
Banal: Because Format Checking Is So Trite

Geoffrey M. Voelker
University of California, San Diego

ba·nal (adj.) lacking originality, freshness, or novelty

1 Introduction

This paper is not very interesting. It briefly describes
the motivation and implementation of banal,1 a format
checker for PDF documents. Banal deduces the for-
mat specification of a document (e.g., font size, margins,
etc.) and, optionally, compares the document formatting
against a set of rules and reports any violations. Banal
is most useful as part of a conference management sys-
tem for conferences and workshops. To this end, Eddie
Kohler has integrated banal into the HotCRP system [3],
thereby making banal’s services potentially widely avail-
able.

In the grand scheme of important issues facing con-
ference organization in our research community, format
checking decidedly ranks well close to the bottom. But
since banal is becoming more widely used, a brief note
on its genesis and implementation seems timely.

2 But...Why?

If there actually is an interesting question that banal
touches upon, perhaps it is what our community goals
are for having formatting requirements in the first place.
One perspective is that page limits, much less trifling for-
matting rules like font sizes and leadings, have a negative
overall impact on the ability of researchers to effectively
communicate their ideas and results. Towards the other
end of the spectrum, another perspective is that page lim-
its and formatting requirements reflect the practicalities
of the cost of publishing and the time demands on the
community. I’m in the practical camp.

I wrote banal because time is precious. The motiva-
tion for banal was born out of the reviewing workload
for OSDI 2004. Submissions were 14 pages, and oc-
casionally authors would use a 9-point font to maximize
the material included. Review workloads for conferences
and workshops in the systems and networking commu-
nity are substantial; papers with effectively multiple ad-
ditional pages multiplied across an entire review work-
load adds up to a noticeable additional time burden.

1Not entirely coincidentally, another way to pronounce the name of
the tool is “be-anal”.

Another reason could have been fairness. Papers that
violate formatting to include additional material could
have an advantage over papers that respect the require-
ments. I have never seen a paper whose outcome de-
pended upon violating formatting, though; papers in vio-
lation could have easily fit within the constraints with the
same outcome from program committees.

Even though the formatting requirements for submis-
sions are typically quite clear and adamant, program
committees are understandably reluctant to penalize even
egregious papers. Having a tool that makes it clear to
both the authors and the committee how a paper is for-
matted removes the need to make ad-hoc judgement calls
during the paper review process.2

A tool like banal can be useful for more than just
checking formatting, though. It can aid in other program
committee tasks:

Paper assignments. Assigning papers to program
committee members can be a time-consuming task. Ba-
nal could extract author names from the citations in bib-
liographies and check for overlap with PC members as a
basis for initial review assignments. (Suggested by Brian
Bershad after OSDI 2004.)

Preserving reviewer anonymity. With Acrobat 6,
Adobe added JavaScript support for PDF documents. As
a result, scripts can be written, for example, to track
the IP addresses of machines that open submitted PDF
files [1]. Banal could prevent the use of JavaScript in
submitted PDF documents. (Kavé Salamatian once en-
countered a submitted paper that used JavaScript for this
purpose.)

Anonymous submissions. Conferences with double-
blind review require authors to anonymize their submis-
sions. After the submission deadline, PC chairs look
through submitted papers to ensure that papers do not
have author lists in the title block. Banal could auto-
matically check for the presence of author lists and warn
authors during the submission process. (Suggested by
Stefan Savage after the SIGCOMM 2008 deadline.)

With time, other uses for a tool that processes submit-

2At this point in the story, a frequent comment is that it is just for-
matting. I can only agree. But then why do we advertise formatting
requirements so uncompromisingly in our calls for papers?

1



ted papers will likely emerge. For its FastLane system,
for example, NSF uses the Adobe LiveCycle PDF Gen-
erator Elements product to process documents. FastLane
checks the paper size and the top, left, and right mar-
gins of uploaded documents, but the emphasis is on gen-
erating PDF files from a wide range of input document
formats and ensuring that submitted PDF files were gen-
erated by reliable tools and are reasonably portable (e.g.,
have embedded fonts) [2].

3 Operation

Banal has three modes of operation. It can report full for-
matting information for every page of a document. It can
print formatting statistics in columnar format on a sin-
gle line, which is useful for analyzing many documents
at once and gathering summary statistics (e.g., the distri-
bution of body font sizes for a set of PDF files). And it
can judge a document against a formatting specification
provided as an input.

The judging operation is most useful for conference
submissions. It is straightforward to convert conference
formatting requirements (paper size, font size, page lim-
its, margins, etc.) into a specification. Banal will then
report whether a document meets that specification and,
if not, how the document fails the specification.

