
Bimodal Chunking

Erik Kruus

Cezary Dubnicki

Cristian Ungureanu

Feb 29, 2010

Work done at NEC laboratories 1

  Content defined chunking

  Motivation, approach

  Introduce bimodal algorithms, transition regions

  Example algorithms

  Results

  Conclusions, Questions

Outline

2

  Cut points selected based on values of a function
evaluated on local data window

  Produces variably sized chunks

  Effect of small edit operations (replace,insert,delete)
likely restricted to single chunks
–  Often used to store backup data (multiple versions)

  Only store one copy of duplicate chunks.
–  Duplicate Elimination Ratio = (input bytes) / (stored bytes)

–  Want high DER

Content Defined Chunking

3

To get reproducible chunks, fix various parameters…

  Function evaluated on local window
–  Choice not so important (typically a fast, rolling hash function)

  Average chunk size
–  Depends on predicate used to select cut point

–  Ex. “function of local data window has 10 LSBs zero”
•  Expect 1 match out of every 1024

 Minimum chunk size, Maximum chunk size
–  Random chunk boundary selection geometric distribution of

chunk sizes. Too many small chunks!

 …
–  Perhaps mechanism for reducing # of occurences of non-

content-defined cut points as a result of max chunk size

Baseline Chunking Parameters

4

?

  Larger blocks help I/O performance

  Larger blocks reduce metadata storage overhead
–  Large storage systems may have many bytes of metadata

associated with each chunk.

Motivation

5

  Small block size:

High DER

  Large Block size:

Low DER

  Desire Large Blocks and High DER

  So what can we do improve the chunking algorithm?
–  Use other easily-available information

  In this work we investigate what can be done if a fast
chunk existence query is available.

  NECLA archive data set: 14 backups of the main
filesystem used by lab’s researchers every day. Full
backups done every other week totaled 1.1 TB.
–  Analyses done using smaller chunking summary of the full

dataset.

Approach

6

Bimodal Algorithms

unimodal chunking

Input data block boundaries

block
size

64 KB

Uni-modal distribution

bimodal chunking

Input data block boundaries

block
size

64 KB

Bimodal distribution

8 KB

block
repository

block existence query yes/no

“Historical” intuitions

8

  Intuitive model of file system backups
1.  Long stretches of unseen data should be assumed to be

good candidates for appearing later on (i.e. at the next
backup run).
•  Original data should have reasonable DER to begin with

•  Long stretches of unseen data should be chunked with large
average chunk size.

2.  Inefficiency around “change regions” straddling boundaries
between duplicate and unseen data can be minimized by
using shorter chunks.

  Inefficiency: short blocks can delineate the beginnings and ends of
duplication regions more finely.

  Change regions: existence queries give us a way to detect these
transition regions

  Duplicate/nonduplicate byte regions in input stream

  Fine-grained and coarse-grained cut points:

  Expect transition point ~ uniformly distributed within the
encompassing large chunk

Why transition regions?

9

Have been seen before! Should
be duplicate eliminated.

Perhaps a frequent change region?
Reduced chance to see again later

Small chunks in transition region could be beneficial

Small chunks in duplication region are bad

  Assign Duplicate/Nonduplicate byte regions

  Begin with infrequent cutpoints

Example: breaking-apart

10

D N N N N D D D

2. Transition regions
 small chunks

3. Extended nonduplicate
regions remain big

1. Big duplicate regions always good!

  Final Chunking decision

  Existence queries required: 1 per large chunk

  Assign Duplicate/Nonduplicate byte regions

  Begin with frequent cutpoints

Form large chunks by concatenating k small chunks (ex. k=4)
Check duplication status to find all previous “large” chunks

Example: amalgamation

11

Transition regions
 small chunks

Extended nonduplicate regions remain “big”

Big duplicate regions always good!

  Final Chunking decision

D D D D

Fixed / variable concatenation?

  Existence query bound: k per large chunk
  Or k(k-1) if 2 to k smalls can generate a big chunk.

Transition region subcases

12

Statistics of small chunks for some frequent subcases of fixed-size (8) amalgamation:
Baseline chunkers with average

chunk size from 4k to 24k.

