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Abstract

Data deduplication has become a popular technology
for reducing the amount of storage space necessary for
backup and archival data. Content defined chunking
(CDC) techniques are well established methods of sep-
arating a data stream into variable-size chunks such that
duplicate content has a good chance of being discov-
ered irrespective of its position in the data stream. Re-
quirements for CDC include fast and scalable operation,
as well as achieving good duplicate elimination. While
the latter can be achieved by using chunks of small av-
erage size, this also increases the amount of metadata
necessary to store the relatively more numerous chunks,
and impacts negatively the system’s performance. We
propose a new approach that achieves comparable du-
plicate elimination while using chunks of larger average
size. It involves using two chunk size targets, and mech-
anisms that dynamically switch between the two based
on querying data already stored; we use small chunks
in limited regions of transition from duplicate to non-
duplicate data, and elsewhere we use large chunks. The
algorithms rely on the block store’s ability to quickly de-
liver a high-quality reply to existence queries for already-
stored blocks. A chunking decision is made with limited
lookahead and number of queries. We present results of
running these algorithms on actual backup data, as well
as four sets of source code archives. Our algorithms typ-
ically achieve similar duplicate elimination to standard
algorithms while using chunks 2–4 times as large. Such
approaches may be particularly interesting to distributed
storage systems that use redundancy techniques (such
as error-correcting codes) requiring multiple chunk frag-
ments, for which metadata overheads per stored chunk
are high. We find that algorithm variants with more flex-
ibility in location and size of chunks yield better dupli-
cate elimination, at a cost of a higher number of existence
queries.

1 Introduction

Duplicate elimination (DE) is a means to save storage
space. CDC techniques [25, 27, 24, 15, 3, 5] are well-
established methods that use a local window (typically
12–48 bytes long) into data to reproducibly separate the
data stream into variable-size chunks that have good du-
plicate elimination properties. Such chunking is proba-
bilistic in the sense that one has some control over the
average output chunk size given random data input. A
“baseline” CDC algorithm has as primary parameters a
single set of minimum, average and maximum chunk
lengths, and it generates chunks of the desired size range
by inspecting only the input stream. A baseline algo-
rithm may also have less influential parameters, such as a
backup cut-point policy to deal with the situations when
the maximum chunk size has been reached without en-
countering a good cut point. In typical DE methods, one
simply breaks apart an input data stream reproducibly,
and then emits (stores, or transmits) only one copy of any
chunks that are identical to a previously emitted chunk.

As the average chunk size of such baseline CDC
schemes is reduced, the efficiency of deduplication in-
creases. CDC schemes with average chunk sizes of
around 8k have been used [25] and shown to result in
reasonable deduplication. However, in storage systems,
smaller chunk sizes come with costs:

• higher metadata overheads, as each chunk needs to
be indexed;

• higher processing cost, which is proportional to the
number of data packets processed;

• and lower compression ratio for each chunk, as
compression algorithms tend to perform better on
larger input.

For distributed deduplicating storage systems using er-
ror correcting codes (ECC) capable of protecting against



disk and node failure [12], these drawbacks are signif-
icant. Metadata needs to be associated with each ECC
component of a chunk, and the indexing information
used to find a block given a content hash needs to be
stored redundantly; this results in higher per chunk over-
head than other systems. Additionally, network costs in-
crease as more chunks are processed. Thus, it is desirable
to produce large chunks without unduly lowering the du-
plicate elimination ratio (DER), which we define as the
ratio of the size of input data to the size of stored chunks.
Note that the DER as defined takes into account both
deduplication among chunks and individual chunk com-
pression, but excludes metadata storage costs. The effect
of the metadata costs can be trivially calculated; for a
given metadata overhead f ≡ metadatasize/averagechunksize ,
the DER is reduced to DER/(1+ f ).

In order to achieve our goal, we exploited the nature of
the data stream composition produced by repeated back-
ups. Policroniades et al. [26] noted that on real filesys-
tems most file accesses are read-only, files tend to be ei-
ther read-mostly or write-mostly, and that a small set of
files generates most block overwrites. During repeated
backups, entire files may be duplicated, and even when
changed, the changes may be localized to a relatively
small edit region. Here, a deduplication scheme must
deal effectively with long repeated data segments, where
our assumption for fresh data is that it have a high likeli-
hood of reoccurring in a future backup run. The nature of
the backup data led us to propose the following two prin-
ciples governing possible CDC improvements for such
streams:

P1. Long stretches of unseen data should be assumed to
be good candidates for appearing later on (i.e. at the
next backup run).

P2. Inefficiency around “change regions” straddling
boundaries between duplicate and unseen data can
be minimized by using shorter chunks.

In this paper, we propose algorithms that perform better
than baseline algorithms under the assumption that P1
and P2 hold, and the system provides an efficient exis-
tence query operation that allows one to check whether
a tentative chunk has been encountered in the past. By
a “better” duplicate elimination algorithm, we mean one
that produces a larger average chunk size than a baseline
CDC algorithm while obtaining comparable DER.

P1 is justified by the fact that the amount of data mod-
ified between two backups is a small percentage of the
total, and is concentrated in relatively few regions of
change. P1 may in fact not be justified for systems with
a high rollover of content. P1 implies that an algorithm
should produce chunks of large average size when in an
extended region of previously unseen data. The data is

in a change region if in some vicinity of it there ex-
ist both chunks that were encountered in the past, and
chunks that were not. Variations in vicinity sizes, and in
how small the unseen data in a change region is chunked
lead to different variants of the bimodal algorithms. Note
that P2 is somewhat counter-intuitive, since it involves
speculatively injecting undesirable small chunks into the
storage system while providing no guarantee of an even-
tual storage payoff. Nevertheless, we present real-world
evidence that this strategy may benefit scenarios storing
many versions of an evolving data set.

