
ChunkStash: Speeding Up Storage
Deduplication using Flash Memory

Biplob Debnath+, Sudipta Sengupta*, Jin Li*

*Microsoft Research, Redmond (USA)
+Univ. of Minnesota, Twin Cities (USA)

Deduplication of Storage

� Detect and remove duplicate data in storage systems
� e.g., Across multiple full backups

� Storage space savings

� Faster backup completion: Disk I/O and Network bandwidth
savings

� Feature offering in many storage systems products
� Data Domain, EMC, NetApp

� Backups need to complete over windows of few hours
� Throughput (MB/sec) important performance metric

� High-level techniques
� Content based chunking, detect/store unique chunks only

� Object/File level, Differential encoding

Impact of Dedup Savings Across Full
Backups

Source: Data Domain white paper

Deduplication of Storage

� Detect and remove duplicate data in storage systems
� e.g., Across full backups

� Storage space savings

� Faster backup completion: Disk I/O and Network bandwidth
savings

� Feature offering in many storage systems products
� Data Domain, EMC, NetApp

� Backups need to complete over windows of few hours
� Throughput (MB/sec) important performance metric

� High-level techniques
� Content based chunking, detect/store unique chunks only

� Object/File level, Differential encoding

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

Declare a chunk boundary

If Hash matches a particular pattern,

Content based Chunking

� Calculate Rabin fingerprint hash for each sliding window
(16 byte)

101
010

100
101

000
000

001
010

010
010

101
010

010
101

010
101

010
100

110
101

-4
-2
0
2
4

0 2 4 6

Hash

3 Chunks

Declare a chunk boundary

If Hash matches a particular pattern,

How to Obtain Chunk Boundaries?

� Content dependent chunking
� When last n bits of Rabin hash = 0, declare chunk boundary

� Average chunk size = 2n bytes

� When data changes over time, new chunks correspond to new
data regions only

� Compare with fixed size chunks (e.g., disk blocks)
� Even unchanged data could be detected as new because of

shifting

� How are chunks compared for equality?
� 20-byte SHA-1 hash (or, 32-byte SHA-256)

� Probability of collisions is less than that of hardware error by
many orders of magnitude

Container Store and Chunk Parameters

� Chunks are written to disk in groups of containers

� Each container contains 1023 chunks

� New chunks added into currently open container, which is sealed
when full

� Average chunk size = 8KB, Typical chunk compression ratio of 2:1

� Average container size ≈ 4MB

Slide 19

Chunk A

. . .

Chunk B
Chunk A’

. . .

Chunk B’
Chunk X

. . .
Chunk Y

1023
chunks

Data Container

Container
Store

Index for Detecting Duplicate Chunks

� Chunk hash index for identifying duplicate chunks
� Key = 20-byte SHA-1 hash (or, 32-byte SHA-256)
� Value = chunk metadata, e.g., length, location on disk
� Key + Value � 64 bytes

� Essential Operations
� Lookup (Get)
� Insert (Set)

� Need a high performance indexing scheme
� Chunk metadata too big to fit in RAM
� Disk IOPS is a bottleneck for disk-based index
� Duplicate chunk detection bottlenecked by hard disk seek

times (~10 msec)

Disk Bottleneck for Identifying Duplicate Chunks

� 20 TB of unique data, average 8 KB chunk size

� 160 GB of storage for full index (2.5 × 109 unique chunks @64
bytes per chunk metadata)

� Not cost effective to keep all of this huge index in RAM

� Backup throughput limited by disk seek times for index
lookups

� 10ms seek time => 100 chunk lookups per second
=> 800 KB/sec backup throughput

� No locality in the key space for chunk hash lookups

� Prefetching into RAM index mappings for entire container
to exploit sequential predictability of lookups during 2nd

and subsequent full backups (Zhu et al., FAST 2008)

. . .

Container

Storage Deduplication Process Schematic

Chunk Index on HDDChunk Index on Flash HDD

HDD

(Chunks in currently
open container)

(RAM)

(RAM)

Chunk

Speedup Potential of a Flash based Index

� RAM hit ratio of 99% (using chunk metadata prefetching
techniques)

� Average lookup time with on-disk index

� Average lookup time with on-flash index

� Potential of up to 50x speedup with index lookups served
from flash

ChunkStash: Chunk Metadata Store on Flash

� Flash aware data structures and algorithms

� Random writes, in-place updates are expensive on flash memory

� Sequential writes, Random/Sequential reads great!

