# **BASIL: Automated IO Load Balancing** across Storage Devices

Ajay Gulati, VMware, Inc.Irfan Ahmad, VMware, Inc.Chethan Kumar, VMware, Inc.Karan Kumar, CMU

USENIX FAST - February 25, 2010



# Outline

### Problem Description & Motivation

- BASIL Modeling & Load Balancing
- Experimental Framework & Results
- Conclusions & Future Work

#### **Datacenter Automation—State of the Art**



Automated Load Balancing of CPU and Memory resources across a cluster of servers using **live migration**.

*e.g.,* **VMware DRS** (Distributed Resource Scheduler)













# **Management Nightmares**

IO load balancing? Virtual disk placement?



# **Storage Devices**





## **Shoulders of Giants**

#### Much characterization & modeling work precedes us

 Workload Characterization Kavalanekar et al: IISWC '08 Gulati et al: VPACT '09

#### Minerva, Hippodrome, Table-based Alvarez et al: ACM Trans. On Computing '01 Anderson et al: FAST '02

Analytical device models
 Uysal et al: MASCOTS '01
 Shriver et al: SIGMETRICS '98
 Merchant et al: IEEE Trans. Computing '96
 Ruemmler & Wilkes: IEEE Computer '94

#### Relative fitness modeling

Mesnier et al: SIGMETRICS '07

#### CART models

Wang et al: MASCOTS '04

#### Novel features

- Latency as primary metric
- Online and lightweight
- Different goal compared to existing literature

#### Latency as Main Metric—Why?



11

# Outline

- Problem Description & Motivation
- BASIL Modeling & Load Balancing
- Experimental Framework & Results
- Conclusions & Future Work

## **BASIL Sketch**

### Online modeling

- Workload : capture dynamic behavior
- Device : capture device performance

## Load balancing based on

- Workload and device models
- Assign workloads to device in proportion to their metrics

# **Workload Modeling**



# I/O Workload Modeling

### Percentiles Data collected per-virtual disk

- Outstanding IOs
- IO Size

- Read/Write Ratio
- Randomness

### Methodology

• Analyze impact of each parameter on latency



#### Percentiles Data collected per-virtual disk

- Outstanding IOs
- IO Size

- Read/Write Ratio
- Randomness

# Latency varies linearly with #Outstanding IOs



#### Percentiles Data collected per-virtual disk

Outstanding IOs

• IO Size

- Read/Write Ratio
- Randomness

# Latency varies linearly with IO Size



### I/O Workload Modeling

#### Percentiles Data collected per-virtual disk

Outstanding IOs

Read/Write Ratio

IO Size
 Randomness

# Latency varies linearly with %Reads



# I/O Workload Modeling

#### Percentiles Data collected per-virtual disk

- Outstanding IOs
   Read/Write Ratio
- IO Size

Randomness

# Latency varies linearly or Remains flat with %Randomness



#### Percentiles Data collected per-virtual disk

- Outstanding IOs
- IO Size

- Read/Write Ratio
- Randomness
- Workload Model denoted as W

 $W = (OIO + K_1) \cdot (IOsize + K_2) \cdot (Read\%/100 + K_3) \cdot (Random\%/100 + K_4)$ 

K values fit from empirical data

•  $K_1 = 1.3$ •  $K_2 = 51$ •  $K_4 = 0.6$ 

OIO is the main contributor for most cases IO Size impacts only when change is large Read% and Random% have less impact, except extreme scenarios



#### Device performance can vary widely

- Different number of disks: 4 vs.16 disk LUN
- Different disk types: FC vs. SATA
- RAID type
- % Disk occupancy

## BUT, device characteristics are hidden from hosts





#### Device Performance estimation

- <OIO, Latency> pairs collected using a reference workload
- Linear fit approximation of the pairs
- Slope indicates relative performance of the device

#### Device Performance estimation

- <OIO, Latency> pairs collected using a reference workload
- Linear fit approximation of the pairs
- Slope indicates relative performance of the device



#### Device Performance estimation

- <OIO, Latency> pairs collected using a reference workload
- Linear fit approximation of the pairs
- Slope indicates relative performance of the device



## **Online Device Modeling—Issues**

- Generally expect positive slope values
- We observe negative slope values in some cases
  - Large write IO bursts in real applications going to cache
  - IO size variation for different Outstanding IOs



