
XXX

Tolerating Malicious Drivers
in Linux

Silas Boyd-Wickizer and Nickolai Zeldovich

How could a device driver be
malicious?

Today's device drivers are highly privileged

Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

Result: Attackers exploit vulnerabilities

How could a device driver be
malicious?

Today's device drivers are highly privileged

Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

Result: Attackers exploit vulnerabilities

How could a device driver be
malicious?

Today's device drivers are highly privileged

Write kernel memory, allocate memory, ...

Drivers are complex; developers write buggy
code

Result: Attackers exploit vulnerabilities

Current approach

User-space drivers in μkernels (Minix, L4, ...)

Write device driver in new language (Termite)

Handle common faults (Nooks, microdrivers, ...)

Secure, efficient, & unmodified
drivers on Linux

Goal

Previous user-space drivers

Kernel

User

Kernel core

Network
stack

Hardware

Ethernet
driver

User User

Application

μkernel

Previous user-space drivers

Kernel

User

Kernel core

Network
stack

Hardware

Ethernet
driver

User User

Application

μkernel
Confine driver
in a process

Previous user-space drivers

Kernel

User

Kernel core

Network
stack

Hardware

Ethernet
driver

User User

Application

μkernel
Confine driver
in a process

General purpose
syscall API to

configure device

Previous user-space drivers

Kernel

User

Kernel core

Network
stack

Hardware

Ethernet
driver

User User

Application

μkernel
Confine driver
in a process

General purpose
syscall API to

configure device

Confine device with
IO virtualization HW.

Previous user-space drivers

Kernel

User

Kernel core

Network
stack

Hardware

Ethernet
driver

User User

Application

μkernel
Confine driver
in a process

General purpose
syscall API to

configure device

IPC network driver API
E.g. tx_packet

Confine device with
IO virtualization HW.

Current Linux driver architecture

Kernel

User

Ethernet
driver

Network
stack

Application

Hardware

netdeviceKernel RT

Current Linux driver architecture

Kernel

User

Ethernet
driver

Network
stack

Application

Hardware

netdeviceKernel RT

Kernel runtime
(e.g. kmalloc)

Current Linux driver architecture

Kernel

User

Ethernet
driver

Network
stack

Application

Hardware

netdeviceKernel RT

Kernel runtime
(e.g. kmalloc)

Network driver API
(e.g. tx_packet)

Linux user-space driver problem

Kernel RT and driver APIs won't work for
untrusted drivers in a different AS

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD's approach

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD's approach

SUD UML handles calls to kernel RT

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD UML

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD UML

Ethernet
proxy driver

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD UML

Ethernet
proxy driver

Network driver API

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD UML

Ethernet
proxy driver

Network driver API

SUD RPC
API

SUD's approach

SUD UML handles calls to kernel RT

Proxy driver and SUD UML allow reuse of
existing driver APIs

Kernel

UserEthernet
driver

Network
stack

Application

Hardware

netdevice

User

Kernel RT

SUD UML

Ethernet
proxy driver

Network driver API

SUD RPC
API

Network driver API

SUD's results

Tolerate malicious device drivers

Proxy drivers small (~500 LOC)

One proxy driver per device class

Few kernel modifications (~50 LOC)

Unmodified drivers (6 test drivers)

High performance, low overhead

No need for new OS or language

Security challenge: prevent attacks

Problem: driver must perform privileged
operations

Memory access, driver API, DMA, interrupts, …

Attacks from driver code:

Direct system attacks: memory corruption, ...

Driver API attacks: invalid return value, deadlock, ...

Attacks from device:

DMA to DRAM, peer-to-peer attacks, interrupt storms

Practical challenges

High performance, low overhead

Challenge: interact with hardware and kernel at high
rate, kernel-user switch expensive

E.g. Ethernet driver ~100k times a second

Reuse existing drivers and kernel

Challenge: drivers assume fully-privileged kernel env.

Challenge: kernel driver API complex, non-uniform

SUD overview

Kernel

User

Proxy driver Kernel core

Application

Hardware

Driver

User

SUD UML

HW access
module

SUD overview

Kernel

User

Proxy driver Kernel core

Application

Hardware

Driver

User

SUD UML

HW access
module

Linux driver APIs

Linux defines a driver API for each device class

Driver and kernel functions and variables

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables
struct wireless_ops {

int (*tx)(struct sk_buff*);

int (*configure_filter)(int);

...

};

struct wireless_hw {

int conf;

int flags

....