� Use flash in a log-structured manner

� Low RAM footprint

� Order of few bytes in RAM for each key-value pair stored on flash

FusionIO 160GB ioDrive

3x

ChunkStash Architecture

Slide 25

Chunk metadata organized on flash in log-
structured manner in groups of 1023 chunks =>
64 KB logical page (@64-byte metadata/ chunk)

Chunk metadata indexed in
RAM using a specialized space
efficient hash table

RAM write buffer for
chunk mappings in
currently open container

Prefetch cache for chunk
metadata in RAM for sequential
predictability of chunk lookups

Low RAM Usage: Cuckoo Hashing

� High hash table load factors while keeping
lookup times fast

� Collisions resolved using cuckoo hashing

� Key can be in one of K candidate positions

� Later inserted keys can relocate earlier keys to
their other candidate positions

� K candidate positions for key x obtained using
K hash functions h1(x), …, hK(x)

� In practice, two hash functions can simulate K
hash functions using hi(x) = g1(x) + i*g2(x)

� System uses value of K=16 and targets
90% hash table load factor

Insert X

Low RAM Usage: Compact Key
Signatures

� Compact key signatures stored in hash table

� 2-byte key signature (vs. 20-byte SHA-1 hash)

� Key x stored at its candidate position i derives its signature from
hi(x)

� False flash read probability < 0.01%

� Total 6-10 bytes per entry (4-8 byte flash pointer)

� Related work on key-value stores on flash media

� MicroHash, FlashDB, FAWN, BufferHash
Slide 27

RAM and Flash Capacity Considerations

� Whether RAM of flash size becomes bottleneck for store
capacity depends on key-value size

� At 64 bytes per key-value pair, RAM is the bottleneck

� Example 4GB of RAM

� 716 million key-value pairs (chunks) @6 bytes of RAM per entry

� At 8KB average chunk size, this corresponds to 6TB of
deduplicated data

� At 64 bytes of metadata per chunk on flash, this uses 45GB of flash

� Larger chunk sizes => larger datasets for same amount of RAM and
flash (but may tradeoff with dedup quality)

Slide 28

Further Reducing RAM Usage in
ChunkStash
� Approach 1: Reduce the RAM requirements of the key-

value store (work in progress)

� Approach 2: Deduplication application specific

� Index in RAM only a small fraction of the chunks in each container
(sample and index every i-th chunk)

� Flash still holds the metadata for all chunks in the system

� Prefetch chunk metadata into RAM as before

� Incur some loss in deduplication quality

� Fraction of chunks indexed is a powerful knob for tradeoff between
RAM usage and dedup quality

� Index 10% chunks => 90% reduction in RAM usage => less than
1-byte of RAM usage per chunk metadata stored on flash

� And negligible loss in dedup quality!

Compare with Sparse Indexing Scheme

� Sparse indexing scheme (FAST 2009)

� Chop incoming stream into multi-MB segments, select chunk hooks
in each segment using random sampling

� Use these hooks to find few segments seen in the recent past that
share many chunks

� How does ChunkStash differ?

� Uniform interval sampling

� No concept of segment; all incoming chunks looked up in index

� Match incoming chunks with sampled chunks in all containers
stored in the system, not just those see in recent past

Slide 30

Performance Evaluation

� Comparison with disk index based system

� Disk based index (Zhu08-BDB-HDD)

� SSD replacement (Zhu08-BDB-SSD)

� SSD replacement + ChunkStash (ChunkStash-SSD)

� ChunkStash on hard disk (ChunkStash-HDD)

� Prefetching of chunk metadata in all systems

� Three datasets, 2 full backups for each

BerkeleyDB used as the
index on HDD/SSD

Performance Evaluation – Dataset 2

Slide 32

65x
3.5x

25x 3x
1.8x

1.2x

Performance Evaluation – Dataset 3

Slide 33

Performance Evaluation – Disk IOPS

Slide 34

Indexing Chunk Samples in ChunkStash:
Deduplication Quality

Slide 35

(1/64) (1/16) (1/8)

Indexing Chunk Samples in ChunkStash:
Backup Throughput

Slide 36

Flash Memory Cost Considerations

� Chunks occupy an average of 4KB on hard disk

� Store compressed chunks on hard disk

� Typical compression ratio of 2:1

� Flash storage is 1/64-th of hard disk storage

� 64-byte metadata on flash per 4KB occupies space on hard disk

� Flash investment is about 16% of hard disk cost

� 1/64-th additional storage @10x/GB cost = 16% additional cost

� Performance/dollar improvement of 22x

� 25x performance at 1.16x cost

� Further cost reduction by amortizing flash across datasets

� Store chunk metadata on HDD and preload to flash
Slide 37

Summary
� Backup throughput in inline deduplication systems limited by

chunk hash index lookups

� Flash-assisted storage deduplication system
� Chunk metadata store on flash

� Flash aware data structures and algorithms

� Low RAM footprint

� Significant backup throughput improvements
� 7x-60x over over HDD index based system (BerkeleyDB)

� 2x-4x over flash index based (but flash unaware) system (BerkeleyDB)

� Performance/dollar improvement of 22x (over HDD index)

� Reduce RAM usage further by 90-99%
� Index small fraction of chunks in each container

� Negligible to marginal loss in deduplication quality