Note that our bimodal chunking algorithms avoid
problems with historical approaches that use resem-
blance detection [10, 11, 6, 4] or storage of sub-chunk
information [5], whose implementations can suffer from
slow speed and/or large amounts of metadata. We as-
sume that the existence queries can be answered accu-
rately, but discuss in Section 3.3 the effect of false posi-
tives (as could arise from the use of Bloom filters). Re-
cently, a promising approach for efficient deduplication
has been described [4] in which first a similar set of al-
ready stored chunks can be quickly selected, and then
deduplication is performed within that localized environ-
ment. From the point of view of the entire system, this
amounts to having a small rate of false negatives: chunks
that already exist may be stored again. However, their
results show that in practice the effect of these false neg-
atives is minimal, and that they retain sufficient stream
locality for good deduplication. We expect that our bi-
modal algorithms would also perform well in their set-
ting, since both the fast querying algorithm and our bi-
modal chunking algorithms are exploiting assumptions
about stream locality.

The paper is structured as follows. In Section 2 we de-
scribe baseline CDC algorithms and introduce two types
of bimodal chunking improvements: splitting-apart and
amalgamation algorithms. In Section 3 we begin by de-
scribing our data sets and testing tools, after which we
present the results of applying the algorithms and inter-
pret the results. We establish a performance limit for bi-
modal algorithms as well as briefly discussing engineer-
ing aspects. We also show that our assumptions P1 and
P2 do not quite hold for our data set, yet the algorithms
produced chunk sizes 2–4 times larger than those pro-
duced by a baseline algorithm with a comparable DER.
Section 4 contains related work and Section 5 presents
conclusions and future work.

2 Method

2.1 Using chunk existence information

Two approaches exist. In one, a breaking-apart algo-
rithm first chunks everything with large chunks, identi-



fies change regions of new content, and then re-chunks
data near boundaries of this change region at a finer level.
In such an approach, a small insertion/modification of an
input stream likely renders an entire large chunk non-
duplicate. Were this large chunk re-chunked smaller,
later occurrences of a short region of repeated change
could be more efficiently bracketed.

In a slightly more flexible approach, a building-up al-
gorithm can initially chunk at a fine level, and combine
small chunks into larger ones. A building-up chunking
algorithm can query for candidate big chunks at more
positions, and more finely bracket such a single insert-
ed/modified chunk. In both cases, at any point in the
input stream, a decision must be made whether to emit
a small chunk or a big chunk, so we refer to these al-
gorithms as bimodal chunking algorithms, as opposed to
the (unimodal) baseline CDC approaches.

In either approach, it is always advantageous to emit
an already existing big chunk. If several big chunk emis-
sions are possible, we emit the first-most one. Small
chunks are then emitted only for non-duplicate big
chunks near (adjacent to, in measurements below) du-
plicate big chunks. Note that in both schemes, some data
may be stored in both small- and large-chunk format. In
principle, this loss may be mitigated by rewriting such
large chunks as two (or more) smaller chunks. However,
for systems with in-line deduplication, rewriting an al-
ready emitted big chunk as two or more chunks may be
impractical, so we will not consider chunk-rewriting ap-
proaches. Nevertheless, this might be possible to imple-
ment as a postprocessing step.

We target global duplicate elimination and assume that
the block store can be efficiently queried for existence of
chunks given a chunk content hash. Our algorithms oper-
ate in constant time per unit input, regardless of the num-
ber of stored chunks, since they require only a bounded
number of chunk existence queries per chunking deci-
sion. Implementations of bimodal chunking can vary in
the number and type of existence queries required before
making a chunking decision. In general, we will find that
the more flexibility one has in bracketing change regions
and in what boundaries are allowed for large chunks, the
better one’s performance can be in terms of increasing
chunk size.

Note that our approach does not require storing in-
formation about finer-grained blocks (e.g. non-emitted
small chunks), and thus works well with any block store
capable of answering whether a chunk with a given
hashkey has already been stored or not. More compli-
cated schemes, in which sub-block information is used,
are possible (e.g. fingerdiff [5]), but the higher amount of
metadata required likely leads to a higher cost of queries
and makes more difficult the task of dealing with query
latencies, impacting system performance

The heuristics behind our algorithms can be expected
to perform well only if the backup stream has properties
in line with P1 and P2. Indeed, without a similar-chunk
lookup and an indirect addressing method, the first time
a largely unmodified big chunk is re-chunked as small
chunks, one pays the price of speculatively storing many
small chunks that have no guarantee of ever being en-
countered again. If the small chunks re-occur sufficiently
frequently in later backups (i.e. a finer grained delimiting
of the duplication range), we can more than recoup the
initial loss. In Section 3 we show that although P1 and P2
don’t quite hold for our data set, the algorithms worked
well, resulting in an average chunk size 2–4 times higher
than baseline CDC for comparable DER.

2.2 Baseline rolling window cut-point se-

lection.

Content-defined chunking works by selecting a set of lo-
cations, called cut-points, to break apart an input stream,
where the chunking decision is based on the contents of
the data itself. Typically this involves evaluating a bit
scrambling function (say, a CRC) on a fixed-size sliding
window into the data stream. The result of the function
is compared at some number ℓ of bit locations with a
predefined value, and if equivalent the last byte of the
window is considered a cut-point. This generates an av-
erage chunk size of 2ℓ, following a geometric distribu-
tion. For terseness, we will refer to such a chunker as a
level-2ℓ chunker. The probability of identifying a unique
cut-point is maximized when the region searched is of
size 2ℓ.

Backup cut-points

For minimum chunk size m, the nominal average chunk
size is m+ 2ℓ. For a maximum chunk size M, a plain
level-2ℓ chunker (i.e. chunking algorithm) will hit the
maximum with probability approximately e−(M−m)/2ℓ

,
which can be quite frequent. Since chunking at M is no
longer content-defined, the deduplication of two similar
streams is commonly improved by avoiding this situa-
tion. We have adopted a simple approach of choosing
a best content-defined “backup” cut-point, chunked at
a level 2ℓ−b, to decrease the use of these non content-
defined cut-points. The data we present here has used
a policy of taking the longest backup cut-point from the
highest of b =2–3 backup levels; otherwise, we emit a
non-content-defined chunk of maximal length. In prac-
tice, if one adopts the earliest backup cut-point, other pa-
rameters can be varied to increase the average chunk size
again. This may result in a small performance improve-
ment. More sophisticated approaches to dealing with
chunks of maximum size are also possible [15].



