I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance

Ricardo Koller Raju Rangaswami

School of Computing and Information Sciences College of Engineering and Computing

February 26, 2010

I/O Deduplication

It is a storage solution that uses content similarity for improving I/O: eliminate duplicated I/O's and reduce seek times.

- It is not Data Deduplication, used in arhival storage [Venti], COW disks [QEMU].
- ► It consists of 3 techniques:
 - \checkmark Content based cache
 - ✓ Dynamic replica retrieval
 - $\checkmark~$ Selective duplication

- Content Based Cache
- Oynamic Replica Retrieval
- Selective Duplication
- Related Work
- Limitations & Future work

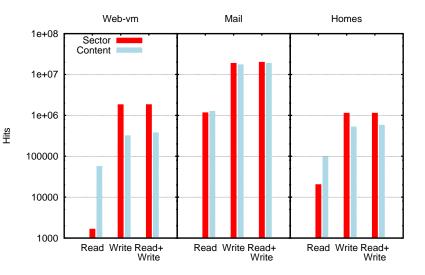
Conclusions

Workloads

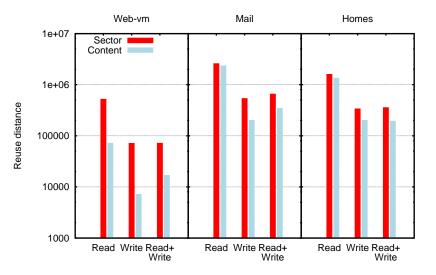
Block traces collected downstream of an active page cache for three weeks.

web-vm Two VM's hosting web-servers: web-mail & online course management.

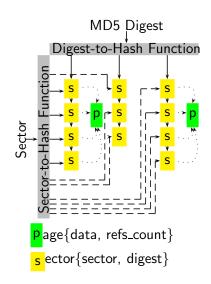
mail Our department mail server.


homes NFS server that serves the home directories of our research group.

1 Content Based Cache

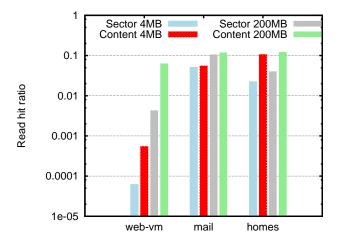

- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work

6 Conclusions


Motivation 1: Frequency

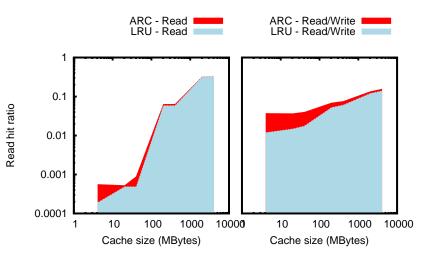
Motivation 2: Recency

Design: Content based Cache



- Reads sectors are searched for hits and in case of miss, content is searched and possibly inserted into the cache.
- Placed at the block layer
 - ✓ Write-though cache to maintain semantics.
 - ✓ ARC for second level cache.

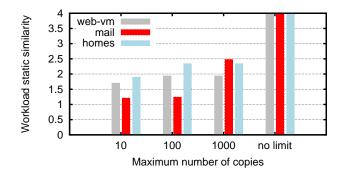
Evaluation


- The I/O deduplication system was implemented as a module for kernel 2.6.20
- ▶ Traces replayed at 100X using a modified version of *btreplay*
- ▶ Measurements of I/O time were taken using *blktrace*
- Performed on a single Intel(R) Pentium 4 CPU 2.00GHZ with 1GB of memory and a WD disk running at 7200RPM

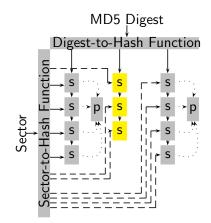
Evaluation: Content Addressed Cache

Content Based Cache Dynamic Replica Retrieval Selective Duplication Related Work Limitations & Future work Conclusions

