
Toward Quantifying System Manageability

George Candea
École Polytechnique F́ed́erale de Lausanne (EPFL), Switzerland

george.candea@epfl.ch

Abstract

Manageability directly influences a system’s reliabil-
ity, availability, security, and safety, thus being a key in-
gredient of system dependability. Alas, we do not have
today a good way to measure manageability or reason
quantitatively about it, and this is a major hindrance in
improving systems’ ease of management. In this paper,
we propose a manageability metric that aims to be ob-
jective, intuitive, and broadly applicable. We hope such
a metric will help software developers make the right de-
sign tradeoffs and will also foster fair competition on
the basis of manageability. We also offer preliminary
thoughts on incorporating this metric into a benchmark.

1 Introduction

It is no longer necessary to argue that managing
enterprise computing systems is complex and time-
consuming, or that the cost of managing IT infrastruc-
tures far exceeds the hardware and software costs—
numbers speak for themselves: IT operations account for
50%-80% of today’s IT budgets [3], amounting to tens of
billions of dollars yearly. Besides the bottomline, poor
manageability also impacts reliability, availability, and
security in harder-to-quantify ways. As human error be-
comes the dominant cause of unscheduled downtime [9],
we desire systems that are easier, cheaper, and quicker to
manage.

The greatest manageability challenge is posed by
stateful systems (e.g., databases, filesystems). By con-
trast, stateless applications (e.g., Web servers) require
little configuration, can be scaled through mere replica-
tion, and are reboot-friendly. While one administrator
can manage 100s to 1000s of Web servers, it takes ap-
proximately one administrator for each TB of data in a
database [6]. The number of knobs on stateful systems is
overwhelming: the Oracle DBMS has 220 initialization
parameters and 1,477 tables of system parameters [13],
while its “Administrator’s Guide” is 875 pages long [12].

There is little hope to improve manageability without

a well-defined, objective way of measuring this kind of
improvement; in fact, an important tenet of engineering
is to always assess quantitatively progress vs. regress in
the design and implementation of a system. So we need
a way to measure manageability, i.e., a benchmark.

Benchmarks of various sorts (especially for perfor-
mance) emerged the moment systems, due to their com-
plexity, were no longer comparable simply based on their
specifications. A simple example is a 3 GHz micropro-
cessor that may provide less computational power than
a 2 GHz one. Suitable benchmarks can easily highlight
such differences, typically relying on mimicking a work-
load deemed representative for the system in question.

A manageability benchmark must be objective, or else
comparison between systems makes little sense (for in-
stance, a study found that Oracle 10g is more manageable
than IBM’s DB2 UDB v. 8.2 [17], while another study
found the exact opposite [2]). Moreover, when bench-
mark results, such as the ones from SPEC and TPC, are
audited and independently verifiable, their validity and
acceptance are increased. But the key element in an ob-
jective benchmark is having a clearly defined and broadly
accepted metric along with an objective methodology for
conducting the benchmark. This metric is important not
only for comparing systems from a purchaser’s perspec-
tive, but it is also a tool for architects and developers to
make tradeoffs in their design decisions.

Comparing real systems is always challenging, be-
cause their functionality and complexity can be broad
and an in-depth comparison is often time-consuming.
The value of specific features can sometimes be judged
only by direct experience, after deployment, and detailed
features often cannot even be compared directly. Never-
theless, a benchmark should provide a good balance be-
tween useful quantification and simplifying assumptions.

In this paper we introduce a manageability metric that
can help engineers ascertain how close their systems
are to a chosen manageability target and how to make
manageability-improving tradeoffs. We also outline a
methodology for evaluating system manageability, thus
taking a first step toward a manageability benchmark.

1

2 A Manageability Metric

In most fields of engineering, having a specific property
as a first-order design goal requires a suitable metric to
quantitatively measure progress toward that goal, as well
as evaluate how different design decisions impact the de-
sired property. In choosing such a metric for system
manageability, we aim for three properties: simplicity,
intuitiveness, and wide applicability.

Before attempting to quantify manageability, it is
worth deciding specifically what manageability is. The
ISO-9126 standard for the evaluation of software
quality defines maintainability—a “close cousin” of
manageability—as a set of attributes that bear on the ef-
fort needed to make specified modifications: stability,
analyzability, changeability, and testability [7]. These
“ilities” aim to capture the ease with which a software
system or component can be modified to adapt to a
changed environment, correct faults, or improve perfor-
mance. Within the framework of this definition, we con-
sider a system’s manageability to be determined bythe
level of human effort required to keep that system oper-
ating at a satisfactory level.