1 f o r ( each b i g chunk ) {
2 i f ( isBigDup )
3 { em i t as b i g ; i sP revBigDup = t r u e }
4 e l s e i f ( i sP revBigDup | | isNextBigDup )
5 { rechunk as s m a l l s ; i sP revBigDup = f a l s e }
6 e l s e { em i t as b i g ; i sP revBigDup = t r u e }
7 }

Figure 1: A simple breaking-apart algorithm.

2.3 Breaking-apart algorithms

An example of a simple breaking-apart algorithm that re-
chunks a nonduplicate big chunk either before or after a
duplicate big chunk is detected is shown in Figure 1.

Here the primary pass over the data is done with a
large average chunk size, emitting big duplicates in line
2–3. Otherwise, in lines 4–5, a single nonduplicate data
chunk after or before a duplicate big chunk is re-chunked
at smaller average block size and emitted. Remaining
chunks are emitted as big chunks in line 6. One can mod-
ify such an algorithm to detect more complicated defini-
tions of duplicate/nonduplicate transitions; e.g., when N

non-duplicates are adjacent to D duplicates, re-chunk R

big chunks with smaller average size. Here we present
results for N = R = D = 1, as in Fig. 1. When we varied
R we found that similar results for average chunk size and
DER could be obtained by simply varying the chunking
parameters {m,2ℓ,M} of the baseline algorithm instead.
Alternatively, one could work with the byte lengths of the
chunks to limit the nonduplicate region in which small
chunks are emitted adjacent to a nonduplicate/duplicate
transition point.

A lookahead buffer is used to support the is-
NextBigDup predicate. Querying work is bounded by
one query per large chunk. This is the fastest of the
proposed algorithms. In Fig. 2 we illustrate the opera-
tion on a simple example input 2(a). Big chunks (b) are
queried for existence (c) and we assume duplicate and
non-duplicate tags are assigned as shown. All duplicate
big chunks should be stored. Of the remaining chunks,
the transition regions (d) are re-chunked at smaller av-
erage chunk size. The remaining non-duplicate chunks
are re-emitted as big chunks (e). In the final (f) bimodal
chunking, chunks 2–6 and 9–11 are of small length. Of
these, note that with respect to the byte-level duplica-
tion boundaries of the input stream (a), small chunks 2, 3
and 11 are entirely within the duplicate bytes area, and
may possess enhanced probabilities of recurring later.
In essence, the small transition region chunks can allow
the extent of duplicate bytes to be more faithfully repre-
sented.

(Non−duplicate bytes)

(a) Input byte stream

(b) Big chunk locations identified

(c) Duplicate/Nonduplicate label

(dup bytes)(dup bytes)

D N N N N D

(d) Transition regions rechunked small

(e) Non−duplicate interior remains big

1 4 5 6 7 8 129 102 3 11

(f) Final bimodal chunking: 1,2,3,...

Figure 2: Breaking-apart algorithm steps.

2.4 Chunk amalgamation algorithms

Considerably more flexibility in generating variably-
sized chunks is afforded by running a smaller chunker
first, followed by chunk amalgamation into big chunks.
Consider a simple case where big chunks are only gen-
erated by concatenation of a fixed number k of small
chunks (Figure 3.) We will call these “fixed-size” big
chunks because they are formed from a constant num-
ber of variably-sized small chunks during the initial for-
ward search for big duplicates (lines 3–6). Their length
in bytes is variable and their chunk endpoints are content-
defined. We will call the above algorithms with fixed-
size big chunks “k-fixed” algorithms. When the forward
search for duplicates fails, lines 7–8 emit k chunks fol-
lowing a duplicate as small chunks when following a du-
plication region. Otherwise, those k chunks are amalga-
mated and emitted as a single big chunk in line 9.

A simple extension modifies lines 3–6 to allow
variably-sized big chunks (1–k or 2–k small chunks) to
be queried at every possible small chunk position during
this decision-making process. We will label such exten-
sions as “k-var” algorithms. With fixed-size big chunks
we make at most 1 query per small chunk, while for
variable-size big chunks we can make up to k− 1 (or k)
queries per small chunk.

To limit the possibility for two duplicate input streams
to remain out-of-synch for extended periods, it is pos-
sible to introduce resynchronization cut-points: when-
ever the cut-point level of a small chunk exceeds some
threshold (r higher than the normal chunking threshold
ℓ), a big chunk can terminate there, but may never con-
tain the resynchronization point in its interior. In this



1 vo id p r o c e s s ( s m a l l chunks buf [0 t o 2k−1] ) {
2 f o r ( pos =0 ; pos <=k ; ++ pos ) { / / fwd s e a r c h
3 i f isBigDup ( buf [ pos t o pos+k−1]) {
4 em i t any s m a l l s buf [ 0 ] t o buf [ pos −1]
5 em i t b i g @ buf [ pos t o pos+k−1]
6 isP revDupBig = t r u e ; r e t u r n }
7 i f ( i sP revDupBig ) { em i t k s m a l l s
8 i sP revDupBig = f a l s e ; r e t u r n }
9 em i t b i g @ buf [0 t o k−1]; i sP revDupBig = t r u e

10 }

Figure 3: A simple chunk amalgamation algorithm, in
which k contiguous small chunks constitute a big chunk.
Big duplicate chunks are always desirable (lines 2–6).
Small chunks can only be emitted either in line 4, upon
detecting an ensuing transition to duplicate data, or in
line 7 when exiting a region of duplicate data. Regions
considered fresh data (line 9) are emitted as big chunks.

fashion, two duplicate input streams can be forcibly re-
synched after a resynchronization cut-point in algorithms
that do not have sufficient lookahead to do so sponta-
neously. This mechanism can protect against certain ma-
licious inputs, but will lower the average chunk size. A
second means to favor spontaneous resynchronization is
to use a hierarchy of backup cut-points (parameter b of
Section 2.2).

