
© 2009 VMware Inc. All rights reserved

Ajay Gulati, VMware, Inc.

Chethan Kumar, VMware, Inc.

Irfan Ahmad, VMware, Inc.

Karan Kumar, CMU

BASIL: Automated IO Load Balancing
across Storage Devices 

USENIX FAST – February 25, 2010



2

Outline

� Problem Description & Motivation

� BASIL – Modeling & Load Balancing

� Experimental Framework & Results

� Conclusions & Future Work



3

Datacenter Automation—State of the Art

ESX Hosts

Automated Load Balancing of 

CPU and Memory resources 

across a cluster of servers 

using live migration.

e.g., VMware DRS (Distributed 

Resource Scheduler)
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The Problem—Storage Management Not Automated
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The Problem—Storage Management Not Automated

ESX Hosts
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Storage vMotion
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The Problem—Storage Management Not Automated

ESX Hosts
Storage Devices

IT Admin

Management Nightmares

IO load balancing?

Virtual disk placement?
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IOPS Latency 
(in ms)

4172 16.7
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Shoulders of Giants

Much characterization & modeling work precedes us

� Workload Characterization 
Kavalanekar et al: IISWC ’08
Gulati et al: VPACT ‘09

� Minerva, Hippodrome, Table-based 
Alvarez et al: ACM Trans. On Computing ’01
Anderson et al: FAST ‘02

� Analytical device models 
Uysal et al: MASCOTS ’01
Shriver et al: SIGMETRICS ‘98
Merchant et al: IEEE Trans. Computing ’96
Ruemmler & Wilkes: IEEE Computer ’94

� Relative fitness modeling

Mesnier et al: SIGMETRICS ‘07

� CART models
Wang et al: MASCOTS ’04

� Novel features

�Latency as primary 

metric

�Online and lightweight

�Different goal 

compared to existing 

literature
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Latency as Main Metric—Why?
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VM’s load is 
What if a 

VM’s load is 
moved.

LUN 1 →→→→ 2

Average Latency is lower.

Overall throughput is similar or higher.
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BASIL Sketch

� Online modeling 

• Workload : capture dynamic behavior

• Device : capture device performance

� Load balancing based on 

• Workload and device models

• Assign workloads to device in proportion to their metrics
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Workload Modeling
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

� Methodology

• Analyze impact of each parameter on latency

• Outstanding IOs

• IO Size

• Read/Write Ratio

• Randomness
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

••

• IO Size

• Read/Write Ratio

• Randomness

Latency varies linearly with #Outstanding IOs
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

• Outstanding IOs

••

• Read/Write Ratio

• Randomness

Latency varies linearly with IO Size

(in KB)
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

• Outstanding IOs

• IO Size

••

• Randomness

Latency varies linearly with %Reads
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

• Outstanding IOs

• IO Size

• Read/Write Ratio

••

Latency varies linearly or Remains flat with %Randomness

Anomalous behavior 

for extreme cases
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I/O Workload Modeling

� Percentiles Data collected per-virtual disk

� Workload Model denoted as W

� K values fit from empirical data

• Outstanding IOs

• IO Size

• Read/Write Ratio

• Randomness

)K 00(Random%/1)K (Read%/100)K (IOsize)K (OIOW 4321 +⋅+⋅+⋅+=

• K1 = 1.3

• K2 = 51

• K3 = 0.4

• K4 = 0.6

OIO is the main contributor for most cases

IO Size impacts only when change is large

Read% and Random% have less impact, except extreme scenarios
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Device Modeling
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Device Modeling

� Device performance can vary widely

• Different number of disks: 4 vs.16 disk LUN

• Different disk types: FC vs. SATA

• RAID type

• % Disk occupancy

� BUT, device characteristics are hidden from hosts

1 TB 1 TB
10 disks 

SATA
20 disks 

FC
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Device Modeling

� Device Performance estimation

• <OIO, Latency> pairs collected using a reference workload

� Linear fit approximation of the pairs

� Slope indicates relative performance of the device
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Device Modeling

� Device Performance estimation

• <OIO, Latency> pairs collected using a reference workload

� Linear fit approximation of the pairs
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Device Modeling

� Device Performance estimation

• <OIO, Latency> pairs collected using a reference workload

� Linear fit approximation of the pairs

� Slope indicates relative performance of the device
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Online Device Modeling—Issues