The unit of measure we employ is the “management
unit” (MU), a generic unit similar to the “international
unit” used in pharmacology1. Business persons, how-
ever, think of poor manageability as a liability that in-
creases administration costs and thus total cost of own-
ership; said differently, those with decision power think
of manageability in monetary terms. While using dollars
as a unit of measure offers the benefit of clarity and ob-
jectivity, it lacks universality. For instance, the adminis-
tration cost of a mail server is typically lower in India or
Bangladesh than in the US or Switzerland, due to wage
differences (hence the frequent outsourcing of such IT
services). Lack of universality would reduce our ability
to use the metric for absolute scoring of a system’s man-
ageability in a reasonably time-invariant way.

In quantifying manageability, we build upon the
premise that the root cause of management difficulties
lies in exposed complexity. Internal complexity in mod-
ern software systems is inevitable, but exposing it to
the administrators can be avoided. In a system with
externally-visible complexity, there are many steps re-
quired to achieve a given task, and some of these steps
take very long; at each step, something might go wrong,
requiring the administrator to make a decision on the
fly. Frequent decision points also offer opportunities for

1The international unit (IU) is used to characterize the biological
effect of a substance, such as vitamin E. To define an IU for a given
substance, the International Committee on Biological Standardization
provides a reference preparation of the substance in question, arbitrarily
sets the number of IUs contained in that preparation, and specifies a
biological procedure to compare other preparations of thatsubstance to
their reference preparation.

mistakes, the prevention of which requires highly-trained
professionals and large budgets. High-level management
tasks cannot be performed atomically and, when some-
thing goes wrong at an intermediate step, the system can
enter an unusable state. The manageability metric should
therefore encourage the simplification of system man-
agement paradigms.

We can think of system management as a collection of
tasks the administrators have to perform to keep a sys-
tem running in good condition: deployment, configura-
tion, upgrading, tuning, backup, failure recovery, etc. We
can approximatecomplexityof a management task by
the number of discrete, atomic steps (Steps i) required
to completeTask i; the largerSteps i, the more inter-step
intervals, hence the greater the opportunity for an admin-
istrator to make a mistake. An operating system install,
for example, entailsSteps install in the tens or hundreds.

The step is a unit of atomic management work. This
means that, if a step fails in the middle, whatever has
been done as part of that step can be easily, cleanly, and
predictably undone. The precise definition of a task, on
the other hand, is not directly relevant to the proposed
metric, so we can think of it as a mere collection of steps.

The metric must also account for the duration of man-
agement operations, because, the longer they take, the
greater the opportunity for unrelated failures that occur
in between steps to impact atomicity and integrity of
the overall task: power failures, administrator distrac-
tions, etc. We therefore add to the metric the notion of
efficiencyof management operations, which is approxi-
mated by the timeTime i the system takes to complete
Task i. A trouble-free installation of an OS today would
take on the order ofTime install ≈ 1-3 hours.

If Ni represents the number of timesTask i is per-
formed during a time intervalTotalTimeeval (e.g., one
year) andNtotal = N1 + ... + Nn, thenWeight i =
Ni/Ntotal is Task i’s relative weight of occurrence dur-
ing the system’s lifetime. Surveys [1, 8, 10] or em-
pirical studies can provide realistic values forWeight i.
The equivalent of getting such weights was successfully
done for workloads used in performance benchmarks,
like SPEC, TPC, and Linpack.

We express manageability in MUs with the following
formula; higher values indicate better manageability:

Manageability =
TotalTimeeval∑

n

i=1
Weight i × Time i × Steps i

This formula expresses the fact that manageability
is reduced proportionally to how long the management
tasks take and to how many atomic steps are involved in
each such task. The fewer steps there are, the lower the
exposed complexity of the system; the faster the manage-
ment tasks can be completed, the lower the likelihood of

2

trouble. The less management a system requires (i.e., the
longerTotalTimeeval for the sameNtotal), the easier it
is to manage; equivalently, the less the system needs to
be managed, the better. These are rules-of-thumb known
to every sysadmin, but sadly not obvious to every pro-
grammer.

The reason we use task-level timing (Task i) instead of
step-level is because steps are typically system-specific
(e.g., different in MS Exchange vs. Sendmail). At the
task level, however, we can reasonably expect to identify
a substantial set of tasks that are common to most sys-
tems within a class (e.g., all mail servers, or all database
servers). Thus, the metric can be used to compare sys-
tems from within a class to each other, without having to
dive too deeply into system details.