In our test code, we also allowed some algorithms
of theoretical interest. We maintained Bloom filters for
many different types of chunk emission separately: small
chunks and big chunks, both emitted and non-emitted.
One benefit (for example) is to allow the concept of ‘du-
plicate’ data region to include both previously emitted
small chunks as well as non-emitted small chunks (that
were emitted as part of some previous big chunk emis-
sion). An algorithm modified to query non-emitted small
chunks (i.e. the small chunks that were not emitted be-
cause they were part of some big chunk) can detect du-
plicate data at a more fine-grained level, at the cost of
additional storage for such sub-chunk metadata. Never-
theless, when resources are more plentiful, implementa-
tions such as fingerdiff adopt such an approach and ob-
tain substantial compression improvements [5].

Figure 3 shows the algorithm as applied in this paper.
The length of the lookahead buffer is of minimal size
and gives the behavior that transition regions are never
covered by more than k small chunks. It is also quite
reasonable to extend the lookahead to 3k−1 chunks, and
allow up to 2k−1 small chunks to precede an upcoming
duplicate big chunk, as depicted in Fig. 4

The logic of breaking apart and amalgamation algo-
rithms (Figs. 2 and 4) is highly similar. For amalgama-
tion input 4(a), small chunks (b) are used to form big
chunks that are defined here as exactly 3 consecutive

(dup bytes)(dup bytes)

(b) Small chunk locations identified

(d) Transition regions remain small

(e) non−duplicate interior big chunk

3 4 5 6 7 101 2

(Non−duplicate bytes)

(c) Duplicate/Nonduplicate label for big chunks

D
N
N

N
N

N
N

N
N
N

N
N

D
D

N

8 9

(f) Final bimodal chunking: 1,2,3,...

(a) Input byte stream

Figure 4: “k-fixed” amalgamation algorithm steps. We
assume fixed-size big chunks are constituted of precisely
three small chunks in this example.

small chunks. Big chunks are queried in 2/4(c) and first-
most-occurring duplicate big chunks are emitted. Of the
remaining chunks, transition regions 2/4(d) are emitted
as small chunks. The remaining non-duplicate interior
chunks are re-emitted as a series of big chunks inasmuch
as possible 2/4(e), with one straggling small chunk left
over at the end in 4(e). The final chunk emission 4(f)
has small chunks 2–4 and 6–9. With the byte-level du-
plication points as in 4(a), small chunks 2 and 9 lie en-
tirely within the span of duplicate bytes, and may have
enhanced potential for deduplication.

Querying work is larger for amalgamation algorithms
than for breaking-apart. Breaking apart uses one query
per big chunk, whereas k-fixed amalgamation uses up to
k queries per big chunk (one per small), and k-var amal-
gamation for big chunks consisting of 2–k small chunks
uses up to k(k−1) queries per big chunk. The increased
number of existence queries for k-var amalgamation may
be unattractive for practical implementations.

3 Results and Discussion

3.1 Test data

We used a data set for testing consisting of 1.16 Terabyte
of full Netware backups of hundreds of user directories
over a 4 month period. For privacy reasons, we had no
idea what the distribution of file types was, only that it
was a large set of real data, typical of what might be seen



in practice. Some experiments were also conducted us-
ing an additional 400 GB of incremental backups during
this same period, but the results reported here include
only the data from the full backups.

In order to study the behavior of the algorithms on data
sets with characteristics different from our 1.16 TB data,
we also analyzed data sets similar to those of Bobbarjung
et al. [5], consisting of tar files for consecutive releases of
several large projects. Their work targeted improvements
for very small chunk sizes (< 1KB), while we target large
chunk sizes.

3.2 Simulation tools

We have developed a number of tools for offline,
anonymized, analysis of very large customer data sets.
The key idea was to generate a binary “summary” of the
input data, storing fine-grained information about poten-
tial chunk-points that could later be reused to generate
any coarser-grained re-chunking. For every small chunk
generated with expected size 512 bytes, we stored the
SHA-1 hash of the chunk, as well as the chunk size
and actual cut-point level ℓ (# of terminal zeroes in the
rolling window hash). The summary data was obtained
by running with minimum chunk size 1 byte and max-
imum chunk size 100k, with expected chunk size 512
bytes. This chunk data was sufficient to re-chunk our in-
put data sets. Data sets that generate no chunk-points at
all (e.g. all-zero inputs) are better handled by reducing
the maximum chunk size used for generating the sum-
mary stream.

Our utilities also stored local compression estimates,
generated by running every fixed-size chunks (ex. 4k, 8k,
16k, 32k) through LZO and storing a single byte with the
percent of original chunk size. Then, given the current
file offset and chunk size, we could estimate the com-
pression at arbitrary points in the stream. Using piece-
wise constant or linear approximations for the estimated
size of compressed chunks yielded under 1% errors in
compressed DER for our large dataset. In this fashion,
the 1.16 Terabyte input data could be analyzed as a more
portable 60 GB set of summary information (a sequence
of several billion summary chunks, involving over 400
million distinct chunks). Such re-analyses took hours
instead of days. We also stored, to a separate file, the
duplicate/nonduplicate status of every summary stream
chunk as it was encountered. This allowed us to inves-
tigate the size distribution of nonduplicate and duplicate
segments of input data, as well as efficiently ascertaining
which small-chunk decisions would later generate dupli-
cate chunks.

