=p+1

�
Xt − a− bT (Xt−1 − x)

�2 ∗Kβ(Xt−1 − x)

• Start with a Taylor series expansion

Forward prediction

• Find the coefficients of the polynomial by
solving the linear least squares problem for a
and b:

9

f̂(x) =
1

n

n+p�

t=p+1

(s2 − s1 ∗ (x−Xt−1))
2 ∗Kβ((x−Xt−1)/β)

si =
1

n

n+p�

t=p+1

(x−Xt−1)
i ∗Kβ((x−Xt−1)/β)

• Explicit solution for our linear least squares
problem:

Forward prediction

10

Time Complexity

Creating a CAP: O(n2)
Predicting with a CAP: O(p)

n future observations p past observations

11

Evaluation

TABLE 6
SPEC CPU2006 benchmarks used for evaluation

Integer Benchmark

astar C++ Path Finding
gobmk C Artificial Intelligence: Go
FP Benchmarks

calculix C++/F90 Structural Mechanics
zeusmp F90 Computational Fluid Dynamics

TABLE 7
Test hardware configuration

Sun Fire 2200 Dell PowerEdge R610

CPU 2 AMD Opteron 2 Intel Xeon (Nehalem) 5500
CPU L2 cache 2x2MB 4MB
Memory 8GB 9GM
Internal disk 2060GB 500GM
Network 2x1000Mbps 1x1000Mbps
Video On-board NVIDA Quadro FX4600
Height 1 rack unit 1 rack unit

CAT increases linearly, as can be obtained in Eq. (15).
The actual computation time results for our CAP
code implemented using MATLAB run on machines
(detailed in Table 7) with respect to different n and p

values are provided in the next section.

5 EVALUATION

A set of experiments was carried out to evaluate
the performance of power models built using CAP
techniques to approximate a solution for dynamic
systems following Eq. (12). The purpose of the first
experiment was to confirm the time complexity CAP.
The behavior of CAP was simulated using MATLAB
on the hardware described in Table 7 with varying
values of n future observation and p past observa-
tions. Fig. 6 illustrates the behavior of CAP as the
value of n is varied and confirms the O(n2) behavior
of the predictor in this case. The behavior of CAP as
p is varied is shown in Fig. 7 and supports the claim
of linear behavior.

In the second experiment, four additional bench-
marks from the SPEC CPU2006 benchmark suite
(shown in Table 6) were executed on the hardware
described in Table 7 to evaluate the predictive perfor-
mance of the CAP model. For the evaluation purpose,
predictions were made for n = 5 future time periods
using p = 200 previous observations and r = 16 or
r = 18 regression variables. The behavior of CAP
is compared against AR(1) and MARS models (de-
scribed in the Appendix).

5.1 Evaluation environment

The operating system used in our setup is OpenSolaris
(Solaris 11). System data is collected from the system
baseboard controller using the IPMI interface via the

OpenSolaris ipmitool utility. Processor performance
counters are collected on a system-wide basis using
the OpenSolaris cpustat utility.

In terms of measuring performance counters, we
have used the OpenSolaris cpustat, iostat, and
ipmitool utilities. Of these, iostat and ipmitool
are available across all UNIX-based operating systems
commonly used in data centers. cpustat is an Open-
Solaris specific utility but is already being ported to
Linux. In future work, it is planned to use tools like
dtrace and oprofile for more controllable and
tunable performance parameters which have major
impacts on system-wide and processor wide power
consumption.

The power consumed is measured with a WattsUP
power meter [41] connected between the AC Main
and the system under test (SUT). The power meter
measures the total and average wattage, voltage, and
amperage over the run of a workload. The internal
memory of the power meter is cleared at the start of
the run and the measures collected during the run are
downloaded after the run completes from the meter’s
internal memory into a spreadsheet. Current flow on
the different voltage domains in the server is mea-
sured using an Agilent MSO6014A oscilloscope with
one Agilent 1146A current probe per system power
domain (12v, 5v, and 3.3v). This data is collected
from the oscilloscope at the end of the execution of
a benchmark and stored in a spreadsheet on the test
host.

