Proxychain: Developing a Robust and Efficient Authentication Infrastructure for Carrier-Scale VoIP Networks

Italo Dacosta and Patrick Traynor

Performance, Scalability and Security

- Finding the right balance between performance /scalability and security is a well-known challenge
- Robust but computationally expensive security mechanisms are difficult to deploy in production environments
 - S-BGP, DNSSEC
- Weaker but more efficient security mechanisms are generally broken and abused

– WEP, IKE Aggressive mode

Another Example: SIP Authentication

- Session Initiation Protocol (SIP)
 - Establishes, manages and terminates sessions between two or more clients
 - Generally associated with VoIP
- RFC 3261 recommends several security mechanisms: Digest authentication, SSL/TLS, IPsec and S/MIME
- However, Digest authentication is typically the only one employed
 - Weaker but more efficient

SIP Digest Authentication

- Challenge-response authentication protocol
- Based on cryptographic hash operations (MD5)
- De facto authentication mechanism in SIP

SIP Dialogs with Digest Authentication

Problems with Digest Authentication

 Inefficient in scenarios with a remote authentication service or database

- RTT added to each authentication operation
- One request to the database per authenticated SIP message
- High load in the database if it is shared by multiple SIP servers
- Considered a weak authentication protocol
 - E.g., No mutual authentication

Our Scenario: A Nationwide VoIP Provider

The Problem: Digest Authentication Performance in Our Scenario

Our Proposed Solution

- Reduce the number of requests to the database by <u>caching temporary</u> <u>authentication credentials</u> in the proxies
- Use <u>hash chains</u> to build these temporary credentials
 - Take advantage of hash chains properties
- Caching Digest auth. credentials reduces security!

Hash Chains Background

- Sequence of one-time authentication tokens
- Created by applying a cryptographic hash function to a secret value r multiple times

$$H^{n}(\mathbf{r}) = H(\dots H(H(\mathbf{r}))\dots)$$

Methodology

- Design and implementation of new SIP
 authentication protocol: **Proxychain**
- Experimental evaluation
 - Call throughput
 - Bandwidth utilization
 - CPU utilization
- Results analysis

Proxychain Design Goals

- Efficiency
 - Faster authentication operations
- Scalability
 - Support larger number of users and proxies
- Security
 - Provide more security guarantees

Proxychain SIP Dialogs

Proxychain implementation

- Modifications to proxy, database and client software
 - Implemented in C language
 - Relatively small when compared to original code base

- Total credential size (MD5): 134 bytes
 - Only ≈26 MB of proxy's memory required for storing 200,000 users credentials

Experimental Setup

- Planetlab for obtaining real RTT values
- GT Emulab testbed for database and proxies
 - OpenSIPS for proxies
 - MySQL for the database

- Nine high-capacity servers for generating SIP call traffic
 - SIPp as the SIP traffic generator

Results: Call Throughput

Results: Database CPU Utilization

Results: Scalability

Results: INVITE and BYE Authentication

Discussion: Performance and Scalability

- Proxychain reduces the effects of network latency, allowing higher call throughput
- Lower load to the database allows more scalability and lower HW requirement

Discussion: Performance and Scalability

- Hash chains allow constant storage space
 Dynamic reprovisioning (future work)
- <u>Key assumption</u>: each proxy caches most of its users' credentials (>75%)
 - Pre-fetching mechanism
 - Cache eviction policies (future work)

Discussion: Security

- Security improvements over Digest authentication and hash chain protocols
 - Efficient mutual authentication, additional security verifications
- Protection against passive and active attackers
 - Stealing credentials from a proxy does not allow user impersonation (only affects mutual authentication)

Conclusions

- Proxychain simultaneously provides a robust, scalable and efficient authentication mechanism for carrier-scale SIP providers without additional HW
- Even non-carrier level infrastructures with centralized authentication service can benefit from Proxychain
- The key concepts behind Proxychain can be applied to authentication protocols in other domains

Contact: idacosta@gatech.edu