To answer existence queries we used in-memory
Bloom filters of up to 2 Gigabytes in length. The sum-
mary streams and Bloom filters allowed us to quickly

simulate a large number of chunking algorithms on up
to 1.5 Terabytes of original raw data using a single com-
puter. We were also interested in knowing the limits
of coalescing small chunks into large chunks. Since an
exact calculation is prohibitive, a simple approximation
was obtained by coalescing all always-together chunk
sequences into single chunks. Other tools allowed us
to consult an oracle in order to maintain statistics about
the future re-encounter probabilities of different types of
chunks.

Because of intended use at customer sites, the tools
were also used to evaluate faster alternatives to Rabin
Fingerprinting [7, 29] to select cut-points. Using a com-
bination of boxcar functions and CRC-32c hashes al-
lowing input streams to be chunked at memory band-
width and represented a considerable time savings when
generating chunking summaries. We verified that using
a faster rolling window (operating essentially at mem-
ory bandwidth) had no effect upon DER, corroborating
Thaker’s [31] observation that with typical data even a
plain boxcar sum generated a reasonably random-like
chunk size distribution. He explained this as a reflec-
tion of there being enough bit-level randomness in the
input data itself, making a high-quality randomizing hash
function unnecessary in practice. We verified that choice
of rolling window function had no little impact upon
DER measurements for our 1.16 TB dataset.

3.3 DER of different chunking algorithms

Within a given algorithm, there are several parameters,
such as minimum m and maximum M chunk size, and
trigger level ℓ, which can generate different behavior.
Breaking-apart and amalgamation algorithms also have
other parameters, such as k (the number of small chunks
in a big chunk) and an optional resynchronization pa-
rameter r (defining a coarser-grained chunking level 2ℓ+r

across which no big chunk may extend). When an algo-
rithm was run over the entire 1.16 Terabyte data set or
its summary, we measured the DER as the ratio of in-
put bytes to bytes within stored chunks. Bytes within
stored chunks could be reported raw, or as compressed
size estimates. We used an LZO compressor to derive
compression values; however, other compressors should
display qualitatively similar behavior. Compression is
relevant because most archival systems store data in com-
pressed format. We explored a wide space of parameters
for amalgamation (fixed- and variable-size big chunks)
and breaking-apart algorithms on this data set. We show
plots assuming zero metadata overhead initially and will
give an illustration of the effects of metadata upon the
DER later.
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Figure 5: Performance of two amalgamation chunking
algorithms, k-fixed and k-var, compared to a baseline
chunking algorithm “Base”, over a range of chunk sizes.
The top 3 “compr” curves are the same data as the lower
three traces, but DER and chunk sizes are reported as-
suming compressed chunk storage.

Performance of bimodal amalgamation chunking

Figure 5 compares two bimodal amalgamation algo-
rithms “k-fixed” and “k-var” with standard baseline
chunking algorithms “Base”. For each of these 3 chunk-
ing algorithms, raw DER values and chunk sizes are
in the bottom 3 traces, while corresponding DER using
stored compressed chunk sizes appears in the upper 3
traces. Comparing the two sets of three traces, we note
for compressed storage the traces are more highly sloped,
which reflects the rapid initial rise in compression effi-
ciency as chunk size is increased. Linearity in the raw
DER traces indicate some scale-independent statistical
behavior in our large archive dataset: this is not the case
for some small test datasets that we present later.

In this and later figures, precise parameter settings of
a particular algorithm are usually not influential, serving
to move measured points along the same general curve.
Since precise parameter settings are not crucial, the pa-
rameters we do describe should be viewed as examples
of reasonable settings.

The “Base” baseline chunking traces shown in Fig.
5 varied the minimum, nominal average and maximum
chunk sizes {m,m+2ℓ,M}, often maintaining a 1:2:3 ra-
tio for these values. We consulted b = 3 levels of backup
cut-points if maximum chunk size was encountered.

The “k-fixed” traces of Fig. 5 use an amalgamation

algorithm, running with fixed-size big chunks (i.e. a big
chunk consists always of k small chunks). Half these
runs maintained a 1:2:3 ratio for min:avg:max, with k= 8
and r = 4. Two used k = 4 instead, and two did not use
resynchronization points. Investigating more parameter
settings showed that minor variations in chunking param-
eters typically lay along the same curve: the algorithm
was robust to parameter choices. We found a broad opti-
mal region for k from 8 to 12, and suggest that resynchro-
nization points be either unused or maintained at r & 3.

The algorithm labelled “k-var” in Fig. 5, at an ad-
ditional querying cost, allows variable-sized big chunks
that use any number 1–k of small chunks. It also used
Bloom Filter queries for small chunks which were previ-
ously encountered but emitted only as part of a previous
big chunk as finer-grained delineators of change regions.
In spirit the “k-var” traces of Fig. 5 might be viewed
as a lower bound for what more sophisticated algorithms
using sub-chunk information (such as fingerdiff [5]) or
chunk rewriting approaches could achieve.

Later, we will show that the extensions to the “k-var”
algorithms provide only slightly better performance.
This suggests that the most important algorithmic differ-
ence between fixed- and variably-sized big chunks lay
in the increased flexibility of generating and recognizing
large chunks. Nevertheless, algorithms in this “k-var”
class require more existence queries so they are not algo-
rithms of choice.

Note that the “k-fixed” algorithm of Fig. 5 can already
maintain average compressed chunk sizes up to 3–4×
as large as a baseline chunker at small chunk sizes (e.g.
DER 6.1 at 16100 bytes using k = 4 and no resynchro-
nization, as compared to an interpolated 4700 bytes for
“Base compr”). For uncompressed storage systems, we
see that k-fixed bimodal amalgamation algorithms uni-
formly yielded ≈50% increase in average uncompressed
chunk size, even at the largest (96k) chunk sizes pre-
sented.

Our implementation used a look-ahead buffer of 2k
small chunks and in-memory Bloom filters for speed.
As noted before, a lookahead buffer of 3k− 1 chunks
is also a reasonable choice. In practice, however, to
maintain streaming performance very much larger look-
ahead buffers may be necessary, since answering exis-
tence queries is likely to require asynchronous network
or disk operations of high latency.