5.2 Results

Fig. 8 compares the predicted power consumption
from CAP, AR(1), and MARS models versus the ac-
tual power consumption of the HyperTransport-based
system for selected benchmarks in the evaluation. The
three AR techniques predict well in this environment
over the long term, with an average error ranging
between 1.7% and 3.1% depending upon method and
benchmark. However, the auto-regressive and local
polynomial methods suffer from poor performance in
the short term, with maximum errors ranging from
7.9% to 9.3%. CAP demonstrates much better overall
behavior with average error ranging between 0.9%
and 1.6%. Short term behavior is far better than the
AR methods with maximum errors ranging between
5.5% and 6.8%.

The predicted power consumption from CAP,
AR(1), and MARS models versus actual power con-
sumption for the QPL-based systems for same bench-
marks as above is shown in Fig. 9. As with the Hyper-
Transport bus, we see acceptable long term behavior
with the AR methods with average errors ranging
between 4.1% and 11.6%. However, short term predic-
tions are not effective at all with a maximum errors
ranging as high as 44.3% (for the AR(1) model and the
SPEC2006 gamess benchmark). CAP predicts well in

where σ is the standard deviation of observed values,

estimated via the formula below [38]:

σ̄ = median(|xi − µ̄|)/0.6745

with µ̄ being the median of observed values.

A local constant approximation for f̂ is de-

fined next in terms of a locally weighted average

[15] [25] over the next n observations, based on

the prior p observations of Xt−1, . . . ,Xu, . . . ,Xt−p

(each with r metric readings, namely, MP (u) =
[MPproc, MPmem, MPhdd, MPboard, MPem]T , as de-

scribed earlier):

f̂(x) =

n+p�

t=p+1

Op ∗Kβ(Xt−1 − x)

n+p�

t=p+1

Kβ(Xt−1 − x)

with Op = (Xt−1, Xt−2, . . . ,Xt−p).
The process can be improved by defining a local

linear approximation via applying a truncated Taylor

series expansion of f̂ :

f̂(X) = f̂(x) + f̂
�
(x)T (X − x).

The coefficients of the polynomial f̂ are then deter-

mined by minimizing

n+p�

t=p+1

�
Xt − a− b

T (Xt−1 − x)
�2 ∗Kβ(Xt−1 − x). (15)

with respect to a and b, which are estimators to f̂(x)
and f̂ �(x), respectively. The predictor generated by

solving Eq. (15) can be explicitly written, according

to [15], as

f̂(x) =
1
n

n+p�

t=p+1

(s2−s1∗(x−Xt−1))2∗Kβ((x−Xt−1)/β)

(16)

with si = 1
n

n+p�

t=p+1

(x −Xt−1)i ∗Kβ((x −Xt−1)/β), for

i = 1 or 2.

4.2.2 CAP Creation
There are three steps involved in the process of

creating a CAP predictor: (1) creating a training set

for the process, (2) using the observations from the

training set to find the appropriate delay embedding

using Takens Theorem and then apply the nearest

neighbors algorithm in the embedded set to identify

the attractors, and (3) solving the resulting linear least

squares problem that arises from applying Eq. (15) to

the attractors using the function expressed by Eq. (16).