Extend to 32 chunks, see “bulk” 8k small chunk recurrence prob. tailing off to ~65%

1.1 Tb

Will I ever
see you
again?

  Ask an oracle
–  Using transition regions to guide small chunk output

decisions gave future hit rates that were higher than “bulk”
expectation

Based on full NECLA data set, how good could it get?

A simple, empirical limit

13

Concatenate all chunks that always occur together

x x

x x

 Whenever a stored item has
unique successor, merge!

 For uncompressed storage,
DER is unaffected

 Began with 512-byte and 8k
baseline chunkings of the full
dataset (2 expts)

Result: almost 10x larger
average block size

Algorithm not practical
 Uses post-processing

 Computationally very
expensive

10x

Comparison to empirical limit

14

  Using 56-64 existence
queries per big chunk, can
get ~ halfway to theoretical
limit

Results summary

15

x3

x1.5

  Simplified storage model assumptions
–  Same data redundancy, No metadata, No compression

  Ran several algorithms, covering a range of parameter settings

  Algorithms 1 & 2

–  Up to 1 or 8 queries per
large chunk

–  Chunk size x1.5

  Algorithm 3
–  Up to 56 or 64 queries per

large chunk

–  Chunk size x3

  “Chunking transition regions small”
seems beneficial

Effect of compression

16

A small subset of these runs used the raw dataset to obtain accurate
values including compression.

Amalgamation compression

DER up

Larger blocks compress better.

–  Avg blocks size down

 64 KB 45 KB, but little
compression at 8 KB

–  Increasing chunk size by
50% has enhanced effect at
smaller chunk sizes

Effect of Metadata

17

  Consider baseline
measurements

  Transform for effect of 100,
400, 800 bytes of metadata
per chunk

  Simple transform to new
DER’ = DER / (1+f), where
f=metadata/<chunk size>

  Metadata impact can
be severe at low chunk
sizes

Detailed results: breaking apart

18

  Typical settings:
  Min:avg:max = 1:2:3

  3 backup levels
  Small chunker settings

divided by 1:2:4:8

  1 existence query per
big chunk

  Small chunker 4-8x smaller
(on average) was a
reasonable choice.

  Variations on min:avg:max
had little effect

Detailed results: amalgamation

19

  Typical settings:
  Min:avg:max = 1:2:3

  3 backup levels
  Big chunk = 8 smalls

  fixed size big chunks (8
existence queries per
big chunk)

  (or variable, big = 1-8
smalls, 64 existence
queries per big chunk)

  Settings robust to minor
variations

  Ex. 8-12 smalls all lying
along same curve.

  Intuitive model of file system backups
1.  Long stretches of unseen data should be assumed to be

good candidates for appearing later on (i.e. at the next
backup run).

2.  Inefficiency around “change regions” straddling boundaries
between duplicate and unseen data can be minimized by
using shorter chunks.

•  Confirmed by “oracle” experiments

“Historical” intuitions: beware!

20

•  Experiment:
•  Run baseline chunker
•  Count (# dup, # following nondup)
•  Weight for # of bytes of input data

•  Over these 14 backups, long stretches of
unseen data were rather rare.

dup

following dup

Non-backup archives

21

  Source code archives, ~ 10 or so versions
  Ran amalgamation with fixed-size big chunks of k smalls

  Varied k

  Gcc sources showed some small benefit, while emacs
source showed no benefit.
  Not a universal solution

  DER/chunk size gains definitely depend on nature of
archive
  Expect problems if unimodal DER is low:

  Ex: emacs uncompressed DER was only ~1.73 for <8k> chunks

  One of our assumptions is failing --- duplication probability is
never very high.

  When blocks frequently fail assumption of “high probability to be seen
later”, bimodal chunking may not be worthwhile.

Conclusions

22

  For archival data with DER >3-4, “chunking transition
regions small” is a useful mechanism to achieve
competitive DER with larger than usual chunk sizes.

  Transition regions can be determined by adding an
existence query capability to existing block stores.

  Small chunks in transition regions can show enhanced
probability to be seen later.

Questions?