Our use of Bloom filters in answering existence
queries led us to question the impact of false positives.
For the “k-fixed” amalgamation algorithm, we found
all benefits of bimodal chunking over the baseline were
negated by ≈2.5% false positives. Falsely identified du-
plicate/nonduplicate transitions should be avoided. So
techniques such as a hierarchy of more accurate Bloom
filters [39] may be useful. Alternatively, in other work,
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Figure 6: Breaking-apart chunking algorithms compared
with baseline performance.

we have adapted efficient hash table implementations
[19, 16, 23] to take full advantage of SSD R/W char-
acteristics (possibly in conjunction with fingerprint ap-
proaches) to provide fast, exact answers to existence
queries.

Variants of amalgamation algorithms, that prioritize
equivalent choices of big chunk if they occurred, were
found to offer no significant performance improvement.
In fact, several such attempts work badly when run on
actual data, often for rather subtle reasons.

Small chunk statistics, using an oracle

Using knowledge of the full set of small chunk emissions
we investigated the statistics of the smaller transition re-
gion chunks, which bore out premise P2 for an amalga-
mation algorithm using fixed-size big chunks. For exam-
ple (not shown in figures), for k = 8 small chunks in a
transition region between two duplicate big chunks, the
bordering small chunks have around 88% chance of be-
ing encountered subsequently, dipping to 86% for cen-
tral small chunks. For one-sided duplication transitions,
we found that the small-chunk duplication chance de-
cayed from ~75% to ~67%. Bimodal chunking with
k = 32 showed small-chunk duplication probability de-
clining from 86% adjacent to the duplicate big chunk
to 65% at the furthest small chunk. These experimen-
tal results agree with earlier expectations based on Fig. 4
assuming good future duplication of byte-level duplica-
tion regions and, say, a uniform location for the start of

the byte-level non-duplicate region in 4(a) with respect
to the small chunk transition region 4(d).

Performance of bimodal breaking-apart chunking

In Figure 6 we present results with a breaking-apart al-
gorithm, which uses one query per large chunk, com-
pared to the baseline algorithm. Most runs retain base-
line m : m+ 2ℓ : M settings in a 1:2:3 ratio. Beginning
with a baseline chunker we consecutively divided these
settings by two to generate a series of small chunkers,
which were used in the breaking apart algorithm of Fig.
1. A few additional points vary R, the size of transition
region that gets re-chunked, but do not depart substan-
tially from the breaking-apart curves for R = 1. We note
that reasonable performance is obtainable by choosing a
small chunker with average chunk size about 4–8 times
smaller than the original baseline chunker.

Comparing Figs. 5 and 6, we see that a carefully tuned
breaking apart algorithm can be competitive with the
performance of amalgamation algorithms with fixed-size
big chunks, particularly in the regime of chunk sizes
&40k. The practical benefit of breaking-apart over the
“k-fixed” amalgamations of Fig. 5 is a reduction in the
number of existence queries by a factor of k.

Effect of non-zero metadata overhead

One approach to accounting for metadata effects is to
pretend that it simply increases the average stored block
size by some number of bytes. Another instructive ap-
proach is to consider the the metadata effects on the
oft-reported DER values. For example, with a metadata
overhead of 800 bytes per chunk, we can use the known
total amount of input bytes (which is a constant 1.16 TB
in Figs. 5 and 6) to transform the DER value of each
measurement, while still reporting the average size of the
chunk.

In Figure 7, we have simply scaled the DER val-
ues of the empty symbols, which are traces taken from
Fig. 5, by reducing their DER by 1 + f . Here f ≡
metadatasize/averagechunksize is the metadata overhead, and
the transformed traces are plotted with solid symbols.
The DER reduction can be quite dramatic at low chunk
sizes where metadata overhead is a substantial fraction
of the stored chunk size. We see that including metadata
magnifies the DER improvement relative to a baseline
chunker of equivalent average chunk size. The figure
motivates maintaining average chunk sizes much larger
(preferably & 20×) than the per-chunk metadata over-
head.



Data # of
versions

Baseline
chunk size /

bytes

Baseline
DER

Amalgamation
chunk size /

bytes

Amalgamation
DER

Compressed
size of 16k

records / 16k

gcc source 20 4952 4.68 13742 4.59 0.37
gdb source 10 6184 4.14 15225 4.05 0.35

linux source 10 6921 3.51 16804 3.52 0.40
emacs source 10 7525 3.23 17265 2.95 0.46

Table 1: Comparison of DER (w/ LZO) achieved by baseline chunkers and amalgamation algorithms. The average
input chunk size of the baseline chunker was 16k with allowed sizes 8k–24k and two backup levels. The amalgamation
used large chunks composed of exactly k = 8 small chunks. Values of chunk size and DER reflect chunks stored in
compressed LZO format. The average compressibility of fixed-length 16k records of input data (no deduplication) are
in the last column.
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Figure 7: Two baseline and one “k-fixed” amalgama-
tion algorithm curves (open symbols) from Fig. 5 have
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Performance using source code archives

We also analyzed data sets consisting of tar files for con-
secutive releases of several large projects. The com-
pressed chunk size and DER under one set of baseline
conditions and an amalgamation algorithm based upon
these small chunks is shown in Table 1. We see that
amalgamation has increased the average chunk size of
stored chunks by a factor of around 2.5, with a worst
case decrease in DER of 8%.

A picture of the performance of baseline and “k-fixed”
amalgamation on these source archives is offered by
Fig. 8, which shows DER curves with compression (top
curves) and without (bottom). Corresponding to various

baseline chunkers, we ran “k-fixed” amalgamate algo-
rithms as in Fig. 5 for k values between 2 and 20. Recall
that k = 8 was suggested to be a reasonable value for the
large dataset. Improvements in DER and chunk size are
much worse for these small archive datasets, when com-
pared with the 1.16 TB dataset of Fig. 5.