While the complexity and efficiency measures are ob-
jective, their relative importance depends on the admin-
istrator’s opinion: an improvement in complexity may be
valued more than an improvement in efficiency or vice-
versa. In a standalone metric, one could capture this
differentiated weighting in a coefficientα and replace
Steps i in the formula above withSteps α

i . The met-
ric can then be used for designing systems targeted at a
specific administrators audience defined by anα derived
from specific numerical examples, such as “halving the
number of steps in doing backup would triple the man-
ageability of my deployment.” However, the subjectivity
of α makes it unsuitable for a broadly applicable metric.

The formula assumes each step is atomic, i.e., that the
system cannot be left in an inconsistent state except at
the boundary between two steps. We are not aware of a
way to automatically verify a vendor’s atomicity claims,
so we must rely on the vendor to provide for each action
in a step (i.e., for each “substep”) a compensating action
that can undo its effects. E.g., if a UNIX user group is
created, then there should be a way to remove that user
group. Some actions are not undoable (e.g., deleting a
disk partition), in which case they must each be a single
step, not contained in a more complex step. Atomicity
of steps can be inspected and certified by benchmarking
bodies like the TPC or SPEC, or we can rely on online
reputation systems (like the ones used by eBay, Ama-
zon, and shopping search engines) to uncover mistakes
in vendors’ specifications.

There are a number of other system attributes, not in-
cluded in the proposed metric, that have a more or less
direct impact on manageability: system size, number
of nodes, complexity of interactions and dependencies
between components, security requirements, volume of
data handled, etc. There is an inherent tradeoff in how
precise a metric is vs. how approachable and adoptable it
is; we see this tradeoff at work in all widely used bench-
marks. For this reason, we excluded attributes whose ab-
sence simplifies the metric substantially while still keep-

ing it accurate to a first degree of approximation.
The role of a manageability metric is not only to mea-

sure, but also to guide developers in making day-to-day
choices, which is why we prefer an intuitive, easy-to-
remember formula over a complex one. By contrast, a
more precise formula would include the probability dis-
tributions ofSteps i andTime i, to account for multi-step
tasks that encounter failures and cause the administrator
to branch to a different sequence of steps (in the formula
we implicitly use averages of those distributions). In this
same vein, we do not account for partial ordering con-
straints between steps—while these do hurt system man-
ageability (e.g., by offering the opportunity to do steps
out of order), they complicate the formula. Such com-
plexity would sabotage the ease of adopting our proposed
manageability metric.

3 Metric + Workload = Benchmark

A metric on its own can be used by development organi-
zations in their quest to improve their products’ manage-
ability. However, to compare different systems to each
other, as may need to be done in a purchasing decision,
requires a benchmark. This requires pairing the man-
ageability metric with representative management work-
loads. As long as we aim for workloads that are specific
to a class of systems (e.g., a typical database manage-
ment workload, a smartphone management workload),
defining them can be done based on original studies, pub-
lished surveys [1, 8, 10] or best practices documents.

The workload description consists of a set of man-
agement operations along with the weights describing
their relative frequency of occurrence. These workloads
would be chosen and published by industry-wide bodies,
in the style of TPC and SPEC.

The choice ofTotalTimeeval depends on the type
of system. For enterprise systems, it is usually three
years, as this is the typical cycle for provisioning and
replacing systems. For consumer electronics or other
types of software, shorter survey periods may be more
representative (e.g., one year for smartphones). If we
break down the lifetime of a system into segments of
length corresponding to the survey duration, then the
weights of the management operations should be approx-
imately identical across the different segments. Choos-
ing aTotalTimeeval for the benchmark does not imply
that the user of the benchmark must wait that long to
evaluate a system, rather it means that the chosen work-
load describes what is expected to happen in that time
interval. The time segments between management oper-
ations are irrelevant when computing manageability.

We illustrate with a hypothetical example of a database
management workload (Table 1). SayTotalTimeeval is
three years and, for eachTask i, the indicatedWeight i is

3

Taski

Weighti
over 3 years

Installation 1 / 57
Major software upgrade 3 / 57
Minor required patching 12 / 57
Migration to new hardware 1 / 57
Failure recovery (e.g., bad disk) 3 / 57
Backup (setup + validation) 6 / 57
Recovery from backups 3 / 57
Disk space increase/decrease 9 / 57
Performance tuning 9 / 57
Schema management 10 / 57

Table 1: Hypothetical management workload for the
class of database systems (Ntotal = 57).

the relative weight of that task within this interval. Over
the course of three years, one could expect the database
system to be installed and suitably configured once; ev-
ery year, the system undergoes a major software upgrade;
once a quarter, various patches are applied; and so on.