The training set for the predictor is constructed

from a consolidated time series created by executing

the SPEC CPU2006 [39] benchmarks listed in Table 5

on target systems. The benchmarks were selected

TABLE 5
SPEC CPU2006 benchmarks used for model

calibration

Integer Benchmarks

bzip2 C Compression

mcf C Combinatorial Optimization

omnetpp C++ Discrete Event Simulation

FP Benchmarks

gromacs C/F90 Biochemistry/Molecular Dynamics

cacstusADM C/F90 Physics/General Relativity

leslie3d F90 Fluid Dynamics

lbm C Fluid Dynamics

using two criteria: sufficient coverage of the functional

units in the processor and reasonable applicability

to the problem space. Components of the processor

affect the thermal envelope in different ways [40]. This

issue is addressed by balancing the benchmark selec-

tion between integer and floating point benchmarks

in the SPEC CPU2006 benchmark suite. Second, the

benchmarks were selected from the suite based upon

fit into the problem space. Each benchmark represents

an application typical of the problems solved on

high-performance application servers. Two methods

were considered for consolidation: arithmetic mean

(average) and geometric mean. Trial models were

constructed using each method and a statistical anal-

ysis of variance indicated that time series generated

from the geometric mean produced the best fit to the

collected data.

Time Complexity
The time complexity of creating a predictor is gov-

erned by the third step in the process. The task of

reconstructing the state space by delay embedding

is linear in time as one must make up to d passes

through the observations, under the embedding di-

mension of d. Thus, the time required is O(dn), where

n is the number of future observations. Then, it

becomes a matter of applying a naive form of kth

nearest neighbors algorithm to identify the points in

the attractors. This step involves finding the squared

distance of all the points in the nearest analogs in the

Takens set and then sorting the result to determine

the d-nearest neighbors. This step takes O(n log n+n).
The high cost of computing the linear least squares

solution in the third step is avoided by using the

explicit expression given in Eq. (16). The time com-

plexity of computing this expression can be shown to

be O(n ∗ n), with O(n) due to computing si, for i = 1

or 2. As a result, the time complexity for establishing

a CAP predictor equals O(n2). It should be noted

that the construction of a CAP predictor is done only

once for a given server, irrespective of applications

executed on the server. Such construction is based on

past PeC observations (totally, p of them) to predict

the future PeC readings. As p grows (with more past

PeC observations involved), the time complexity of

TABLE 6
SPEC CPU2006 benchmarks used for evaluation

Integer Benchmark

astar C++ Path Finding
gobmk C Artificial Intelligence: Go
FP Benchmarks

calculix C++/F90 Structural Mechanics
zeusmp F90 Computational Fluid Dynamics

TABLE 7
Test hardware configuration

Sun Fire 2200 Dell PowerEdge R610

CPU 2 AMD Opteron 2 Intel Xeon (Nehalem) 5500
CPU L2 cache 2x2MB 4MB
Memory 8GB 9GM
Internal disk 2060GB 500GM
Network 2x1000Mbps 1x1000Mbps
Video On-board NVIDA Quadro FX4600
Height 1 rack unit 1 rack unit

CAT increases linearly, as can be obtained in Eq. (15).
The actual computation time results for our CAP
code implemented using MATLAB run on machines
(detailed in Table 7) with respect to different n and p

values are provided in the next section.

5 EVALUATION

A set of experiments was carried out to evaluate
the performance of power models built using CAP
techniques to approximate a solution for dynamic
systems following Eq. (12). The purpose of the first
experiment was to confirm the time complexity CAP.
The behavior of CAP was simulated using MATLAB
on the hardware described in Table 7 with varying
values of n future observation and p past observa-
tions. Fig. 6 illustrates the behavior of CAP as the
value of n is varied and confirms the O(n2) behavior
of the predictor in this case. The behavior of CAP as
p is varied is shown in Fig. 7 and supports the claim
of linear behavior.

In the second experiment, four additional bench-
marks from the SPEC CPU2006 benchmark suite
(shown in Table 6) were executed on the hardware
described in Table 7 to evaluate the predictive perfor-
mance of the CAP model. For the evaluation purpose,
predictions were made for n = 5 future time periods
using p = 200 previous observations and r = 16 or
r = 18 regression variables. The behavior of CAP
is compared against AR(1) and MARS models (de-
scribed in the Appendix).