Evaluation: Hits versus Cache Size

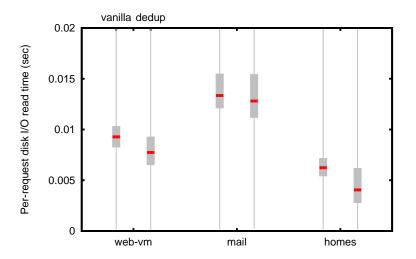

- 1 Content Based Cache
- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work
- 6 Conclusions

Motivation: Duplication


Workloads	web-vm	mail	homes
Unique 4K pages (millions)	1.9	27	62
Total 4K pages (millions)	5.2	73	183
Disk Static similarity	2.67	2.64	2.94

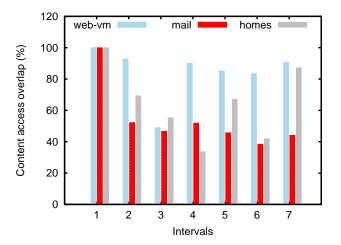
Motivation: Duplication

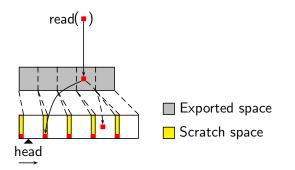
Workloads	web-vm	mail	homes
Unique 4K pages (millions)	1.9	27	62
Total 4K pages (millions)	5.2	73	183
Disk Static similarity	2.67	2.64	2.94



Design: Dynamic Replica Retrieval

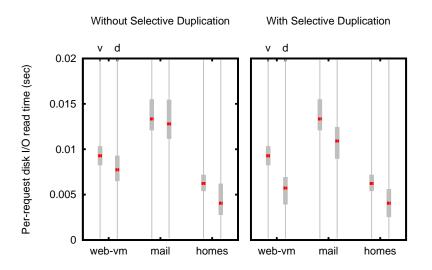
- Reduce seek times by indirecting requests based on head position: choose the duplicate that's closer to the head.
- The yellow entries share an uncached page.
- Current head position based on completed reads.
- Placed above the I/O scheduler:
 - ✓ Indirect only if there are no adjacent requests.


Evaluation: Dynamic Replica Retrieval


- Content Based Cache
- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work

6 Conclusions

Motivation: Working Set Overlap



Selective Duplication

Data is duplicated at scratch spaces interspersed across the disk.

Dynamic Replica Retrieval

All Together

Workload	Vanilla (rd sec)	I/O dedup (rd sec)	Improvement
web-vm	3098.61	1641.90	47%
mail	4877.49	3467.30	28%
home	1904.63	1160.40	39%

Overhead

Memory

mem(P, WSS, HTB) = 13 * P + 36 * P * WSS + 8 * HTB

For a content cache of 1GB, static similarity of 4 and a hash table of a million buckets, the metadata is 48MB (4.6%).

CPU

✓ if HTB = 1e3, $cpu_read_miss(P) = O(P) + 100000$ cycles. ✓ if HTB = 1e6, $cpu_read_miss(P) = O(1) + 100000$ cycles.

For our machine running at 2GHz, the 100000 + 1000 cycles are $90\mu s$.

- 1 Content Based Cache
- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work

6 Conclusions

Related Work

► I/O Performance Optimization

✓ Duplication of popular data: FS2, Borg

Content Addressed Storage

- ✓ Archival storage: Venti
- ► I/O Deduplication
 - ✓ Satori (COW-disk sharing mode)

- Content Based Cache
- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work
- 6 Conclusions

Limitations & Future Work

- Integration with the page cache
- Multiple disks
- Variable sized chunks
- Page replacement strategies for content
- ▶ I/O scheduling based on duplicated blocks
- Write requests "special handling", leave them for later? pdflush?

- Content Based Cache
- 2 Dynamic Replica Retrieval
- 3 Selective Duplication
- 4 Related Work
- 5 Limitations & Future work

Summary and Conclusions

- For systems where content is more frequent than sector and reuse distances are shorter for content compared to sertor, content based caches can be more effective than sector ones.
- ► On disk duplications can be used for reducing I/O times.

Content Based Cache Dynamic Replica Retrieval Selective Duplication Related Work Limitations & Future work Conclusions

Questions?

http://dsrl.cs.fiu.edu/projects/iodedup/