Software is steadily becoming more of a service than
an artifact: when purchasing software, we also purchase
a limited right to future updates, notifications of secu-
rity vulnerabilities, technical support, etc. For example,
high-end storage appliances have a graphical interface
for common operations; while sufficient for most pro-
visioning and management, it does not allow for the res-
olution of exceptional problems. In such cases, the user
submits a trouble ticket and relies on the vendor for assis-
tance. The manageability of a particular software system
can be substantially influenced by the quality of technical
support, documentation, etc. Our proposed metric, how-
ever, sets out to measure solely the artifact, not the entire
service package. We leave the evaluation of the artifact’s
ecosystem to consumer review websites and other such
means of assessing end-to-end user experience.

The duration of steps can sometimes be a function
of attributes not included in the metric (see§2). For
instance, the duration of backup/recovery is typically
highly correlated with the volume of data involved, the
number of assigned IP addresses is proportional to the
number of nodes, etc. Such dependencies are quite com-
mon in benchmarks, and the usual approach is to choose
a few reference configurations that fix these variable at-
tributes. For example, the TPC-H benchmark [16] has
five categories corresponding to databases of 10 TB, 3
TB, 1 TB, 300 GB, and 100 GB. A similar approach can
be taken for the manageability benchmark as well.

The final component of the benchmark is a load driver
that implements the prescribed workload and can time
the individual steps. The specifics of this driver depend
on the interface of the system class under consideration.

4 Applying the Benchmark

To illustrate the use of the benchmark, we show how one
might compute the manageability of the Oracle DBMS.

Consider installing the DBMS: According to the doc-
umentation [11], installing on Linux consists of pre-
installation, installation, and post-installation actions; we
can therefore think of installation as consisting of the
three corresponding tasks. The pre-installation task con-
sists of 75 individual steps, such as creating necessary
user groups, setting various kernel parameters and us-
ing fdisk to set up partitions [11]. The installation task
consists of 12 steps, such as downloading an installer,
authenticating, and running the installer. Finally, post-
installation consists of 28 steps, such as downloading
and installing patches and running the Enterprise Man-
ager Console.

For simplicity, let us evaluate the manageability with
respect to installation only. Each of the 75+12+28=115
installation steps would be executed by the load driver
and timed; the sum of these times representsTime install ,
say 12 hours on a reference hardware configuration.
Installation is done once duringTotalTimeeval, so
Weight

install
= 1/57 (from Table 1). The driver

then computes
∑

1

i=1
Weight

i
× Time i × Steps

i
=

(1/57)×12×115 = 24 and finally computes the over-
all manageability by dividing 3 years× 365 days× 24
hours = 26,280 hours by this sum, giving a manageability
value of26, 280/24 = 1, 095 MUs.

How would a developer use the benchmark as a guide
to improve Oracle? A first step would be to reduce the
number of steps involved in performing the three tasks
related to installation. Many of the pre-installation steps
could be automated by atomic scripts. If all necessary
files were included on the CD or in the RPM package,
there would be no need to download installers from the
Web, which would avoid the risk of corrupt downloads or
bored administrators. If these measures halved the instal-
lation time toTime install = 6, the manageability score
of the DBMS would double to 2,190 MUs.

5 The Real World

In this section we analyze several aspects related to the
use of the proposed metric in practice: how it can be
used by businesses, whether to differentiate between ad-
ministrators’ experience levels, the effect of automation
on manageability measurements, the role played by the
assumption of step atomicity, and finally a discussion of
visibility vs. control in manageable systems.

Business Uses. For better or worse, the key to adoption
of the proposed benchmark is for it to provide an easy
way to connect good or poor manageability to the finan-

4

cial bottomline. Ultimately, enterprises employ IT solu-
tions in order to improve profit margins. The proposed
benchmark can serve to quantitatively reason about in-
vestment in IT, such as predicting the savings that would
result from using a product with better manageability.
Optimizations can even be done across multiple system
attributes, like performance and manageability, if suit-
able utility functions exist.