Banal can be used at any stage of the submission pro-
cess: offline by the program committee during the review
process after papers have been submitted; as a require-
ment of the paper submission process; or as an infor-
mative tool that authors can use at any point during the
submission process. Since banal uses heuristics and can
make mistakes, I would argue that it should not be a re-
quirement for successful submission. Use it simply as
the informative tool that it is.

4 Implementation

Banal is a perl script that relies upon the pdftohtml
tool [4] to determine the location and font size of text
in the document. The pdftohtml tool marks characters
and words with their position and font, and banal maps
them from pdftohtml units to inches and points.

It then applies a series of heuristics. To determine the
placement of text on a page, banal essentially tracks the
bounding boxes around lines on a page. It then uses the
bounding boxes of lines to determine a bounding box for
all text on a page. For instance, the right margin of text
is the maximum right position of these boxes. Since text
can overflow a line, though, banal uses the maximum
right position shared by multiple lines — most lines in
justified text will have the same right position, and lines
with overflowing text will be outliers.

Banal performs similar calculations to determine the
left, top, and bottom values for the text region bound-
ing box. For headers, footers, and page numbers, banal
uses the width and number of lines at the top or bottom
as well as their font size (often headers and footers use
a different font from the body font) as hints to identify
them.

Once it has determined the text region bounding box,
banal can then calculate the margins relative to the paper
size being used (e.g., US Letter or A4). Banal uses the
bounding box width of full lines to estimate the width
of a column. It then uses the page width to estimate the
number of columns.

Pages full of graphs and very little text (e.g., just cap-
tions) make life difficult for banal’s heuristics, and ba-
nal is conservative on these pages. Banal tries to identify
them according to the number of words on a page. It does
a reasonable job with pages that are composed mostly or
entirely of tables; e.g., it considers each column of a full-
page table as a column of text.

Banal considers the font used most often by lines of
text as the body font for a page, and essentially ignores
the impact of text in all other fonts. It also tracks the
leading between all lines, and similarly uses the most
common leading as the leading used in formatting.

Banal processes each page of a document indepen-
dently. It then merges the results for each page into a
summary for the entire document.

5 Experience

Banal is starting to see increasing use by conferences in
our community. As a stand-alone tool, banal was used in
three conferences. Jeff Mogul and Brian Bershad used
an initial version of banal for OSDI 2006. Anja Feld-
mann and Nina Taft used banal in the conference system
Anja’s group implemented for SIGCOMM 2007. At the
suggestion of Stefan Savage, Eddie Kohler integrated ba-
nal with HotCRP for use with SIGCOMM 2008.

Henning Schulzrinne has also integrated banal into the
EDAS conference management system [5], where it has
seen much more extensive use. EDAS invokes banal au-
tomatically when people submit manuscript and camera-
ready papers, and it both records and displays any prob-
lems that arise. Authors can also invoke banal on their
papers directly. Henning estimates that, since 2006, over
800 events (conferences, sub-conferences, and affiliated
workshops) have used banal [6].

HotCRP for SIGCOMM 2008 instructed authors about
banal as follows:

Only submissions that meet the requirements
will be considered. However, since the au-
tomated format checker can make mistakes,

2



checker errors do not prevent paper submis-
sion. If your paper already meets the format
requirements, simply submit it as is.

Two submissions were sent to the PC chairs with con-
cerns about the output from banal. Banal is not perfect
and benefits from continued experience,3 but appears to
be sufficiently stable for general use.

The source for banal is available as part of the HotCRP
project [3]. You can also test banal at the following URL:

http://www.cs.ucsd.edu/˜voelker/banal

References

[1] J. Brockmeier. Unexpected features in Acrobat
7. http://lwn.net/Articles/129729/?SID=
8EA81D45601439DA364B1F185795031C, 2005.

[2] D. Hofherr and G. Strawn. Private communication, 2008.
[3] E. Kohler. HotCRP Conference Management Software.

http://www.cs.ucla.edu/˜kohler/hotcrp/.
[4] G. Ovtcharov, R. Dorsch, M. Kruk, and T. Blair. pdfto-

html: A utility which converts PDF files into HTML and
XML formats. http://pdftohtml.sourceforge.
net/.

[5] H. Schulzrinne. EDAS: Editor’s Assistant. http://
edas.info/.

[6] H. Schulzrinne. Private communication, 2008.

3For EDAS, Henning has found that converting PDF to PNG and
determining the margins in the pixel domain is more reliable than ba-
nal’s current approach.

3