#### **Online Device Modeling—Solution**

#### Filter out data from collected samples Writes: <*Read OIOs, Read latency* > pairs Large IOs: filter out if IO size > 32 KB • Sequential IOs: filter out if sequentiality > 90 % **Considering only Read IOs** Slope = 0.7368 Average Read IO Latency (in ms) 12 10 8 Slope = 0.3525B Linear Fit (DVD Store 4-disk LUN) 2 Linear Fit (DVD Store 8-disk LUN) 0 2 12 0 14 16 4 10 Outstanding IOs

# **Key Takeaways**

#### Slopes are indicative of relative performance

- 4 vs. 8 disks, other factors are constant
- FC better than SATA, other factors kept constant

#### Incorporates cache effects

• Lower slope for arrays with smaller cache



#### Online modeling

- Online modeling is highly useful in practice
- Filtering of online input needed to handle extreme workloads

# **Load Balancing**



## **Load Balancing**

#### Recall Workload metric: W<sub>i</sub>

 $W_i = (OIO + K_1) \cdot (IOsize + K_2) \cdot (Read\%/100 + K_3) \cdot (Random\%/100 + K_4)$ 

#### Recall Device metric: P<sub>i</sub>

- 1 / slope of linear fit between <Read OIO, Read latency>
- Define Normalized Load on a device: NL

$$NL = \frac{\sum \text{Workload metric } W_i \text{ on a device } j}{P_j}$$

#### Load balancing

- Assign workloads to devices in proportion to their performance
- Heuristic: Equalize NL across data stores

#### Initial placement of virtual disks

Pick device with minimum NL

# Outline

- Problem Description & Motivation
- BASIL Modeling & Load Balancing
- Experimental Framework & Results
- Conclusions & Future Work



## **Experimental Setup**

- 2 hosts running VMware ESX 4.0 hypervisor
  - 8 to 13 virtual machines (VMs) mix of Windows, Linux OSes
  - 6 Data stores
- Devices (LUNs) spread across EMC CLARiiON & NetApp FAS-3140
- Workloads
  - Real Apps: Swingbench (DBMS: Oracle), DVD Store (DBMS: SQL)
  - Filebench: varmail, OLTP, webserver
  - Iometer configurations: OLTP, Workstation, Exchange Server, Web Server
    - <u>http://blogs.msdn.com/tvoellm/archive/2009/05/07/useful-io-profiles-for-simulating-various-workloads.aspx</u>











#### Three devices for micro-benchmark experiments

| Device   | #disks | Array        | RAID   | P= 1/slope |
|----------|--------|--------------|--------|------------|
| 3diskLun | 3      | EMC Clariion | RAID-5 | 0.6        |
| 6diskLun | 6      | EMC Clariion | RAID-5 | 1.4        |
| 9diskLun | 9      | EMC Clariion | RAID-5 | 1.8        |

P: higher is better

#### Three devices for real-workload experiments

| Device    | #disks | Array              | RAID   | P= 1/slope |
|-----------|--------|--------------------|--------|------------|
| EMC       | 6 FC   | EMC Clariion       | RAID-5 | 1.10       |
| NetApp-SP | 6 FC   | NetApp FAS<br>3140 | RAID-5 | 0.83       |
| Netapp-DP | 7 SATA | NetApp FAS<br>3140 | RAID-6 | 0.48       |



## Summary: 500 Runs

#### Random placement vs. BASIL (80<sup>th</sup> percentile values)

- $\geq$  25% improvement in IOPS
- $\geq$  33% decrease in overall latency (computed using IOPS as weights)



## **Summary: 100 Initial Placements**

#### Random initial placement vs. BASIL (50<sup>th</sup> percentile values)

- $\geq$  53% improvement in IOPS
- $\geq$  45% decrease in overall latency (computed using IOPS as weights)



## **Summary: Enterprise Workloads**

#### Human Experts vs. BASIL

- 13 VMs: 3 DVDstore, 2 Swingbench, 4 mail servers, 2 oltp, 2 webservers
- 2 ESX hosts, 3 storage devices



BASIL provides lowest average latency and similar throughput

# Outline

- Problem Description & Motivation
- BASIL Modeling & Load Balancing
- Experimental Framework & Results
- Conclusions & Future Work

# **Conclusions and Future Work**

## BASIL provides

- Practical online workload and device models
- Efficient initial placement
- Load balancing results in higher utilization, lower overall latency

## Future Work

- K<sub>i</sub> values: static vs. dynamic
- Try out alternate workload models
- Separate device modeling for reads & writes
- Detailed cost-benefit metric for storage vmotions