The baseline chunkers all display uncompressed DER
that approaches 1.0 as average chunk size rises, showing
that at large chunk sizes, DER can be obtained primarily
by using compression. These data sets have small file
sizes and quite scattered change sections (i.e. property
P1 for filesystems may not apply well when the density
of changes is large and somewhat uniform). The DER
(w/o LZO) points are usually above (better) the smooth
Baseline curve, but do not show significant improvement.
The improvement is better when storage of compressed
chunks is considered. The emacs data set consistently
shows the smallest improvements from amalgamation, as
well as the least duplicate elimination (2.0 at 4k average
chunk size, 4.12 compressed) and least compressibility
(fixed-size 16k chunks were compressed to 46% of their
original length).

Even though there is no reason that tar files of source
code releases should concentrate most change regions
into a small subset of files, amalgamation still shows
modest DER vs. chunk size improvement with respect
to baseline CDC chunking. Lightly degraded DER was
achieved with average chunk sizes larger by factors of
2.5× (see Table 1) in these data sets, as compared to a
factor of 3–4× in the actual 1.16 TB archival data set.

Optimal “always-together” chunks

For our 1.16 TB data set, it is also interesting to consider
what a good theoretical amalgamation of small chunks
would be. A simple set of optimization moves is to
always amalgamate consecutive chunks that always oc-
curred together. This will not affect the DER at all, but
will increase the average chunk size. Iterating this pro-
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(a) DER vs. chunk size: gcc dataset
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(b) DER vs. chunk size: gdb dataset
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(c) DER vs. chunk size: linux dataset
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Figure 8: Duplicate elimination versus stored chunk size measurements on consecutive source code releases. Baseline
and bimodal k-fixed chunking were performed, yielding results for uncompressed storage (lower traces, open symbols)
and compressed storage (upper traces, solid symbols). Chunk compression used the default LZO settings. Bimodal
series denoted in the legends as “k1,k2, ... x Nk” amalgamate a fixed number, k, of chunks output from the baseline
chunker with Nk average chunk length.
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Figure 9: Baseline and k-var amalgamation are compared
with theoretical chunk size limits determined by amalga-
mating every set of chunks which always co-occurred in
our 1.16 Terabyte data set. k-var amalgamation results
(triangles) cover a wide range of parameters chunking
parameters. Solid triangles in Figs. 5 and 9, using exten-
sions to the basic algorithm, are included here for com-
parison.

duces that longest possible strings of chunks that always
co-occurred and increases the average chunk size. This
parallelized calculation is lengthy and non-scalable.

Using “future knowledge” to amalgamate all always-
together chunks was done for input chunk sequences of
512 and 8192 average size to produce two isolated points
in Fig. 9. Analyzing the raw summary stream, with
chunks 512 bytes long on average, increased the average
uncompressed stored chunk size from 576 to 5855 bytes
(i.e. the average number of always-co-occurring small
chunks was around 10 for this data set). Similarly, the
other theoretical calculation increase the average chunk
size from around 8k to 75k bytes, once again nearly a
factor of 10× improvement in uncompressed chunk size.

In practice, amalgamating often- or always-together
chunks opportunistically may be a useful background
task to optimizing storage. This experiment provides
an easily-defined theoretical bound against which we
can judge how well our simple algorithms based on du-
plicate/nonduplicate transition regions were performing:
10× improvement can be achieved, with such an oracle.

For comparison, Fig. 9 also presents a number of
amalgamation results with variable-size big chunks (k-1
queries per small chunk). Such amalgamation algorithms
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Figure 10: Histogram of number of contiguous duplicate
chunks vs. number of subsequent contiguous nondupli-
cate chunks at the 512-byte expected chunk size. Raw
counts have been scaled by the number of chunks to pro-
duce histogram values representing the total amount of
input data. Note the logarithmic scales: the overwhelm-
ingly most frequent (and still most important with regard
to total amount of input data involved) occurrence is one
duplicate chunk followed by one nonduplicate chunk.

come almost half-way from the baseline curve to this
particular theoretical limit. These runs had a haphazard
selection of m, ℓ and M small chunk size settings, use
0–4 resynchronization cut-points (usually zero or 4), and
mostly have k= 8. Again, noting that the results lie more
or less along a common line we conclude that precise val-
ues of parameter settings are not vitally important. We
also note that performance is on par with the traces la-
beled “k-var” in Fig. 5 (reproduced here in Fig. 9 as solid
triangles). This indicates that the additional complica-
tion of using sub-chunk information to delineate change
regions was not particularly useful.

3.4 Data characteristics

Size-of-modification distribution

Although originally formulated based on considerations
of simple principles P1 and P2, it is important to judge
how much our real data departs from such a simplistic
data model. We found that the actual data deviated quite
substantially from an “ideal” data set adhering to P1 and
P2. A simplest-possible data set adhering to P1 might be
expected to have long sequences of contiguous nondupli-
cate data during a first backup session, followed by long
stretches of duplicate data during subsequent runs.

We interrogated the anonymized summary stream, as
chunked at the 512-byte expected chunk size, using a bit-



stream summary of the “current” duplication status of the
chunk. The actual histograms of number of contiguous
nonduplicate chunks vs. number of contiguous dupli-
cate following chunks (and vice-versa) showed an over-
whelming and smoothly varying preference to having a
single nonduplicate chunk followed by a single duplicate
chunk. A 2-dimensional histogram of the final contigu-
ous numbers of duplicate/nonduplicate chunks (after 14
full backup sessions) is in Figure 10. The histograms af-
ter the first “full” backup was of similar character. Such
histograms do not suffice for estimating DER since du-
plication counts are absent. This analysis found no naive
adherence to P1 and P2.

Only a minor fraction of the input stream was data oc-
curring as long stretches of unseen data. Only the earlier
oracular results provided direct evidence for P2: small
chunks close to duplicate big chunks did indeed have sig-
nificantly augmented re-emission probabilities. This ef-
fect can be predicted simply by assuming a uniform loca-
tion of the transition region from duplicate to nondupli-
cate bytes within the large chunk being stored as smaller
chunks in Figs. 2(d) and 4(d), and may be the dominant
reason why bimodal chunking works for archival data.