Consider the case of making a purchasing decision
for a new DBMS at an e-commerce site. In the US,
one administrator “costs” roughly $200K/year, includ-
ing salary, benefits, and office space. Say, for the sake
of discussion, that the business value of an IBM DB2
system that achieves 500 tpmC on the TPC-C bench-
mark [15] is $1M/year and costs $2M to purchase and
operate over three years, while an Oracle system that
achieves 800 tpmC is valued at $1.4M/year (increased
throughput means a larger client population can be sup-
ported) and costs $3M to purchase and operate.

Say the IBM system scores 8,000 MUs on the man-
ageability benchmark and the Oracle system 4,000 MUs.
At this hypothetical e-commerce business, an 8,000 MU
system might be manageable by a single administrator,
whereas a 4,000 MU system might require two adminis-
trators. With this information, we can now compute the
profit generated by the IBM system over three years as (3
years× $1M)− ($2M + 3 years× $200K) = $400K, and
that generated by the Oracle system as (3 years× $1.4M)
− ($3M + 3 years× 2 × $200K) = $0. The outcome
would argue in favor of the IBM system. When system
manageability can be quantified, it can be included in ac-
tual costs and businesses can make informed decisions.

Differences in Administrator Experience. The level
of experience with a certain system can vary substan-
tially across administrators; a universal metric must be
immune to such variability. It is for this reason that we
chose to not include in the metric any factor that depends
on the human sitting in front of the keyboard: theTime i

values represent the time it takes the system (not the ad-
ministrator) to completeTask i. This ensures thatTime i

can be measured in a consistent, reproduceable manner.
The role of experience, however, plays a role in con-

necting a concrete number of MUs to the number of ad-
ministrators required to administer the system. We ex-
pect that, over time, rules of thumb will emerge that can
help businesses connect these two quantities.

Automation and Atomicity. Automation of manage-
ment operations can help reduce the number of steps and
the amount of time involved in those operations. Mul-
tiple steps can be aggregated into a bigger step (e.g., a
script), but the aggregate step must still be atomic; tech-
niques such as checkpointing can be used to provide un-

doability. The atomicity requirement prevents vendors
from subverting the manageability metric through care-
less wrapping of multiple management steps into one big
script.

Atomicity helps avoid theautomation irony[14], an
effect by which automation of frequent easy tasks causes
human administrators to become less capable of handling
unexpected complex tasks; this happens because automa-
tion hinders humans in constructing an accurate mental
model of how the system behaves. If a non-atomic script
wraps multiple steps and then fails in the middle, it will
expose administrators to an unknown system state, re-
quiring them to solve an unexpected problem. Psychol-
ogists have found that humans are bad at coping with
such situations, especially when under stress [14]. If the
aggregate step is atomic, however, administrators are un-
likely to be exposed to unexpected complex tasks.

Management by Trial and Error. The fact that the
metric requires atomic steps encourages designs with
high levels of recoverability. Moreover, if management
actions are easy to undo—a stronger property than mere
atomicity—we can imagine administrators learning how
to manage a system by routinely exploring what-if sce-
narios. Such a system management paradigm would lend
legitimacy and safety to a practice that is already wide-
spread. To our knowledge, this idea of managing by trial
and error was first advanced by Brown and Patterson in
the context of their work on system-level undo [4].

If the entire process of managing a system was trans-
actional, i.e., all management operations had ACID se-
mantics (atomic, consistent, isolated, and durable), then
every task could have one step, and system manageabil-
ity would be predominantly a function of how long it
takes the system to execute management functions. This
simplification relates closely to the goal of making most
system failures be reboot-curable, in order for system re-
covery to become simple and predictable [5].

Visibility vs. Control. Advocating a manageability-
centric design, that eliminates control knobs and simpli-
fies management, does not necessarily imply eliminating
administrators’ visibility into the system. The issue of
control is relatively orthogonal to that of visibility.

When developing a software system, the discussion of
how much direct control to give administrators always
comes up. This control is often desired because adminis-
trators lack visibility into the reasons for a system’s be-
havior and want to use the control in order to gain that
missing visibility. Take for instance a database whose
performance has suddenly halved; this may be due to a
runaway query, some other process on the same machine
updating a filesystem index, the battery of a RAID con-
troller’s cache having run out and forcing all updates to

5

be write-through, or any number of other causes. In or-
der to diagnose the slowdown, the administrator will start
“poking around” withps, vmstat, mdadm, etc. This
involves many steps, which offer opportunities for mis-
takes, and takes a long time. However, what the adminis-
trator really wants is to know why the system is slow; the
control needed to remedy the situation is minimal: kill a
query, reboot the machine, or replace a battery.

