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Abstract

Memory is the most frequently failing component that
can cause system crash, which significantly affects
the emerging data centers that are based on system
virtualization (e.g., clouds). Such environment differs
from previously studied large systems and thus poses
renewed challenge to the reliability, availability, and
serviceability (RAS) of today’s production site that hosts
a large population of commodity servers. The paper
advocates addressing this problem by exploiting mem-
ory error characteristics and employing a cost-effective
self-healing mechanism. Specifically, we propose a
memory error prediction and prevention model, which
takes as input error events and system utilization,
assesses memory error risk, and manipulates memory
mappings accordingly (by page/DIMM replacement or
VM live migration) to avoid potential damage and loss.

1 Introduction

Errors in Dynamic Random Access Memory (DRAM)
[5, 14, 15] play an important role in system crash that
causes major problems, such as service unavailability,
data loss and corruption, etc. Although single occur-
rence of memory error is rare, to consider today’s pro-
duction site that hosts a large population of commodity
servers (such as Google’s server fleets), their accumu-
lative effect is not insignificant. Studies [18, 19] show
that memory errors make up the largest portion of system
failures among all possible reasons (not only hardware
faults) and take up almost the top place of component
replacement.

Hardware fault tolerance [17] in general has been an
active research area for a long time. To tolerate various
faults, adding certain form of redundancy (by hardware
or software) to the system is necessary. These techniques
are primarily designed for mission critical applications

that are unaware of the costs or orchestrated systems that
can afford efforts to build.

However, in the emerging large data centers that are
based on system virtualization (e.g., clouds [2]), the
situation is different. The provisioning of computing
resources often abides by “paying for what you use”
model. The commercial contract between providers and
consumers is expected to meet Service Level Agree-
ment (SLA) with financial penalties, e.g., Percentage of
Uptime [2]. Unfortunately, it is impossible for cloud
providers to massively employ fault tolerance techniques
due to cost-inefficiency. Despite SLA, consumers desire
continuous availability and reliability but not the burden
to accomplish it. Our paper aims to address this dilemma
to an extent.

We take advantage of recent studies on the character-
istics of hardware memory errors [13, 20] and employ
a cost-effective self-healing mechanism [21] that diag-
noses, predicts, and prevents memory errors to reduce
their potential damage and loss at system level. We use
the latest processor feature (i.e., Intel MCA [10]) that
provides the ability to detect and report hardware errors.
We propose a memory error prediction and prevention
model, which takes as input error events and system uti-
lization, assesses memory error risk, and manipulates
memory mappings accordingly (by page/DIMM replace-
ment or VM live migration [7]), such that the hypervisor
is enabled to guard guest VMs against memory errors,
increasing their uptime.

The contribution of this paper is a practical one. We
designed effective and efficient memory error prediction
and prevention mechanism in virtualized systems, which
can provide scalability, lossless performance, and cost-
efficiency “to the masses”, therefore it will benefit from
the scale effects in that a significant number of system
failures can be saved expectably.

The remainder of this paper is organized as follows.
In Section 2, we introduce the background and motiva-
tion. In Section 3, we propose our design model of the



memory prediction and prevention mechanism. Then we
present our implementation in Section 4. At last, we talk
about related work in Section 5 followed by the conclu-
sion and future work in Section 6.

2 Background and Motivation

In this section, we first introduce memory errors and
their characteristics learnt from previous studies. Then
we motivate our paper by discussing the extent to which
memory error prediction and prevention can alleviate the
threat faced by growing size of memory configurations
and number of computers in system virtualization based
large server farms. Finally, hardware requirement of this
study is presented.

2.1 Memory Error Characteristics
Broadly speaking, the memory error we focus is hard-
ware error. Further on, the memory errors can be cat-
egorized into soft errors, which randomly flip memory
bits but without permanent physical damage (e.g., par-
ticles strike on the silicon chip); and hard errors, which
repeatedly corrupt bits due to device defect (e.g., device
wearout). The consequence of memory errors is depen-
dent on their types. If the errors can be corrected by
hardware (e.g., Error Correcting Codes), then software
is oblivious to such events and can continue running; yet
repeated correctable errors (i.e., one bit hard error) still
lead to considerable performance loss [20]. Conversely,
if the errors are uncorrectable, system failure is unavoid-
able.