};

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

Proxy drivers and SUD-UML convert API to RPCs

struct wireless_ops {

int (*tx)(struct sk_buff*);

int (*configure_filter)(int);

...

};

struct wireless_hw {

int conf;

int flags

....

};

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

Proxy drivers and SUD-UML convert API to RPCs

struct wireless_ops {

int (*tx)(struct sk_buff*);

int (*configure_filter)(int);

...

};

struct wireless_hw {

int conf;

int flags

....

};

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

Proxy drivers and SUD-UML convert API to RPCs

struct wireless_ops {

int (*tx)(struct sk_buff*);

int (*configure_filter)(int);

...

};

struct wireless_hw {

int conf;

int flags

....

};

Called in a non-
preemptable context

Example: wireless driver API

Linux defines a driver API for each device class

Driver and kernel functions and variables

Proxy drivers and SUD-UML convert API to RPCs

struct wireless_ops {

int (*tx)(struct sk_buff*);

int (*configure_filter)(int);

...

};

struct wireless_hw {

int conf;

int flags

....

};

Called in a non-
preemptable context

Driver API variable

Wireless driver in SUD

Basic driver API → SUD RPC API→ driver API

Non-preemptable function: implement in proxy

Driver API variable: shadow variables

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Socket write

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML
wireless_ops.tx

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

TX packet RPC

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_ops.tx

Example 1: transmit a packet

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

DMA TX

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Problem: unable to switch to user-space

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML Acquires a
spin lock

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML
wireless_ops.configure_filter

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Filter RPC

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Solution: implement directly in proxy driver

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Solution: implement directly in proxy driver

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Register RX
packet types

Example 2: non-preemptable callback

Problem: unable to switch to user-space

Solution: implement directly in proxy driver

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 2: non-preemptable callback

Acquires a
spin lock

Problem: unable to switch to user-space

Solution: implement directly in proxy driver

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 2: non-preemptable callback

wireless_ops.configure_filter

Problem: unable to switch to user-space

Solution: implement directly in proxy driver

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

Example 2: non-preemptable callback

Return RX
packet types

Example 3: driver API variables

Problem: user-space can't access API variables

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

Problem: user-space can't access API variables

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

Driver API
variable

Example 3: driver API variables

Problem: user-space can't access API variables

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

Writes to
wireless_hw

Example 3: driver API variables

Problem: user-space can't access API variables

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

wireless_hw

Shadow variable

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

wireless_hw Writes to
wireless_hw

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

wireless_hw

Synchronize before
sending RPC

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

wireless_hw

Send RPC

Example 3: driver API variables

Problem: user-space can't access API variables

Solution: allocate a shadow copy and
synchronize before and after RPCs

Kernel

User

Wireless
proxy driver

Wireless
core

Web
browser

Hardware

Wireless
driver

User

SUD UML

wireless_hw

wireless_hw

Reads updates from
shadow variable

Example 3: driver API variables

SUD overview

Kernel

User

Proxy driver Kernel core

Application

Hardware

Driver

User

SUD UML

HW access
module

SUD overview

Kernel

User

Proxy driver Kernel core

Application

Hardware

Driver

User

SUD UML

HW access
module

Attacks from hardware

CPU

PCI bus

DRAM

Memory interconnect

Attacks from hardware

CPU

PCI bus

DRAM

Memory interconnect

Driver configures the device to execute attacks

Attacks from hardware

CPU

PCI bus

DRAM

Memory interconnect

Driver configures the device to execute attacks

DMA to DRAM

Attacks from hardware

CPU

PCI bus

DRAM

Memory interconnect

Driver configures the device to execute attacks

DMA to DRAM

Peer-to-peer messages

Attacks from hardware

CPU

PCI bus

DRAM

Memory interconnect

Driver configures the device to execute attacks

DMA to DRAM

Peer-to-peer messages

Interrupt storms

Attacks from hardware

Driver configures the device to execute attacks

DMA to DRAM

Peer-to-peer messages

Interrupt storms

HW access module prevents attacks

Interposes on driver-device communication

Uses IO virtualization to provide direct device access

IO virtualization hardware

CPU MSI

IOMMU
PCI express

switch

DRAM

Memory interconnect

APIC interconnect

IO virtualization hardware

CPU MSI

IOMMU
PCI express

switch

DRAM

Memory interconnect

APIC interconnect

Use IOMMU to map DMA buffer pools

Prevents DMA to DRAM attacks

IO virtualization hardware

CPU MSI

IOMMU
PCI express

switch

DRAM

Memory interconnect

APIC interconnect

Use PCI ACS to prevent peer-to-peer messaging

Prevents peer-to-peer attacks

IO virtualization hardware

CPU MSI

IOMMU
PCI express

switch

DRAM

Memory interconnect

APIC interconnect

Use MSI to mask interrupts

Prevents interrupt storms

Interrupt handlers in Linux

Kernel

Driver IRQ core

User
MSI

Interrupt handlers in Linux

Kernel

Driver IRQ core

User
MSI

Interrupt handlers in Linux

Driver called with IRQs disabled (non-preemptable)

