Green Server Design: Beyond Operational Energy to Sustainability

Justin Meza
Carnegie Mellon University

Jichuan Chang, Partha Ranganathan, Cullen Bash, Amip Shah Hewlett-Packard Laboratories

Overview

We want to design sustainable servers

 Prior techniques measure sustainability but are not adequate for making architectural decisions

 We contribute an architecture-centric methodology for understanding and addressing sustainability

 We use this to evaluate energy-efficiency techniques from a sustainability perspective

Outline

- Motivation
- Measuring Server Sustainability
- Understanding Server Sustainability Bottlenecks
- Energy-Efficiency vs. Sustainability
- Future Work
- Conclusions

Motivation

- Carbon footprint of IT is large (and growing)
 - Accounts for 2% of world (~ size of aviation industry)
 - Used to address other 98% (e.g., video conferencing)
- Businesses want to go green
 - •75% will consider sustainability in IT purchasing decisions
- Government regulation
 - Mandatory cap-and-trade policies in UK & US (proposed)

Measuring Sustainability

- No standardized method
- Prior sustainability work examined environmental impact across the lifecycle of a system:

- Used exergy consumption as a sustainability metric

Measuring Sustainability: Exergy

 Exergy is a thermodynamic metric that measures the amount of available energy in a system

- Exergy consumption corresponds to the irreversibility of some processes (here, fossil fuel destruction)
- Sustainable solutions minimize exergy consumption

Prior Work: Measuring Server Sustainability

 Mapped server component mass to exergy consumption using a process-based approach

Prior Work: Measuring Server Sustainability

- Difficult to reason about architectural choices:
 - What component is the least sustainable?
 - What are the effects of, e.g., replacing hard disks with SSDs?

 Needed an architecture-centric approach to understand and address system sustainability

Overview

- We want to design sustainable servers

 Prior techniques measure sustainability but are not adequate for making architectural decisions

 We use this to evaluate energy-efficiency techniques from a sustainability perspective

Our Work: Component-Based Approach

 We propose a component-based approach to measuring system sustainability

Component-Based Approach

- We aggregate raw materials at component level
 - CPU, memory, disk, etc.
 - Intuitive mapping to system architecture building blocks
- -Overall, we divide exergy into 3 categories: Embedded, Operation, and Infrastructure

- Applied our technique to a real server (HP ProLiant)
 - •2 Intel Xeon CPUs
 - •4 x 1GB DRAM DIMMs
 - 2 x 72GB hard disk drives
 - 2 gigabit NICs
 - 25% average utilization
 - 3 year operational lifetime
 - Cooling provisioned to handle maximum power ratings
 - -Power usage effectiveness of 1.6 based on prior studies
 - Used supply chain information to calculate exergy consumption

– Total exergy consumed = 24 Giga Joules

Embedded

Component-Based Approach

- Developed a methodology for system architecture community to evaluate sustainability
- Embedded exergy ("making" the component)
 contributes a significant amount to total exergy (20%)
- About half of this embedded exergy is from
 - Silicon-based processes such as CPU, DRAM
 - PCB processes
 - This is because these processes require chemicals which consume lots of exergy during their manufacture
- Operation still biggest contributor (> 50% of total)
 - How do energy-efficiency techniques affect sustainability?

Overview

- We want to design sustainable servers

 Prior techniques measure sustainability but are not adequate for making architectural decisions

 We contribute an architecture-centric methodology for understanding and addressing sustainability

We use this to evaluate energy-efficiency techniques
 from a sustainability perspective

- We compared 3 energy-efficiency techniques across a parameterized workload space
 - Energy proportionality: Energy use proportional to utilization
 - Consolidation: Reduce # of system based on peak of workload
 - Low-power hardware: Energy-efficient embedded components
- Assumed ideal technique effectiveness

- Parameterized workload space as a function of
 - Average utilization
 - Peak of sum (PoS) utilization

• Performance/Watt ratio of low-power to enterprise hardware

(Shaded regions denote the most sustainable technique)