Memory errors have intrigued research community for
long, such that much work has been done to demystify
their cause, impact, and behavior. We introduce two re-
cent studies that motivate our work. Li et al [13] took
measurement on over 300 machines from both produc-
tion site and laboratory for up to 7 months. Schroeder et
al [20] collected comprehensive data on Google’s large
server fleet over 2.5 years. We learn several lessons from
their work:

• Hard vs. Soft. Hard errors overwhelm soft errors,
which are unfortunately concerned by most previ-
ous studies ([13] only captured two soft errors that
are also correctable, and all other errors are caused
by hard errors). To this end, we concentrate on
hard errors because soft errors not only account for
a little portion, but also they are caused by unpre-
dictable external factors, such as alpha-particles in
cosmic rays [14].

• Correctable Error Means. There is strong correla-
tion between correctable and uncorrectable errors.

The chance that a DIMM who has a correctable er-
ror will have another correctable error in the same
month is up to 228 times more than that of a DIMM
seeing no correctable errors. Moreover, in 70-80%
of the cases, an uncorrectable error is preceded by
a correctable error in the same or previous month.
In other words, the presence of correctable error
increases the probability of uncorrectable error by
factors up to 400. Since uncorrectable errors cause
system crash, we leverage the correlation between
correctable and uncorrectable errors to predict and
prevent them from taking place.

• Utilization Influences. System utilization (CPU cy-
cle rate and memory allocation) is strongly corre-
lated to memory errors. The correctable error rate is
by a factor of 2-3 higher for high system utilization
than for low utilization. Thus, we take system uti-
lization into account and balance the memory work-
load at three levels (page, DIMM, and server) to re-
duce memory error incidence.

In summary, memory errors are predictable as opposed
to previous recognition. This finding can be used for sys-
tem design to reduce their induced loss, e.g., intermittent
correctable errors highly indicate hard errors, which will
repeatedly cause soft errors at the same position and raise
the probability of uncorrectable errors (if adjacent bits
are flipped). [20] also shows that DIMM aging relates to
memory errors, but we currently don’t consider aging in
this paper.

2.2 To What Extent Can Memory Error
Prediction and Prevention Solve the
Problem?

In contrast to previous studies, not only is serious mem-
ory error predictable, but also it is orders of magnitude
higher than as anticipated [20] 1. The FIT rates (Failures
In Time per billion device hours) are 25,000 to 70,000
per Mbit. Put another way, more than 8% of DIMMs are
affected yearly; the machine failure rates vary from 12%
to 50% with different platforms since there are often mul-
tiple DIMMs per machine. Notably uncorrectable errors
that typically bring about system crash affect 1.3% to 4%
of the machines per year.

Because memory errors are not exceptional but are
rather common place, we argue that memory errors need
to be predicted and prevented: 1) They cause serious sys-
tem crashes and costly component replacements if not

1Li et al [13] finds the opposite result. Here we choose [20] because
their measurement period is longer; they have tested more servers with
more DIMMs covering multiple vendors, capacities, and technologies;
and their workloads are more stressful.



precisely prevented beforehand; 2) In today’s data cen-
ters, they normally occur, so plenty of opportunities ex-
ist to predict them; 3) They have manifested themselves
to be predictable through exploiting their characteris-
tics. More importantly, since memory error self-healing
mechanism is cost-effective, scalable, and of negligible
overhead, it can be easily applied to data centers. The
resulted scale effect ensures that the mechanism will sig-
nificantly outweigh that without it, even if some unex-
pected errors can be overlooked.

2.3 Why Do We Focus on Virtualization?

We believe memory error prediction and prevention can
apply to and benefit system design in general [21]. How-
ever, we take more interests in system virtualization,
which consolidates multiple instances of operating sys-
tems (legacy or latest, proprietary or open source) into a
single server for higher resource utilization, easier man-
agement, and lower energy consumption.

Modern large systems always adopt fault tolerance,
such as Google search engines, however, for the emerg-
ing computing clouds that are based on system virtual-
ization, their use model does not allow fault tolerance to
be employed extensively at the level of application, oper-
ating system, or virtual machine, by either the providers
or the consumers [8, 6].

In addition, the cloud infrastructure exposes signifi-
cant vulnerability to memory errors: 1) Memory errors
can be used to attack system security [9, 16]. As vir-
tual machines sharing the same memory usually belong
to different consumers or applications, this engenders the
threat that the VM might be penetrated to violate cus-
tomer confidentiality, which is proved to be susceptible
to memory errors. 2) Virtualized systems naturally have
higher utilization due to server consolidation, which in
turn leads to an increase in memory error rate. 3) Since
virtual machines are assigned to customers, the installed
operating systems can be diverse. Many proprietary and
legacy OSes can not handle memory errors, which can
only rely on hypervisor to deal with them. 4) The “eggs
in a basket” effect needs hypervisor to be more robust
and resilient to system failures, to which memory errors
contribute the most.

