Distance Matters: Geo-social Metrics for Online Social Networks

Salvatore Scellato

Computer Laboratory, University of Cambridge

Joint work with: Cecilia Mascolo, Mirco Musolesi, Vito Latora

3rd Workshop on Online Social Networks

Boston, 22 June 2010

Location, location, location. And social networks.

Plethora of new services: increasingly important, excitingly new.

Information, social structure and space.

Geography may shape social structures and affect information flows.

Put people on a map and social ties across space.

We need new tools to model these networks.

Distance matters.

Probability of friendship decreases with distance.

Interesting questions...

- Can we discriminate between users according to their attitude towards long-range ties?
- How geographically close are clusters of friends?
- How is information spreading across space over social links?
- Can we improve real systems exploiting geographic information in social networks?

Geographic Social Network

Given a graph G=(N,K) and the **geographic location** of the nodes:

- •Place all nodes in a 2D metric space adopting great-circle distance on the Earth.
- Assign a weight to each edge equal to the geographic distance between the two nodes.

Geo-social metrics

How close are the neighbors of a given node to the node itself?

Node locality
$$NL_i = rac{1}{k_i} \sum_{j \in \Gamma_i} e^{-l_{ij}/eta}$$

How spatially inter-connected are the neighbors of a given node?

Geographic clustering coefficient

$$\Delta_{ijk} = \max(l_{ij}, l_{ik}, l_{kj})$$

$$GC_i = \frac{1}{k_i(k_i - 1)} \sum_{j,k \in \Gamma_i} e^{-\Delta_{ijk}/\beta}$$

Node locality

How close are the neighbors of a given node to the node itself?

Our aim is to:

- Highlight only extremely short-range social connections.
- •Normalize this measure for nodes with various degrees.
- Allow networks at different geographic scales to be compared.

Geographic clustering coefficient

How spatially inter-connected are the node's neighbours?

Our aim is to:

- Generalise the standard clustering coefficient.
- Highlight only extremely short-range social triangles.
- Allow networks at different geographic scales to be compared.

Scaling factor

The scaling factor β allows us to compare geo-social metrics across networks with different scales. For example, by choosing β so that **if all lengths are rescaled**, β is also rescaled, geo-social metrics are not affected.

$$e^{-rac{k}{eta_1}}$$

$$e^{-\frac{2k}{\beta_2}} = e^{-\frac{2k}{2\beta_1}} = e^{-\frac{k}{\beta_1}}$$

Dataset collection

Online Social Network	Collection method	Sampling	Location information
brightlite	Public API	Complete	GPS
foursquare	Public API	Snowball crawling	GPS
LiVEJOURNAL	Public API + HTML scraping	Snowball crawling	Text-based
twitter	Public API	Snowball crawling	GPS or text- based

Yahoo Geocoding API

Problems with geocoding

Hilton Paris

Paris Hilton

Keep only city-level accurate results

Dataset properties

Social Metrics

Geographic Properties

Average link length

Average user distance

Social Link Geographic Distance

LiveJournal

FourSquare

Twitter

Geo-social Metrics

Node Locality Distributions

LiveJournal

Twitter

Geographic Clustering Distributions

LiveJournal

Findings

Location-based services (LBSs) foster user interaction on shorter distance.

LBSs have many users with **predominance of local ties** and local triangles.

Twitter does not exhibit this 'hyperlocal' behaviour.

In general, users with higher degrees appear more global, (with the exception of Twitter).

Conclusions and future works

We have shown how social networks with **geographic information** can be studied and represented.

We have defined two new **geo-social metrics** which take into account both social connections and geographic distance: **node locality** and **geographic clustering coefficient.**

We have collected **4 large-scale online datasets** and applied our metrics to their structure, highlighting **differences** between purely location-based social network services and other online social communities.

In future: **information propagation over space** on Twitter, combining **user mobility** with geo-social metrics, general **geographic generative model** for OSNs.

Thanks!

Questions?

Salvatore Scellato

Email: salvatore.scellato@cl.cam.ac.uk

Web: http://www.cl.cam.ac.uk/~ss824/

Twitter: www.twitter.com/thetarro