� Generally expect positive slope values

� We observe negative slope values in some cases

• Large write IO bursts in real applications going to cache

• IO size variation for different Outstanding IOs 

• Large sequential bursts 
Write Bursts 

during high 

Outstanding IOs

More Writes
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Online Device Modeling—Solution

� Filter out data from collected samples

• Writes: <Read OIOs, Read latency > pairs

• Large IOs: filter out if IO size > 32 KB

• Sequential IOs: filter out if sequentiality > 90 %
Considering only 

Read IOs
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� Slopes are indicative of relative performance

• 4 vs. 8 disks, other factors are constant

• FC better than SATA, other factors kept constant

� Incorporates cache effects

• Lower slope for arrays with smaller cache

� Online modeling

• Online modeling is highly useful in practice

• Filtering of online input needed to handle extreme workloads

Key Takeaways

Slope = 0.50

Slope = 0.12

Slope = 0.24

Slope = 0.16
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Load Balancing
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Load Balancing

� Recall Workload metric: Wi

� Recall Device metric: Pj

• 1 / slope of linear fit between <Read OIO, Read latency>

� Define Normalized Load on a device: NL

� Load balancing

• Assign workloads to devices in proportion to their performance

• Heuristic:  Equalize NL across data stores

� Initial placement of virtual disks

• Pick device with minimum NL

)K 00(Random%/1)K (Read%/100)K (IOsize)K (OIO  W 4321i +⋅+⋅+⋅+=

jP

j device aon   Wmetric Workload i∑
=NL
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Experimental Setup

� 2 hosts running VMware ESX 4.0 hypervisor

• 8 to 13 virtual machines (VMs) – mix of Windows, Linux OSes

• 6 Data stores

� Devices (LUNs) spread across EMC CLARiiON & NetApp FAS-3140

� Workloads

• Real Apps: Swingbench (DBMS: Oracle), DVD Store (DBMS: SQL)

• Filebench: varmail, OLTP, webserver

• Iometer configurations: OLTP, Workstation, Exchange Server, Web Server

• http://blogs.msdn.com/tvoellm/archive/2009/05/07/useful-io-profiles-for-simulating-

various-workloads.aspx
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The Problem—Storage Management Not Automated
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Device #disks Array RAID P= 1/slope

3diskLun 3 EMC Clariion RAID-5 0.6

6diskLun 6 EMC Clariion RAID-5 1.4

9diskLun 9 EMC Clariion RAID-5 1.8

� Three devices for micro-benchmark experiments

� Three devices for real-workload experiments

Device #disks Array RAID P= 1/slope

EMC 6 FC EMC Clariion RAID-5 1.10

NetApp-SP 6 FC NetApp FAS 
3140

RAID-5 0.83

Netapp-DP 7 SATA NetApp FAS
3140

RAID-6 0.48

P: higher is better

Device Models
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IOPS Latency 
(in ms)

4172 16.7

IOPS Latency 
(in ms)

5631 14.9
IOPS Latency 

(in ms)

35% -11%

% Change

Load Balancing

Final ConfigurationInitial Configuration

3diskLUN9diskLUN 6diskLUN3diskLUN9diskLUN 6diskLUN
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Summary: 500 Runs

� Random placement vs. BASIL (80th percentile values)

• ≥ 25% improvement in IOPS

• ≥ 33% decrease in overall latency (computed using IOPS as weights)
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Summary: 100 Initial Placements

� Random initial placement vs. BASIL (50th percentile values)

• ≥ 53% improvement in IOPS

• ≥ 45% decrease in overall latency (computed using IOPS as weights)
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BASIL provides lowest average latency and similar throughput

Summary: Enterprise Workloads

� Human Experts vs. BASIL

• 13 VMs: 3 DVDstore, 2 Swingbench, 4 mail servers, 2 oltp, 2 webservers

• 2 ESX hosts, 3 storage devices
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Conclusions and Future Work

� BASIL provides

• Practical online workload and device models

• Efficient initial placement

• Load balancing results in higher utilization, lower overall latency

� Future Work

• Ki values: static vs. dynamic

• Try out alternate workload models

• Separate device modeling for reads & writes

• Detailed cost-benefit metric for storage vmotions