2.4 Hardware Requirement

Since memory errors are strongly correlated and need
to be taken seriously in virtualized systems, the missing
piece of the puzzle is that we need hardware support to
let us be aware of memory errors. Our work takes advan-
tage of Intel Machine Check Architecture (MCA) [10]
that is common in modern servers.

The Pentium 4, Intel Xeon, and P6 family processors
implement MCA that provides a mechanism for detect-
ing and reporting hardware errors. Two error events are
related to memory: Corrected Machine Check Interrupt
(CMCI), which will be delivered when a memory error
is detected and corrected, and Machine Check Exception
(MCE), a non-maskable event that informs system soft-
ware that an uncorrectable memory error has occurred.
CMCI also provides the ability to setup a threshold such
that when it is exceeded by the number of corrected
memory errors, a CMCI event will be delivered to sys-
tem.

3 Design

We present the memory error prediction and prevention
mechanism in this section. First, our model is proposed.
Then we introduce memory error risk assessment and
elimination. Finally, we discuss the situation when un-
expected errors that are uncorrectable occur .

3.1 Model

The design model involves five components for memory
error prediction and prevention, which is illustrated in
Figure 1 and described below.

• Event Collector interfaces with the hardware sup-
port for memory error reporting (i.e., MCA [10]).
It receives MCE and CMCI events, handles them
(with error handler), and may also configure the
hardware as necessary.

• Error Log records all the memory error events and
detailed information regarding them, such as mem-
ory address, time stamp, and event type etc. This
log will be retrieved at later time for further analy-
sis.

• Utilization Monitor keeps track of the system uti-
lization from hypervisor: CPU cycle rate and mem-
ory allocation (hence we combine CPU usage and
memory allocation together to approximate mem-
ory utilization in stead of counting memory reads
and writes).

• Risk Assessor takes as input the system utilization
and memory error events, and makes an assessment
of the risk that a hard or uncorrectable error may
happen. It will also balance the memory workload
of the server versus the exposed threat, and activate
virtual machine live migration [7] when necessary.
In addition, it has a bookkeeping of all the suspected
memory addresses and historical operations.
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Figure 1: Memory error prediction and prevention: an overview

• Operator takes orders from risk assessor to per-
form page replacement, DIMM replacement, or vir-
tual machine (VM) live migration to prevent the po-
tential errors and loss.

3.2 Risk Assessment
Risk comes from hard and uncorrectable errors and can
be foreshadowed by two symptoms with great probabil-
ity: correctable errors and high system utilization, as is
stated in Section 2.1. Therefore, we take two counter-
measures to them respectively. One is error prediction
and the other is hot spot avoidance.

Error Prediction. If correctable errors occur to the
same memory address, it yields strong confidence that a
hard error has appeared or an uncorrectable error will ap-
pear. According to how much risk the system would bear,
the number of correctable errors may vary, for example,
from 1 to more. If the risk is affirmative, the risk assessor
will tell the operator to replace the affected page. If there
are several DIMMs in the server, the risk assessor may
even order the operator to replace the affected DIMM if
many correctable errors have occurred. In such case, sys-
tem administrator will also be alerted.

Suspected faulty memories will be put on probation
for a period of time (e.g., 3 months) except those with
hard error. Only when system is overloaded will the risk
assessor reclaim the memory that is released from pro-
bation (but will only be allocated to low priority guests).
This is done through consulting the error log and the
bookkeeping that records the memory addresses previ-
ously replaced.

Hot Spot Avoidance. Utilization monitor will report
the online usage for CPU and Memory to risk asses-
sor. Risk assessor first tries to balance system utilization
for each DIMM by exchanging guest VM’s memory be-
tween DIMMs when appropriate. If virtual machine live
migration is available, risk assessor would try to balance
the load across servers in the site. Note that hot spot

avoidance may lead to thrashing (not at the virtual mem-
ory level in OS) or violating energy saving policy (which
concentrates workload as much as possible and turns off
the unused server), however, this is a tradeoff to make
and these topics will be further studied and are beyond
the scope of this paper.