5.1 Evaluation environment

The operating system used in our setup is OpenSolaris
(Solaris 11). System data is collected from the system
baseboard controller using the IPMI interface via the

OpenSolaris ipmitool utility. Processor performance
counters are collected on a system-wide basis using
the OpenSolaris cpustat utility.

In terms of measuring performance counters, we
have used the OpenSolaris cpustat, iostat, and
ipmitool utilities. Of these, iostat and ipmitool
are available across all UNIX-based operating systems
commonly used in data centers. cpustat is an Open-
Solaris specific utility but is already being ported to
Linux. In future work, it is planned to use tools like
dtrace and oprofile for more controllable and
tunable performance parameters which have major
impacts on system-wide and processor wide power
consumption.

The power consumed is measured with a WattsUP
power meter [41] connected between the AC Main
and the system under test (SUT). The power meter
measures the total and average wattage, voltage, and
amperage over the run of a workload. The internal
memory of the power meter is cleared at the start of
the run and the measures collected during the run are
downloaded after the run completes from the meter’s
internal memory into a spreadsheet. Current flow on
the different voltage domains in the server is mea-
sured using an Agilent MSO6014A oscilloscope with
one Agilent 1146A current probe per system power
domain (12v, 5v, and 3.3v). This data is collected
from the oscilloscope at the end of the execution of
a benchmark and stored in a spreadsheet on the test
host.

5.2 Results

Fig. 8 compares the predicted power consumption
from CAP, AR(1), and MARS models versus the ac-
tual power consumption of the HyperTransport-based
system for selected benchmarks in the evaluation. The
three AR techniques predict well in this environment
over the long term, with an average error ranging
between 1.7% and 3.1% depending upon method and
benchmark. However, the auto-regressive and local
polynomial methods suffer from poor performance in
the short term, with maximum errors ranging from
7.9% to 9.3%. CAP demonstrates much better overall
behavior with average error ranging between 0.9%
and 1.6%. Short term behavior is far better than the
AR methods with maximum errors ranging between
5.5% and 6.8%.

The predicted power consumption from CAP,
AR(1), and MARS models versus actual power con-
sumption for the QPL-based systems for same bench-
marks as above is shown in Fig. 9. As with the Hyper-
Transport bus, we see acceptable long term behavior
with the AR methods with average errors ranging
between 4.1% and 11.6%. However, short term predic-
tions are not effective at all with a maximum errors
ranging as high as 44.3% (for the AR(1) model and the
SPEC2006 gamess benchmark). CAP predicts well in

Training Benchmarks Evaluation Benchmarks

12

Results: AMD Opteron f10h

(a) Astar/CAP. (b) Astar/AR(1)).

(c) Zeusmp/CAP. (d) Zeusmp/AR(1).

Fig. 8. Actual power results versus predicted results for AMD Opteron.

(a) Astar/CAP. (b) Astar/AR(1)).

(c) Zeusmp/CAP. (d) Zeusmp/AR(1).

Fig. 9. Actual power results versus predicted results for an Intel Nehalem server.

13

Results: Intel Nehalem

(a) Astar/CAP. (b) Astar/AR(1)).

(c) Zeusmp/CAP. (d) Zeusmp/AR(1).

Fig. 8. Actual power results versus predicted results for AMD Opteron.

(a) Astar/CAP. (b) Astar/AR(1)).

(c) Zeusmp/CAP. (d) Zeusmp/AR(1).

Fig. 9. Actual power results versus predicted results for an Intel Nehalem server.

14

Results: Error - Other Benchmarks

15

Observations and Analysis

• Where does maximum error occur?

• Choice of performance counters

• Difference in behavior between
processors?

• The right set of performance counters

• Benchmark selection

16

Conclusions

• Fast and accurate model

• Addresses non-linearity

• Addresses chaotic dynamics

• Future work

• Other workloads

• Other architectures

17

This work was supported in part by the U.S.
Department of Energy and by the Louisiana

Board of Regents

18

Questions?

19

