Nebulas: Using Distributed Voluntary Resources to Build Clouds

Abhishek Chandra and Jon Weissman
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455
{chandra, jon}@cs.umn.edu

Abstract

Current cloud services are deployed on well-
provisioned and centrally controlled infrastructures.
However, there are several classes of services for which
the current cloud model may not fit well: some do not
need strong performance guarantees, the pricing may be
too expensive for some, and some may be constrained
by the data movement costs to the cloud. To satisfy the
requirements of such services, we propose the idea of
using distributed voluntary resources—those donated by
end-user hosts—to form nebulas: more dispersed, less-
managed clouds. We first discuss the requirements of
cloud services and the challenges in meeting these re-
quirements in such voluntary clouds. We then present
some possible solutions to these challenges and also
discuss opportunities for further improvements to make
nebulas a viable cloud paradigm.

1 Introduction

In the cloud computing domain, a cloud signifies a ser-
vice provided to a user that hides details of the actual lo-
cation of the infrastructure resources from the user. Most
currently deployed clouds [9, 14, 19, 2] are built on a
well-provisioned and well-managed infrastructure, such
as a data center, that provides resources and services to
users. The underlying infrastructure is typically owned
and managed by the cloud provider (e.g., Amazon, IBM,
Google, Microsoft, etc.), while the user pays a certain
price for their usage of the resources. There is also the
notion of strong resource and/or performance guarantees
between the cloud provider and the user, that ensures that
the user sees the performance they expect to see. Cloud
services tend to fall into several categories: long-term
state and data storage [23], “one-shot” burst of computa-
tion [16], and interactive end user-oriented services [15].

While the current cloud infrastructures are important
for the ease of use and performance they provide to their

users, there are several classes of services for which the
current cloud model may not fit well. We describe three
such classes and give an illustrative example for each:
e Experimental cloud services: These are services that
may eventually get deployed on a production system
(which itself can be a commercial cloud). However, be-
fore the actual deployment, the service developers may
want to “test drive” the service to make it production-
ready (e.g., remove bugs), or to test it for its viability
as a cloud service (e.g., gauge user demand/popularity).
To carry out such an experimental deployment, they may
need sustained access to a large-scale “test cloud” which
can provide a realistic deployment environment without
the costs and robustness of a production setting.
Example: A group of entrepreneurial Computer Sci-
entists, concerned about the state of Computer Science
research, decide to develop a research quality assurance
service that could be employed by conferences and jour-
nals to ensure the novelty and originality of publications.
As part of this service, submitted papers can be compared
against an archive of already published papers to check
for several problems ranging from similar results/text ap-
pearing in multiple papers to full-scale plagiarism. How-
ever, they may wish to understand the potential popular-
ity and accuracy as well as the resource demands of such
a service before partnering with organizations like ACM
and IEEE to host it on a commercial cloud.
e Dispersed-Data-intensive services: These are services
which rely on large amounts of dispersed data, and where
moving data to a centralized cloud can be prohibitively
expensive and inefficient. In this case, it would be prefer-
able to move the computational resources closer to the
data while providing sufficient computational capability.
Example: A group of social scientists wish to provide
a service that would analyze a large number of geograph-
ically distributed user blogs containing text, audio, and
video content to find interesting social trends. Given the
large number and size as well as the distributed nature of
such blogs, it would be important to move the analysis



service closer to where the blogs are actually stored.

o Shared services: These services would be provided by
users or organizations that wish to freely share their own
private applications with others as a “public service”,
but require deployment resources (e.g., computational
resources or network bandwidth). However, since these
services may not be commercial, the service deployers
may not want to pay the cost for running the services. At
the same time, these services may need arbitrary scale-
up/scale-down based on user demand.

Example: A user has built a custom “tour” of his re-
cent trip to Paris including maps, images, video, com-
mentary, etc. This tour is also context-aware: given a
user’s GPS coordinates, locations and information pop
up. Since this service with its data is large in size, it
would need a large amount of network bandwidth to
serve the content to interested users. Moreover, it may
need context-aware processing or data fetching for better
user experience, which would be hard to support on the
user-end if the user is using a thin client such as a PDA
or mobile phone.