3.3 Unexpected Errors

If an uncorrectable memory error is encountered, the er-
ror handler in event collector (see Figure 1) first checks
which DIMM owns the affected memory address. The
memory is probably owned by guest VMs, because hy-
pervisor has very small footprint. In such a case, error
handler either destroys the guest VM and restarts it, or in-
vokes guest’s error handler to deal with the error by pass-
ing a simulated MCE event to the guest. By all means,
the error event will be finally reported to the risk asses-
sor. When uncorrectable errors occur often, the assessor
may replace all the guest VMs affected to other DIMMs,
or live migrate them to other servers.

If the hypervisor owns the faulty memory, however,
error handler will probably have no choice but reboot
the system. So this is a hole in our system. In fact, our
work does not aim to recover uncorrectable memory er-
rors, since it is not a complete fault tolerance mechanism.
We are motivated to predict memory errors and prevent
them from affecting system reliability, availability, and
serviceability. More importantly, our concern is scalabil-
ity, cost-efficiency, and minimal overhead, so it can be
deployed to production sites for “economies of scale”.
Since hypervisor is small and has low system usage, we
can apply fault tolerance to hypervisor. However, this is
not the focus of our paper.



4 Implementation

Our work is based on Xen project [3] (an open-source
virtualization platform). The hardware requested is Intel
latest processors with Machine Check Architecture sup-
port [10].

Guest Physical Address (GPA) is translated to Host
Physical Address (HPA) in virtualization environment.
Replacing a physical page for a guest VM requires the
updating of all the translations accordingly. This may
include M2P (machine to pseudo-physical) and P2M
(pseudo-physical to machine) address tables that are
managed by hypervisor, hardware translation table (e.g.,
Expanded Page Table) that is used by CPU in hardware
assisted mode, and the translation from guest linear ad-
dress to host physical address in the direct paging mode
and shadow page table. In this process, when MCA (Ma-
chine Check Architecture) interrupt happens, the hyper-
visor may update all the address translations. Or at later
time, upon the operator’s (see Figure 1) request, the hy-
pervisor first uses an IPI (inter-processor interrupt) to in-
terrupt the execution of guest VM to trigger the guest’s
VM exit, then the hypervisor captures that exit and up-
dates all the memory address translations, and at last re-
sumes the guest VM’s execution. Shared page handling
hereby is elided due to space limit. Currently, a large por-
tion of our implementation is already included in main-
line source code in Xen project.

The overhead of page replacement is very small, espe-
cially when Expanded Page Table (EPT) is used. DIMM
replacement can be viewed as many successive page re-
placements. VM live migration is well tested in [7]. For
a thorough test of our work, it would take a lot of efforts,
and we plan to do that in the future.

5 Related Work

The most relevant work is MPR [21], which automat-
ically retires pages that suffer from memory errors in
Solaris 10 Operating System. Our work differs in that
we focus on virtualization and take system utilization
into account in balancing memory workloads to predic-
tively reduce memory error risk. PAI [11] and Duplica-
tion Cache [1] investigate hardware methods to recover
failed memory. In virtualization area, Remus [8] and
[6] provide high availability to VMs by state replica-
tion, and record and replay respectively. Many studies
[4, 5, 14, 15, 18, 19, 12] take various ways to demystify
memory error cause, impact, or behavior. Li et al [13]
and Schroeder et al [20] measured and analyzed mem-
ory errors in large scale and for long term. Their work
provides the basis for our memory error prediction and
prevention mechanism.

6 Conclusion and Future Work

DRAM errors can cause system failures that lead to ser-
vice unavailability and data corruption. In today’s large
production sites with lots of servers, their effects become
significant. This paper aims to predict memory errors
and prevent them from affecting system reliability, avail-
ability, and serviceability (RAS) by using memory error
characteristics.

Hardware fault tolerance in general adds redundancy
to the system. These techniques are suited for mission
critical applications or large orchestrated systems, how-
ever, the emerging cloud infrastructure that is based on
system virtualization often lacks the vantage to deploy
them. Therefore, we take special interests in this respect.
In addition, latest processor mechanism (such as Intel
MCA) provides the ability to take finer-grained actions to
memory errors. In this paper, we designed a memory er-
ror prediction and prevention framework, which takes as
input error events and system utilization, assesses mem-
ory error risk, and correspondingly manipulates memory
mappings (page replacement, DIMM replacement, and
VM live migration). Our work has been largely imple-
mented on Xen hypervisor and included in the mainline
source codes. We are currently on the way to fulfill our
work and collaborate with industry to take quantitative
measurements to fine-tune the predictive model and eval-
uate the effects.
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