This suggests that for input data sets showing such
high interspersal of duplicate with nonduplicate chunks,
alternate approaches may be able to come closer to the
theoretical limit than the algorithms presented in this pa-
per. Nevertheless, even for such data, even simple bi-
modal chunking heuristics were able to increase average
chunk size by a factor of 3 or more.

4 Related Work

For our purposes, the speed of blocking (chunking) was
a consideration because we target throughputs of several
hundred MB/s. The simplest and fastest approach is to
break apart the input stream into fixed-size chunks. This
is the approach taken in the rsync file synchronization
tool [34, 33]. However, consider what happens when an
insertion or deletion edit is made near that beginning of
a file: after a single chunk is changed, the entire subse-
quent chunking will be changed. A new version of a file
will likely have very few duplicate chunks. Pratt [26]
provides good comparison of fixed- and variable-sized
chunking for real data. Lufei et al. [22] provides an in-
troduction to options such as gzip, delta-encoding, fixed-
size blocking and variable-size chunking. For filesys-
tems, You et al. [36] compares chunking and delta-
encoding. Delta-encoding is particularly good for things
like log files and email, which are characterized by fre-
quent small changes.

CDC produces chunks of variable size that are bet-
ter able to restrain changes from a localized edit to a
limited number of chunks. Applications of CDC in-

clude network filesystems of several types [2, 27], space-
optimized archival of collections of reference files [9, 14,
37], as well as file synchronization [32, 15]. By using
special rolling window functions in innermost loops, the
baseline CDC algorithms can operate very quickly.

Mazières’ Low-Bandwidth File System (LBFS) [25,
31] was influential in establishing CDC as a widely
used technique. Usually, the basic chunking algorithm
is typically only augmented with limits on the mini-
mum and maximum chunk size. More complex deci-
sions can be made if one reaches the maximum chunk
size [30, 13, 15] (see Section 2.2).

Alternatives to CDC for compressing data exist and
typically have higher cost. An often used technique in
more aggressive compression schemes is resemblance
detection and some form of delta encoding. Unfortu-
nately, finding maximally-long duplicates [17, 18, 1] or
finding similar (or identical) files in small [5] or large
(gigabyte) [8, 10, 20, 11, 28] collections is a nontrivial
task.

In HYDRAstor [12] and DEBAR [35], existence
queries (and global deduplication) can be addressed ef-
ficiently by consulting a scalable, distributed data struc-
ture. Our approach has been to tackle the small chunk
size problem directly. A noted in the introduction, a
recent alternative approach is to reduce metadata re-
quirements by practicing only local duplicate elimination
within a suitably large local basin of data. For example,
the approach of Brin et al. [6] has been revived in an
elegant “extreme binning” approach that distributes in-
formation at a large-block level (file-level representative
hash) to detect near-similarity, and has been shown to
achieve near-optimal deduplication at small-chunk level
[4]. Another recent approach describes a sparse indexing
approach to determining similar segments of an stream
[21].

Bimodal chunking presumes only an existence query
for already-stored chunks, and has the potential to pro-
vide system improvements of several types. The increase
in average chunk size (roughly 2.5× in these data sets,
and 3–4× in the 1.16 TB archival data set) decreases the
storage cost for metadata describing these chunks. By
reducing the number of disk accesses, there are potential
increases in read and write speeds as fewer transactions
with the storage units are involved. Furthermore, the ex-
istence query information can be used in some backup
systems to entirely elide network transmission of existing
duplicates, which may result in additional write speed
improvements or decreased system cost.

5 Conclusion and Future Work

In this paper, we proposed bimodal algorithms that vary
the expected chunk-size dynamically. They are able to



perform content-defined chunking in a scalable manner,
involving a constant number of chunk existence queries
per unit of input. Significantly, these algorithms re-
quire no special-purpose metadata to be stored. We show
that these algorithms increased average chunk size while
maintaining a reasonable duplication elimination ratio.
We demonstrated the benefits of the algorithms when ap-
plied to 1.16 Terabyte of actual backup data as well as to
four sets of source code archives.

Although the statistics of these data sets suggest that
they do not conform to our expectations based on princi-
ples P1 and P2, the algorithms still perform well, leading
us to conjecture that they are robust (applicable to many
types of archival inputs). We expect the proposed algo-
rithms will behave best for storage of versioned data in
block stores with high metadata cost, but we plan to eval-
uate them for other data sets.

Under a wide variety of chunking parameters, chunk
amalgamation algorithms performed well. They present
more flexibility in querying for duplicate chunks than al-
gorithms involving breaking apart chunks within a pre-
liminary large chunking. We also plan to investigate al-
gorithms that use compressibility to govern chunking de-
cisions based on fast entropy estimation.

This work has targeted evaluating a prospective bi-
modal chunking algorithm that has potential to address
real issues in the HYDRAstor storage system and other
systems that require large per-chunk storage overhead.
The simple algorithms of Figs. 1 and 3 used in the eval-
uation are in the process of being adapted for inclusion
and evaluation in HYDRAstor. Because of the latency of
answering existence queries, this requires a larger looka-
head buffer and issuing (in a straightforward approach)
all possible existence queries. Additionally, current stor-
age systems go to great lengths to avoid disk accesses .
For example, both HYDRAstor and Data Domain prod-
ucts address disk access reduction and locality of access
issues and both have used Bloom filters to reduce disk the
number of disk accesses [38]. Because of the disk bottle-
neck, efficient mechanisms to reply to existence queries
with minimal impact of streaming read and write perfor-
mance is desired. Implementation, currently underway
for the HYDRAstor storage product, may eventually in-
volve new data structures, or even new hardware (partic-
ularly SSDs) before bimodal chunking becomes a com-
mercial offering.
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