Many of the above services may have weak per-
formance and robustness requirements, so that paying
for stringent requirements of high availability, accuracy,
and performance, as provided by many current cloud
providers may be unnecessary and undesirable.

To host such services, we propose the notion of nebu-
las: more dispersed, less managed clouds, constructed
using voluntary resources—those donated by end-user
hosts—such as those used in @home systems [1] and
P2P systems [24, 26, 13]. Nebulas draw on many of the
ideas advanced in P2P systems, Grids [11, 1], and dis-
tributed data centers [8]. We believe nebulas are fully
complementary to commercial clouds and in some cases
may represent a transition pathway. Volunteer resources
are attractive for several reasons:

e Scalability: Many existing volunteer platforms con-
sist of millions of hosts and users, providing a large
amount of resource capacity and scalability. E.g.: Fold-
ing@home [10] has approximately 250K hosts provid-
ing over 1 Petaflop, which is comparable to some of the
fastest supercomputers in the world today. Kazaa [24]
has an average of 3.5M users representing several Ter-
abits/sec of aggregate bandwidth.

e Dispersion: Volunteer nodes are likely to be geograph-
ically distributed. This can enable better mapping of
services to resources, in order to reduce data movement
costs, as well as to provide end-user-specific, context-
aware service deployment.

e Low cost of deployment: Volunteer resources are basi-
cally available for free or at very low cost. These are sim-
ply idle resources already available in the system. They
do not impose any additional hardware, maintenance, or
energy costs, beyond what they are already using.

Despite these attractive properties, most existing ap-
plications deployed on volunteer systems are largely
best-effort, and these systems would not meet many re-
quirements that define clouds today. In this paper, we
outline the opportunities and challenges of using such
voluntary resources to build nebulas, and present the key
issues that would need to be solved to make them suit-
able for use for the above service classes. We also detail
how existing point solutions could be synthesized to re-
alize nebulas. In this paper, we mainly focus on perfor-
mance and reliability issues for nebulas, and omit discus-
sion on some other issues due to space limitations. For
instance, we do not address the problem of incentiviz-
ing donation, for which techniques such as credit systems
and market economy models have been proposed in the
volunteer computing space [4, 28]. Similarly, we do not
discuss deployment issues such as interfaces, APIs, and
sandboxing/isolation mechanisms such as virtualization,
which will depend on the specific nature of emerging ser-
vices and resource owners. Finally, we omit security as
a specific requirement for nebulas, because we believe
highly secured cloud applications are unlikely to use the
nebula approach (other than for non-secured testing).

Differences from existing volunteer platforms: Be-
fore discussing the opportunities and challenges involved
in building nebulas, we first outline the major differ-
ences we see between nebulas and existing volunteer
platforms:

o Cross-component interactions: Most existing @home
systems are designed for embarrassingly parallel compu-
tations where there is no interaction between the different
compute tasks. However, for services running on a neb-
ula, tasks belonging to a user request would have much
tighter coupling and interactions as well as collective per-
formance goals, requiring careful allocation of localized
nodes for their execution.

e Locality- and context-awareness: While existing
@home and P2P systems do not distinguish between dif-
ferent nodes in the systems for allocating compute tasks
and data files, in a nebula, particularly for dispersed-data-
intensive and shared services, the data-computation lo-
cality, as well as the knowledge of the user context (their
location, device capacity, etc.) would be critical in mak-
ing resource allocation decisions.

e Dynamic state maintenance: Many cloud services are
likely to be stateful, and this state would need to be main-
tained across failures and churn likely in a volunteer plat-
form. As opposed to @home applications, where com-
putations are largely stateless and can be re-executed eas-
ily, nebulas will need to maintain distributed shared state,
that can be easily retrieved and used by a service.



2 Nebulas: Requirements and Challenges

In this section, we outline some of the requirements that
a voluntary infrastructure must satisfy to be acceptable as
a viable cloud platform, and outline the challenges that
must be solved to meet these requirements.
Requirement 1: Provide Service-Centric Perfor-
mance Differentiation

To deploy multiple services on a nebula, and to sup-
port multiple user requests for a service, the platform
must provide differentiation between these different ser-
vices/user requests, in terms of their service-specific per-
formance metrics, such as response time, throughput, etc.