Administrator mistakes often result from a mismatch
between the human’s mental model of the system and the
system’s actual behavior [3]. A system with a detailed,
low-level management interface is not necessarily less
manageable than one with few management functions—
if there is good visibility into the system, then the mental
model and the actual system can be well aligned. Thus,
when establishing a workload profile for the manageabil-
ity benchmark, it is advisable to include tasks related
to debugging and tuning. While visibility is quite dif-
ficult to quantify in a manageability metric, we believe it
can be accounted for indirectly through these debugging
and tuning tasks: if, in evaluating a network router, the
manageability benchmark measures how long it takes to
find the number of packets sent and received, then it is
quite likely that vendors will opt to conveniently expose
these numbers to the administrator. This improves visi-
bility and manageability, without increasing the amount
of control an administrator has over the router.

6 Conclusion

Just like security and safety, manageability is generally
hard to retrofit in complex systems—it is always easier
to build it in from day one. However, in the absence
of means to measure manageability and to quantify the
various tradeoffs, it is difficult to get the design right.
We proposed a manageability metric that combines man-
agement workloads and weightings based on real world
studies with direct measurement of the number of steps
involved in management tasks and their duration. We
believe the metric is most useful as a reasoning tool for
software designers, but we can also envision it being part
of a manageability benchmark. Developing this bench-
mark can take the software industry a step closer to a
systematic approach for building systems that are more
manageable and, therefore, dependable.

7 Acknowledgments

The ideas presented here are the result of discussions and
debates with my colleagues at both EPFL and Aster Data
Systems, as well as Aster’s customers. My interest in
manageability and recoverability is due in large part to
Jim Gray and the Recovery-Oriented Computing project.

I wish to thank the anonymous reviewers for their help in
improving this paper.

References

[1] R. Barrett, E. Kandogan, P. P. Maglio, E. Haber, L. A.
Takayama, and M. Prabaker. Field studies of com-
puter system administrators: Analysis of system manage-
ment tools and practices. InACM Conf. on Computer-
Supported Cooperative Work, 2004.

[2] J. Bloemen and G. Brunner. IBM DB2 UDB V8.2, Oracle
10g, Microsoft SQL Server 2000: A technical compari-
son. Business eKnowledge Solutions Gmbh, Nov. 2004.

[3] A. B. Brown and J. L. Hellerstein. Reducing the cost of
IT operations – is automation always the answer? In10th

Workshop on Hot Topics in Operating Systems, 2005.

[4] A. B. Brown and D. A. Patterson. Undo for operators:
Building an undoable e-mail store. InUSENIX Annual
Technical Conference, 2003.

[5] G. Candea and A. Fox. Crash-only software. In9th Work-
shop on Hot Topics in Operating Systems, 2003.

[6] J. Gray. Distributed computing economics. Technical Re-
port MSR-TR-2003-24, Microsoft Research, 2003.

[7] ISO/IEC TR 9126: Software engineering – product qual-
ity. International Organization for Standardization, 2003.

[8] W. Kakes, C. Ling, and A. Brown. What do E-mail sys-
tem administrators do? http://roc.stanford.edu/retreats/
summer03/slides/bkakes.ppt, 2003.

[9] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why
do Internet services fail, and what can be done about it?
In Proc. 4th USENIX Symp. on Internet Technologies and
Systems, 2003.

[10] Oracle database 10g and Oracle 9i database manageabil-
ity comparison. Oracle Corp., Feb 2004.

[11] Oracle. Oracle 10g installation guide for Linux x86-64.
Oracle Corp., May 2006.

[12] Oracle Database 10g Release 2 administrator’s guide. Or-
acle Corp., May 2006.

[13] Oracle Database 10g Release 2 reference. Oracle Corp.,
May 2006.

[14] J. Reason.Human Error. Cambridge University Press,
1990.

[15] The TPC-C OLTP benchmark. http://www.tpc.org/tpcc.

[16] The TPC-H decision support benchmark for ad hoc
queries. http://www.tpc.org/tpch.

[17] A. Werman, C. Norris, B. Cohen, J. Becker, and S. Mints.
Comparative management cost study: Oracle database
10g and IBM DB2 Universal Database 8.2. Edison
Group, Nov. 2004.

6

