
HotDep'10 1

Active Quorum Systems

Alysson Bessani, Paulo Sousa, Miguel Correia
University of Lisbon, Faculty of Sciences - Portugal

USENIX HotDep’10
Vancouver - CA

October 3rd, 2010



Motivation

1. Most practical BFT works are based on 

the state machine replication model

2. Modern distributed systems avoid strong 

synchronization primitives due to their 

complexity and underlying assumptions

October 3rd, 2010 HotDep'10 2



State Machine Replication

October 3rd, 2010 HotDep'10 3

SERVERS
CLIENTS

op1

op2

Total Order Broadcast

(the magic happens here)

op2, op1

op2, op1

op2, op1

op2, op1

Requires
Consensus



SMR Limitations

• Conceptually simple, but too restrictive

– Make it difficult to implement things like 
housekeeping or asynchronous messaging

• Usually provides linearizability, which is a 

very strong consistency model, not 

required in many applications

• Difficult to implement multi-threaded 

servers (replica determinism requirement)

October 3rd, 2010 HotDep'10 4



Avoiding Consensus

“Strong synchronization should be avoided at all costs”

• Embrace eventual consistency

– This is the way things are done

• But it is not always adequate

– It makes the programmer’s life harder

– Some applications do require consistency

October 3rd, 2010 HotDep'10 5



Research Question

Would it be possible to build 

dependable and consistent services 

relying on strong synchronization only 

when it is absolutely necessary?

October 3rd, 2010 HotDep'10 6



HotDep'10 7

BFT Abstractions

BFT ≠ BFT State Machine Replication

October 3rd, 2010

High level abstractions

Low level abstractions



High-level Abstractions: 

Coordination Services

October 3rd, 2010 HotDep'10 8

• Crash FT: Zookeper (name service + sequencers), Chubby (file 
system + locks), Sinfonia (registers + mini transactions)

• BFT: DepSpace (policy enforced augmented tuple space), UpRight-
Zookeeper (same as Zookeeper)

Traditional systems Coordination systems



Low-level Abstractions

• read/write quorum systems

• leader election

• barriers, etc…

• In this paper we propose a new one:

– Active quorum systems (AQS)
(Byzantine Quorum System + Synchronization Power)

October 3rd, 2010 HotDep'10 9



AQS Benefits

• Minimal assumptions

– Consensus is used only when it is absolutely 
necessary

• Stability

– Non-favorable executions (faults, asynchrony, 
contention) adds only 2 communication steps

• Flexibility

– Protocols can be simplified if the application 
requirements allow it

October 3rd, 2010 HotDep'10 10



AQS Principle #1

Break the state in small objects

October 3rd, 2010 HotDep'10 11

SERVERS

Service
State

SERVERS

SMR: the service as a 
replicated deterministic

state machine

AQS: the service as a 
a set of independent
objects accessed by

different clients.



AQS Principle #2

Three types of operations

• read

– Reads the state of the object

• write

– Defines a new state for the object

– Example: x = 2

• rmw (read-modify-write)

– Updates the state of the object using its old 
value (consensus number = n)

– Example: x = x + 2
October 3rd, 2010 HotDep'10 12



HotDep'10 13

Active Quorum Systems Protocols

read

write

rmw

Quorum-based asynchronous
protocols for register

implementation (PBFT-BC,
Liskov & Rodrigues - ICDCS’06).

PBFT (Castro & Liskov, OSDI’99) 
with some modifications

to deal with concurrent writes.

October 3rd, 2010



Active Quorum Systems Protocols

October 3rd, 2010 HotDep'10 14



Extensions

• Avoiding signatures

– Authenticators can be used instead (like HQ)

– Additional cores can be used to verify signatures

– Non-malicious BFT does not require full-fledge 

cryptographic signatures

• Multi-object operations

– If one operation is an rmw, the whole operation set is 

executed as an rmw

October 3rd, 2010 HotDep'10 15



Weakening the protocols

October 3rd, 2010 HotDep'10 16

(BFT) Replication Protocol

Environment

Service

No Faults

No Contention

Synchrony

Semantics

Consistency

Access Control

AQS

Q/U
HQ-Replication

Zyzzyva



AQS Principle #3

Exploit the service specification for 

optimizations

• Access control: single- vs multiple-writers

• Consistency: regular vs. atomic objects

– Regular: no perfect emulation of a non-
replicated system

– Atomic = Linearizable

October 3rd, 2010 HotDep'10 17



Performance
(number of communication steps)

October 3rd, 2010 HotDep'10 18

Operation

Type

Single W.

Regular

Single W.

Atomic

Multiple W.

Regular

Multiple W.

Atomic

read 2 2(4) 2 2(4)

write 2 2 4(6) 4(6)

rmw 2 2 5(7)* 5(7)*

Single writer:
No need to read the current
timestamp before updating it

Single writer:
No PBFT, just a single-writer write

Regularity:
No need to do write-backs



AQS Applications

• LDAP:
– Main AQS Object: LDAP Entry

– Only Entry creation and removal require rmw

(A file system metadata service is very similar)

• Smart object storage: 
– Main AQS Object: Data Block

– Uses rmw to modify single bytes of large blocks

– Access control can be used to optimize writes

• Tuple Space: 
– Main AQS Object: Tuple

– Only tuple removal requires rmw

October 3rd, 2010 HotDep'10 19



Conclusions

• AQS key principles

– Break the service state in as many objects as 

possible

– Divide the object operations in read, write and rmw

– Exploit the service specification in order to find 

opportunities for optimization

• Benefits:

– Minimal assumptions

– Communication optimality

– Stability for non-favorable executions

October 3rd, 2010 HotDep'10 20