Traditional voluntary infrastructures such as
BOINC [1] are tuned for never-ending best-effort
computations that have no completion boundaries. Thus,
different units of a computation simply contribute to
incrementally building up partial results, and there is no
notion of meeting any application-centric performance
metric. For such an application type, one does not have
to distinguish between different tasks, so that they can
be treated equally and little state needs to be maintained
about individual tasks.

While this model is appropriate for one-shot bursty
computational applications, a hosted cloud service would
be characterized by separate requests being submitted by
end-users, and these requests would have to be executed
concurrently in the cloud. The cloud would then require
mechanisms to differentiate between tasks correspond-
ing to different requests and collate their results sepa-
rately. For instance, the cloud would have to maintain
some state regarding the execution status of each individ-
ual request (e.g., its component tasks, completed partial
results, volunteers allocated to the request, etc.). At the
same time, the interaction between the volunteer nodes
would require an awareness of request-oriented nature of
the hosted service. For instance, work for new requests
should be pushed out as soon as possible to reduce the
request execution time, if there is a need to bound the
request completion times.

Challenges: Meeting service-centric performance re-
quirements is challenging due to the heterogeneous and
time-varying behavior of voluntary nodes. As illustra-
tion, we deployed a simple cloud service from the do-
main of Bioinformatics called BLAST [3] on a small
shared cloud using PlanetLab. A high degree of hetero-
geneity was observed (Figure 1), both in terms of the
computational capacity and communication bandwidth
of the participating nodes. We can expect a nebula based
on volunteer nodes to exhibit an even greater degree of
variance than a fixed infrastructure such as PlanetLab.
Requirement 2: Couple Data and Computation

Unlike their highly centralized counterparts, nebu-
las may contain distributed data and computational re-

sources. For cloud services that need to operate on dis-
persed data, either computation must be moved close to
the data, or the data must be moved close to the compu-
tation. This is a critical issue as many emerging services
are characterized by their dependence on large quantities
of data. Hosting such services on voluntary clouds raises
several novel challenges. First, decomposing the work
into separate decoupled tasks becomes more difficult due
to the inherent data dependency of these services. Sec-
ond, if the data source has to transfer large amounts of
data to the volunteer nodes, network bandwidth becomes
an important factor in addition to the node’s computa-
tional resources. Moreover, to avoid large communica-
tion overhead, computation may have to be collocated
with the data, which could require careful selection of
volunteer nodes in close proximity to the data store.

The quality of potential computational resources must
be weighed against the cost of data communication to
them. Quality can reflect metrics such as performance or
reliability/availability. For the case of performance, there
may be a tradeoff between the computational capability
of a node and its proximity to the data source.

Challenges: The distribution of data and computation
pose significant challenges in meeting service goals. In
the realm of performance, the heterogeneity and unpre-
dictable nature of network bandwidth makes it difficult
to estimate the cost of data communication. Such cost
estimation is needed when deciding which compute re-
sources to use. Choosing the compute resources to use
from a potentially very large set of volunteers must be
done efficiently and a scalable solution is needed.
Requirement 3: Provide Robustness to Small-Scale
Failures

While a nebula would support fairly weak guarantees
on the performance and reliability of a service, it should
still provide robustness to small-scale and localized fail-
ures. For instance, churn would be high in such systems,
and a nebula should ensure that the arrival and departure
of individual nodes does not impact the overall function-
ality of the services deployed on it. In particular, it must
be able to preserve service state across failures. Simi-
larly, there may be small-scale “bad” behavior, such as
credit-hawking or freeloading, particularly based on the
incentive model, and even disruptive or Byzantine be-
havior on part of some of the participating nodes. How-
ever, a nebula should be able to prevent such nodes from
subverting or preventing the execution of deployed ser-
vices. Effectively, a nebula should be able to quarantine
such small-scale failures and bad behavior, and be self-
organizing to recover from the impact of such nodes on
the service performance and reliability.

