SRCMap: Energy Proportional Storage using Dynamic Consolidation

Akshat Verma¹ Ricardo Koller² **Luis Useche**² Raju Rangaswami²

¹IBM Research, India

²School of Computing and Information Sciences College of Engineering and Computing

FAST Conference, 2010

- Current power density of data centers is 100 W/sq.ft & increasing 15-20% per year.
- ▶ Storage consume 10-25% of computing equipment.
- ▶ Storage load low (10-30%), but still peak power consumed.
- ► CPUs are more energy proportionality than storage.
- Consolidation is a well known technique for energy proportionality in virtualized servers.

Storage Consolidation?

Can we use a storage virtualization layer to design a practical energy proportional storage system?

► Storage virtualization I/O indirection useful for consolidation.

Challenge

Moving logical volumes from one device to another is prohibitively expensive.

Motivation

Evaluation

Conclusions & Future Work

Background: Storage Virtualization

Outline		

- 1. Motivation
- 2. Design
- 3. Evaluation
- 4. Conclusions & Future Work

mail Our department mail server.

- web-vm Virtual machine hosting two web-servers: CS web-mail & online course management.
 - homes NFS server that serves the home directories for our research group.

Block traces collected downstream of an active page cache for three weeks.

Observations

Observation 1

The active data set is only a small fraction of total storage used. (about 1.5-6.5%)

Observation 2

There is a significant variability in ${\rm I/O}$ load. (5-6 orders of magnitude)

Observation 3

More that 99% of the working set consist of *really popular* & *recently accessed* data.

Evaluation

Our Approach

Initialization Sample Characterize the logical volume to find the working set. Replicate Create multiple working-set replicas in various physical volumes' scratch space. Consolidate Based on I/O workload intensity, activate a sub-set of physical volumes and serve workloads either from original copies or working set replicas on these active disks.

$\mathsf{Goals} \to \mathsf{Solutions}$

Goal	Solution	
Fine grained proportionality	Multiple replica targets.	
Low space overhead	Instead of entire volumes, only	
	working-sets are replicated.	
Reliability	Coarse-grained consolidation	
	intervals. (hours)	
Workload Adaptation	Update working set replicas	
	with new data that lead to read	
	misses.	
Heterogeneity support	Performance-power ratio ac-	
	counted for in the replica place-	
	ment benefit function.	

Motivation

SRCMap work-flow

Event	Response	
Initialization	Detect working-sets of logical volumes &	
	create replicas.	
Every <i>H</i> hours	Identify what volumes and replicas to	
	activate the next H hours.	
Change in workload	Same as initialization.	

Replica Placement

Replication benefit based on:

- 1. Working set stability
- 2. Average load
- 3. Power efficiency of primary physical volume.
- 4. Working set size
- ► Assign space with priorities based on benefit.
- Update replica creation benefit as additional replicas are created.
- ► Algorithm executes until scratch spaces are full.

Active Replica Identification

- ► Calculate predicted aggregate workload IOPS.
- Compute minimum number of volumes to serve the aggregate IOPS.
- ► Identify replicas for inactive volumes.
- ► The number of active disks is incremented by one in case no active replica has been identified for some inactive volume.

Workloads & Configuration

- ▶ 8 workloads to independent data volumes.
- Mix of web-servers of our CS department, and file server, SVN, and WiKi for our research group.
- H = 2. Change active replicas every 2 hours.
- ► Two minute disk time-outs.
- ▶ Working sets & replicas based on three week workload history.
- ► We report results of replaying the next 8 most active hours in the traces.
- We assume an oracle for estimation of load during each consolidation interval.

Storage test-bed

- ▶ One machine with 8 SATA ports.
- ▶ Intel P4 HT 3GHz, 1GB memory.
- ► Trace played back using *btreplay*.
- Dedicated power supply for disks connected to power meter.
- ► Watts up? PRO power meter: measures power every second with resolution of 0.1W.

Power		

 Power consumption measured every second & active disks every 5 seconds.

Response time

- ► After 1ms, Baseline On demonstrate better performance.
- ▶ 8% of requests with latencies \geq 10ms.
- ▶ 2% of requests with latencies \geq 100ms.
- ▶ Synchronization I/Os issued at beginning of each interval.
- ▶ Replaying without sync I/Os follows Baseline-On more closely.

Motivation

Energy proportionality

- One point for each 2-hour interval in 24-hour duration.
- Load Factor: Load relative to the assumed volume maximum load capacity.

SRCMap is able to achieve close to N-level proportionality for a system with N physical volumes.

Conclusions

- We proposed and evaluate SRCMap, a storage virtualization solution for energy proportional storage.
- SRCMap establishes the feasibility of energy proportional storage systems.
- SRCMap meets all goals we set out to achieve energy proportional storage:
 - ✓ Low space overhead
 - ✓ Reliability
 - \checkmark Workload adaptation
 - ✓ Heterogeneity support
 - \checkmark Fine grain energy proportionality

Future Work

- ► Models to predict I/O workload intensity.
- Models that estimate the performance impact of storage consolidation.
- Investigate the presence of workload correlation for better workload estimation and consolidation decision.
- Optimizing the scheduling of synchronization I/Os to minimize impact on foreground requests.

http://dsrl.cs.fiu.edu/projects/srcmap/

Related Work

- Singly redundant schemes: Spin down volumes with redundant data during low load.
- ► Geared RAIDs: Redundancy on several disks and each disk spun down represents a gear shift.
- ► Caching systems: Cache of popular data on additional storage.
- ▶ Write Offloading: Increase disk idle periods by redirecting writes to alternate locations.

Other Methods

