Chaotic Attractor Prediction for Server Run-time Energy Consumption

Adam Lewis, Nian-Feng Tzeng, Soumik Ghosh The Center for Advanced Computer Studies The University of Louisiana at Lafayette

Agenda

- Introduction and problem statement
- CAP: prediction with chaotic time series
- Results
- Future work and next steps
- Summary

Full-system Power Models

$$E_{dc}=E_{system}$$

$$= lpha_0(E_{proc}+E_{mem}) \ + lpha_1 E_{em} \ + lpha_2 E_{board} \ + lpha_3 E_{hdd}$$
 [Lewis 2008]

- Continuous model
 time series approximation
- Linear regression

Linear methods - A good idea?

- Linear Regression
 - Easy, simple
 - Odd mis-predictions
 - Corrective methods required

		AR	
Benchmark	Avg Err %	Max Err %	RMSE
Dencimark			
astar	3.1%	8.9%	2.26
games	2.2%	9.3%	2.06
gobmk	1.7%	9.0%	2.30
zeusmp	2.8%	8.1%	2.14

Linear AR Model: AMD Opteron

	Avg	Max	RMSE
Benchmark	Err %	Err %	
astar	5.9%	28.5%	4.94
games	5.6%	44.3%	5.54
gobmk	5.3%	27.8%	4.83
zeusmp	7.7%	31.8%	7.24

Linear AR Model: Intel Nehalem

Linear, non-linear, and chaotic

Non-linear? Noise? Error?

Chaotic behavior

Benchmark	Hurst Parameter (H)	Average Lyapunov Exponent
bzip2	(0.96, 0.93)	(0.28, 0.35)
cactusadm	(0.95, 0.97)	(0.01, 0.04)
gromac	(0.94, 0.95)	(0.02, 0.03)
leslie3d	(0.93, 0.94)	(0.05, 0.11)
omnetpp	(0.96, 0.97)	(0.05, 0.06)
perlbench	(0.98, 0.95)	(0.06, 0.04)

Chaotic Time Series

- Time-delay reconstructed state space
 - Uses Takens Embedding Theorem:
 - Time-delayed partition of observations to build function that preserves the topological and dynamical properties of our original chaotic system
- Find nearest neighbors on attractor to our observations
- Perform least-square curve fit to find a polynomial that approximates the attractor

Creating and using a CAP

- One time process for new hardware
 - Create a training set for the process
 - Use training set to reconstruct state space
 - Embed using Taken's Theorem
 - Nearest Neighbors
 - Solve resulting linear least squares problem

Kernel weighting

$$K(x) = (2\pi)^{-\frac{m}{2}} exp(-\|x\|^2/2)$$

$$K_{\beta}(x) = \frac{1}{\beta}K(\frac{x}{\beta})$$

2.

$$\beta = \left(\frac{4}{3p}\right)^{\frac{1}{5}} \sigma$$

$$\bar{\sigma} = median(|x_i - \bar{\mu}|)/0.6745$$

$$\sum_{t=p+1}^{n+p} O_p * K_{\beta}(X_{t-1} - x)$$

$$\hat{f}(x) = \frac{\sum_{n+p}^{t=p+1} K_{\beta}(X_{t-1} - x)}{\sum_{t=p+1}^{t} K_{\beta}(X_{t-1} - x)}$$

$$O_p = (X_{t-1}, \dots, X_{t-p})^T$$

Forward prediction

Start with a Taylor series expansion

$$\hat{f}(X) = \hat{f}(x) + \hat{f}'(x)^T (X - x)$$

 Find the coefficients of the polynomial by solving the linear least squares problem for a and b:

$$\sum_{t=p+1}^{n+p} \left[X_t - a - b^T (X_{t-1} - x) \right]^2 * K_{\beta}(X_{t-1} - x)$$

Forward prediction

 Explicit solution for our linear least squares problem:

$$\hat{f}(x) = \frac{1}{n} \sum_{t=p+1}^{n+p} (s_2 - s_1 * (x - X_{t-1}))^2 * K_{\beta}((x - X_{t-1})/\beta)$$

$$s_i = \frac{1}{n} \sum_{t=p+1}^{n+p} (x - X_{t-1})^i * K_{\beta}((x - X_{t-1})/\beta)$$

Time Complexity

n future observations

p past observations

Creating a CAP: $O(n^2)$ Predicting with a CAP: O(p)

Evaluation

	Sun Fire 2200	Dell PowerEdge R610
CDLI		
CPU	1	2 Intel Xeon (Nehalem) 5500
CPU L2 cache	2x2MB	4MB
Memory	8GB	9GM
Internal disk	2060GB	500GM
Network	2x1000Mbps	1x1000Mbps
Video	On-board	NVIDA Quadro FX4600
Height	1 rack unit	1 rack unit

Training Benchmarks

Integer Benchmarks			
bzip2 mcf omnetpp	C C C++	Compression Combinatorial Optimization Discrete Event Simulation	
FP Benchman	FP Benchmarks		
gromacs cacstusADM leslie3d lbm		Biochemistry/Molecular Dynamics Physics/General Relativity Fluid Dynamics Fluid Dynamics	

Evaluation Benchmarks

Integer Benchmark		
astar gobmk		Path Finding Artificial Intelligence: Go
FP Benchmarks		
calculix zeusmp	C++/F90 F90	Structural Mechanics Computational Fluid Dynamics

Results: AMD Opteron f10h

The Center for Advanced Computer Studies

Results: Intel Nehalem

Results: Error - Other Benchmarks

Observations and Analysis

- Where does maximum error occur?
- Choice of performance counters
 - Difference in behavior between processors?
 - The right set of performance counters
- Benchmark selection

Conclusions

- Fast and accurate model
 - Addresses non-linearity
 - Addresses chaotic dynamics
- Future work
 - Other workloads
 - Other architectures

This work was supported in part by the U.S. Department of Energy and by the Louisiana Board of Regents

Questions?