Kernel

Driver IRQ core

User
MSI

Interrupt handlers in Linux

Kernel calls driver interrupt handler

Driver clears interrupt flag

Kernel

Driver IRQ core

User
MSI

Interrupt handlers with SUD

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler

HW access module masks interrupt with MSI

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler

HW access module masks interrupt with MSI

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler

HW access module masks interrupt with MSI

Asynchronous RPC to driver

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

Interrupt handlers with SUD

Kernel calls HW access module interrupt handler

HW access module masks interrupt with MSI

Asynchronous RPC to driver

Driver clears interrupt

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

Interrupt handlers with SUD

HW access module masks interrupt with MSI

Asynchronous RPC to driver

Driver clears interrupt

HW access module unmasks MSI

Kernel

HW access
module

IRQ core

User
MSI

Driver

SUD UML

SUD overview

Kernel

User

Proxy driver Kernel core

Application

Hardware

Driver

User

SUD UML

HW access
module

Prototype of SUD

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pci, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Trusted code Lines of code
PCI access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio proxy driver 550

Untrusted code Lines of code
User-mode runtime 5000
Drivers 5000 – 50,000 (each)

Trusted code Lines of code
PCI access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio proxy driver 550

Untrusted code Lines of code
User-mode runtime 5000
Drivers 5000 – 50,000 (each)

Prototype of SUD

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pci, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Trusted code Lines of code
PCI access module 2800
Ethernet proxy driver 300
Wireless proxy driver 600
Audio proxy driver 550

Untrusted code Lines of code
User-mode runtime 5000
Drivers 5000 – 50,000 (each)

Prototype of SUD

Supports all Ethernet, wireless, USB, audio drivers

Tested: e1000e, ne2k-pci, iwlagn, snd_hda_intel,
ehci_hcd, uhci_hcd, ...

Performance

For most devices, does not matter

Printers, cameras, …

Stress-test: e1000e gigabit network card

Requires high throughput

Requires low latency

Many device driver interactions

Test machine: 1.4GHz dual core Thinkpad

Performance questions?

What performance does SUD get?

Network throughput, latency

How much does it cost?

CPU cycles

SUD achieves same device
performance

TCP UDP TX UDP RX UDP latency
0

0.2

0.4

0.6

0.8

1

Linux
Sud

Normalized throughput relative to Linux

TCP: streaming (950 Mbps in both cases)

UDP: one-byte-data packets

T
hr

ou
gh

pu
t

re
la

tiv
e

to
 L

in
ux

CPU cost is low

TCP UDP TX UDP RX UDP latency
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linux
Sud

SUD overhead: user-kernel switch, TLB misses

Overheads not significant for many workloads
(packets larger than min. packet size)

C
P

U
 u

til
iz

at
io

n

Future directions

Explore hierarchical untrusted device drivers

PCI bus → SATA controller → SATA disk → …

Explore giving apps direct hardware access

Safe HW access for network analyzer, X server, …

Performance analysis and optimizations

SUD specific device drivers, super pages, ...

Related work

Mircokernels (Minix, L4, ...)

Simple drivers, driver API designed for user-space

Nooks, microdrivers

Handles common bugs, many changes to kernel

Languages (e.g. Termite), source code analysis

Complimentary to user-space drivers

No need for new OS or language

Summary

Driver bugs lead to system crashes or exploits

SUD protects Linux from malicious drivers using
proxy drivers and IO virtualization HW

Runs unmodified Linux device drivers

High performance, low overheads

Few modifications to Linux kernel

Security evaluation

Manually constructed potential attacks

Memory corruption, arbitrary upcall responses,
not responding at all, arbitrary DMA, ...

Relied on security heavily during development

SUD caught all bugs in user-mode driver framework

No crashes / reboots required to develop drivers

Ideal, but not done: red-team evaluation?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