LP & EP are independent of PoS → break-even point depends on relative energy efficiencies for workload only

Performance / Watt Ratio

Sustainability focuses on total exergy consumption

Energy-efficiency focuses on operational exergy consumption (note: op. exergy = op. energy if from non-renewable source)

When considering sustainability, Con makes sense for some workloads because it reduces hardware (embedded) exergy consumption—this is not reflected in energy-efficiency

The break-even point for LP shifts. LP requires more hardware to achieve equivalent performance, this increase in embedded exergy consumption is not captured by energy-efficiency

Reducing Energy <u>During Operation</u>...

Not Same as Reducing Total Exergy!

Energy-Efficiency Sustainability

Workload	OP (% base)		Total (% base)	
	EP	Con	EP	Con
Ecommerce 1	18%	27%	36%	25%
Ecommerce 2	48%	66%	57%	63%
Dotcom	37%	52%	49%	49%
Pharmacy	10%	17%	31%	16%
SAP 1	39%	50%	51%	46%
SAP 2	53%	84%	61%	82%
Worldcup 1	27%	61%	42%	60%
Worldcup 2	21%	31%	38%	28%
Consolidation 1	62%	88%	68%	87%
Consolidation 2	59%	88%	66%	86%
Animation farm	98%	100%	98%	100%

EP always best when **Energy-Efficiency Sustainability** considering energy-OP (% base) efficiency, but... Total (% base) EP EP Con Con 27% 36% Ecommerce 1 18% 25% Ecommerce 2 48% 66% 57% 63% 52% Dotcom 37% 49% 49% Pharmacy 17% 31% 10% 16% SAP 1 39% 50% 51% 46% SAP 2 84% 82% 53% 61% Worldcup 1 27% 61% 42% 60% Worldcup 2 21% 31% 38% 28% Consolidation 1 62% 88% 68% 87% Consolidation 2 59% 88% 66% 86% Animation farm 98% 100% 98% 100%

Energy-Efficiency vs. Su

...when considering sustainability,
Con is best for almost ½ the
workloads because it reduces
embedded exergy consumption
more than it increases operational

Energy-Efficiency Sustainability

Workload	OP (% base)		Total (% base)	
	EP	Con	EP	Con
Ecommerce 1	18%	27%	36%	25%
Ecommerce 2	48%	66%	57%	63%
Dotcom	37%	52%	49%	49%
Pharmacy	10%	17%	31%	16%
SAP 1	39%	50%	51%	46%
SAP 2	53%	84%	61%	82%
Worldcup 1	27%	61%	42%	60%
Worldcup 2	21%	31%	38%	28%
Consolidation 1	62%	88%	68%	87%
Consolidation 2	59%	88%	66%	86%
Animation farm	98%	100%	98%	100%

Energy-Efficiency vs. Sustainability Insights

Energy-efficiency does not always = sustainability

As energy-efficiency is more aggressively applied,
 embedded portion is expected to increase

Need sustainable techniques to address this

- Sustainability requires holistic design
 - Operational, infrastructure, and embedded exergy consumption are not independent
 - E.g., removing chassis may ↓ embedded but ↑ infrastructure

Future Work

- Develop methods to address embedded impact
 - Upcycling—reuse of components
 - → Requires rethinking current designs for reuse
 - Dematerialized designs—use less material
 - → Need to target highest-impact materials
- Ways to promote holistic system co-design
 - Working on thermal simulator for system architects
 - Enables quick feedback of how arch. choices affect cooling
- Examine the effects of renewable energy on datacenter sustainability

Conclusions

- Examined the sustainability of a server
 - Used lifecycle exergy consumption as metric for sustainability
- Developed an architecture-centric approach to understanding and addressing system sustainability
- Evaluated energy-efficiency techniques across workload space
 - Energy-efficiency does not necessarily = sustainability
 - Embedded exergy will become increasingly important
 - Holistic system design techniques are required

Questions?

Thank You!