Challenges: Churn and failures are expected to be the
common case in a voluntary platform. Lack of central
monitoring and control pose a major challenge in pro-



70

60| A
50
40 |

30 |

Time (seconds)

20 |

10

0 2 4 6 8 10 12 14 16 18 20
Run #

(a) Computation time

Time (seconds)

0 2 4 6 8 10 12 14 16 18 20
Run #

(b) Communication time

Figure 1: The computation and communication time taken by different voluntary nodes over multiple runs.

viding reliability and state-maintenance in the presence
of such failures. The reliability of nodes has to be in-
corporated in service deployment decisions in addition
to performance criteria such as computational speed and
network bandwidth.

3 Building Nebulas: Possible Solutions

We now outline some of the approaches that can be used
to overcome the challenges outlined above. We note that
these approaches are only a subset of possible solutions,
and many of these challenges are also fertile ground for
further research.

Handling Heterogeneity

The diversity of volunteer nodes must be harnessed in
a service-specific way. Here, we focus on heterogene-
ity as it impacts performance. First of all, large-scale
resource discovery techniques [18, 22, 5] could be em-
ployed to select a suitable set of resources for service de-
ployment. These resources would be selected based on
their resource capabilities, and their long-term stability.
Further, service performance metrics would govern
how heterogeneity of selected resources is to be handled.
We present one such example. Many services attracted to
nebulas would be those that require large computations,
e.g. large-scale image analysis or scientific computing.
Such services are amenable to parallel processing - each
service request would be decomposed into separate tasks
and run on different volunteers. The response time for
each service request can be reduced by smart exploita-
tion of the underlying infrastructure heterogeneity. For
instance, since the completion time of the request is de-
pendent on the slowest node, the tasks should be allo-
cated according to individual node capabilities (e.g., by
assigning larger tasks to faster nodes with faster commu-
nication paths). Thus, tasks may be sized in proportion
to the node capacities for load balancing, and may also

be decomposed into smaller fixed sizes to account for
performance fluctuation [27]. Similar techniques can be
used for exploiting heterogeneity in a nebula for provid-
ing service-centric performance.

Handling Data-Compute Dependence

Selecting voluntary nodes for task allocation must take
into account the location of needed data. The first
challenge is to locate data (presuming its location isn’t
known a-priori). A rich array of techniques exist for
finding data by name or metadata in voluntary P2P net-
works [7, 24, 26]. Once the data locations are known,
the network distance from potential volunteer nodes
should be considered to meet performance objectives.
A wide array of network performance estimation tech-
niques have been proposed [21, 12] that rely on active
probes. The downside is that active probes add over-
head and consume network resources. An alternative ap-
proach is to estimate network performance in a passive
manner based on prior data downloads. However, it is
unlikely that a specific candidate volunteer (being con-
sidered for service deployment) has interacted with a par-
ticular data source to have prior measurements. In [20],
we have developed a framework called OPEN that can
utilize network measurement data from other nodes (ob-
tained via lazy gossip) and adjust those measurements
to account for the characteristics of the candidate volun-
teer. This approach is accurate, low overhead, and leads
to good volunteer selections and would be well-suited to
the nebula environment.

Handling Failures

Voluntary nodes must be selected not only based on
their performance characteristics, but also their reliabil-
ity, which can be affected by several factors, including:
churn caused by node failures as well as revocation of
the donated resources, network failures resulting in node



disconnections, and misconfigurations or malicious be-
havior. Replication is a widely-used technique for over-
coming failures, used in distributed storage systems [17]
and for Byzantine fault tolerance [6]. Since the churn and
failure profiles of nodes may vary widely in volunteer
platforms, replication techniques will have to incorporate
knowledge about individual node reliability values, if it
can be determined. For instance, node reliability values
can be used to perform dynamic replication [25] in such
systems. In this approach, the degree of replication can
be varied based on the reliability of participating nodes,
in order to achieve service-level reliability metrics with-
out sacrificing performance.

In order to maintain the state of a service across node
failures and churn, a nebula may have to support more
aggressive checkpointing techniques to avoid losing too
much state. In addition, it would need to support a
state-maintenance layer for easy storage and retrieval of
preserved state by a service. An interesting possibility
could be to use a distributed volunteer data storage plat-
form (such as Bittorrent) to maintain and disseminate this
state. The tradeoff in the cost of maintaining such state
against recreating it (e.g., by recomputation) will depend
on the statefulness of the deployed service, as well as the
reliability of the volunteer resources.

4 Conclusion

In this paper, we presented the notion of nebulas as an al-
ternative way to construct cloud infrastructures using dis-
tributed voluntary resources. These nebulas are geared
towards hosting cloud services which may not fit the cur-
rent well-managed, pay-as-you-go cloud model. We pre-
sented the requirements and challenges for hosting such
services on volunteer platforms, and then discussed pos-
sible solutions to overcome some of these challenges.
We believe that nebulas can exist as complementary in-
frastructures to clouds, and can even serve as a transi-
tion pathway for many services that would eventually be
hosted on clouds.

References

[1] D.P. Anderson. BOINC: A System for Public-Resource Compt-
ing and Storage. In Proceedings of the 5th ACM/IEEE Interna-
tional Workshop on Grid Computing, 2004.

[2] Azure Services Platform. http://www.microsoft.com/
azure/default .mspx.

[3] The Basic Local Alignment Search Tool (BLAST). http://
www.ncbi.nlm.nih.gov/blast.

[4] BOINC Stats. http://boincstats.com.

[5] M. Cardosa and A. Chandra. Resource Bundles: Using Aggre-
gation for Statistical Wide-Area Resource Discovery and Alloca-
tion. In ICDCS, June 2008.

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
OSDI, Feb. 1999.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable. In Pro-
ceedings of ACM SIGCOMM, Aug. 2003.

K. Church, A. Greenberg, and J. Hamilton. On Delivering Em-
barrassingly Distributed Cloud Services. In HotNets, 2008.

Amazon Elastic Compute Cloud (Amazon EC2). http://
aws.amazon.com/ec2.
Folding@home distributing computing project.

http://folding.stanford.edu.

1. Foster and C. Kesselman. Globus: A Metacomputing Infras-
tructure Toolkit. International Journal of Supercomputer Appli-
cations, 11(2):115-128, 1997.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: a global internet host distance estimation
service. ACM Transactions on Networking, 9(5):525-540, Oct.
2001.

Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
Architecture for Secure Resource Peering. In SOSP, 2003.
Google App Engine.
appengine.

http://code.google.com/

Google Maps. http://maps.google.com.

D. Gottfrid. ~ Self-service, Prorated Super Computing Fun!
http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun.
A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
Durable, Decentralized Storage Despite Massive Correlated Fail-
ures. In NSDI, 2005.

A. Tamnitchi and I. Foster. On Fully Decentralized Resource Dis-
covery in Grid Environments. In International Workshop on Grid
Computing, Nov. 2001.
IBM Cloud Computing.
cloud.

J. Kim, A. Chandra, and J. Weissman. OPEN: Passive Network
Performance Estimation for Data-intensive Applications. Tech-
nical Report 08-041, Dept. of CSE, Univ. of Minnesota, 2008.
Network Weather Service.
ewiki/.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Dis-
tributed resource discovery on PlanetLab with SWORD. In First
Workshop on Real, Large Distributed Systems (WORLDS ’04),
Dec. 2004.

Public Data Sets on AWS.
publicdatasets.

S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy. An Analysis of Internet Content Delivery Systems. In
0OSDI, Dec. 2002.

J. D. Sonnek, A. Chandra, and J. B. Weissman. Adaptive
Reputation-Based Scheduling on Unreliable Distributed Infras-
tructures. IEEE Transactions on Parallel and Distributed Sys-
tems, 18(11), Nov. 2007.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of SIGCOMM, 2001.

R. Trivedi, A. Chandra, and J. Weissman. Heterogeneity-
aware workload distribution in donation-based grids. Interna-
tional Journal of High Performance Computing Applications,
20(4):455-466, 2006.

R. Wolski, J. Plank, J. Brevik, and T. Bryan. Analyzing Market-
Based Resource Allocation Strategies for the Computational
Grid. International Journal of High Performance Computing Ap-
plications, 15(3):258-281, Aug. 2001.

http://www.ibm.com/ibm/

http://nws.cs.ucsb.edu/

http://aws.amazon.com/



