
Why it is hard to build a long-running service on PlanetLab

Justin Cappos and John Hartman
Computer Science Department

University of Arizona
Tucson, AZ, 85721

{justin,jhh}@cs.arizona.edu

Abstract

PlanetLab was conceived as both an experimental
testbed and a platform for long-running services. It has
been quite successful at the former, less so at the latter.
In this paper we examine why. The crux of the prob-
lem is that there are few incentives for researchers to de-
velop long-running services. Research prototypes fulfill
publishing requirements, whereas long-running services
do not. Several groups have tried to deploy research
services, long-running services that are useful, but also
novel enough to be published. These services have been
generally unsuccessful. In this paper we discuss the dif-
ficulties in developing a research service, our experi-
ences in developing a research service called Stork, and
offer suggestions on how to increase the incentives for
researchers to develop research services.

1 Introduction
Building a long-running service on PlanetLab[12] is dif-
ficult. PlanetLab has been used extensively to test and
measure experimental research prototypes, but few long-
running services are in wide-spread use. At the root of
the problem is the “dual use” purpose of PlanetLab as
originally conceived. On the one hand, PlanetLab is
a research testbed, giving researchers access to numer-
ous geographically-distributed nodes, realistic network
behavior, and realistic client workloads. The bulk of
PlanetLab activity to date has been of this sort. Most
of the services that run on PlanetLab are short-lived re-
search prototypes, developed as part of various research
projects and funded by research funding agencies. As
such, the prototypes exist to support experiments and
produce publishable results. They must be sufficiently
novel and must function only well enough to run the
necessary experiments and collect the necessary results
to validate the design.

On the other hand, PlanetLab is supposed to be a plat-
form for deploying long-lived services, connecting re-
searchers who want to produce these services with the
users who want to use them. Presumably these services
are based on earlier research prototypes, and incorporate
novel features that the users find appealing. To date, very

few of these long-lived services have been deployed and
even fewer have come into wide-spread use.

The reasons for this lie in the lack of incentives for
researchers to produce long-lived services. The original
PlanetLab paper is notably silent on this subject: Planet-
Lab’s dual purpose is touted as the most distinguishing
characteristic of the PlanetLab approach to changing the
Internet, but no blueprint is given for how this dual use
will come to be. Most of the discussion revolves around
how to support it, rather than how to make it a reality.

As a result, there are few long-lived services on Plan-
etLab. PlanetLab is designed and used by researchers
for whom the reward structure provides little incentive
to convert research prototypes into long-lived services.
Research prototypes suffice for publication; since the re-
ward for developing a new research prototype is quite
high, and the reward for converting an existing prototype
into a long-lived service is quite low, it is little wonder
that PlanetLab is awash in prototypes while suffering a
drought of services.

A potential middle ground is the research service,
a long-lived service with sufficient research content to
warrant publication. They are more interesting than
simple services, and more available and reliable than
research prototypes. Unfortunately, by spanning the
gap between simple services and research prototypes,
research services must meet the requirements of both
worlds (Figure 1). They must have a research compo-
nent so as to fit into the standard research reward struc-
ture, yet must not have any corner cases that make them
unreliable. They must be long-lived, yet permit experi-
mentation. There are several reasons why it is extremely
difficult to build a successful research service:

• Research services must contain a research compo-
nent that supports a research hypothesis. They must
do something new and interesting, rather than es-
tablished and mundane, as the reward system val-
ues novelty.

• Research services must rely on other research ser-
vices. A research service need not be novel in all
respects, but in those areas where it is not, it is ex-
pected to make use of the current state-of-the-art re-

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 61



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

UnimportantVery ImportantVery Important

Unimportant Very Important Very Important

ServicesResearch ServicesResearch Prototypes

Novelty

Reliability

Research Interest High High Low

Bullet Stork Sirius

SHARK Bellagio

CoBlitz

CoMon

AppManager

Example Services

Figure 1: Characteristics of research services, services,
and research prototypes.

search results. If, for example, recent research has
shown that reliable data transfer is best achieved us-
ing a particular technique, a research service that
incorporates reliable data transfer will be expected
to use that technique. That means that research ser-
vices end up depending on one another. Since a
well-known aphorism is to avoid having one’s re-
search depend on another research project, this is
not a recipe for success.

• Research services are prone to instability. Research
prototypes ignore the corner cases for a reason –
they are difficult to handle and don’t contribute to
the research results. This means that a research
service tends to have a relatively high bug/failure
rate. Interaction between research services makes
the problem worse. Each additional service intro-
duces its own set of corner cases, increasing the size
of the corners and decreasing overall stability.

For the remainder of the paper we describe the de-
velopment cycle of a PlanetLab research service called
Stork. We then discuss the issues and problems that
cause research services to enter a downward spiral on
PlanetLab, and conclude with suggestions on how to
break the cycle by providing incentives for researchers
to develop research services rather than research proto-
types.

2 Stork
Stork is a PlanetLab research service that installs and
maintains software for other services. A key problem
facing PlanetLab services is the difficulty in installing
software on a large set of nodes and keeping that soft-
ware updated over a long period of time. Researchers
need to quickly and efficiently distribute new package
content to huge numbers of nodes, and do so in the face
of network and node failures. In such an environment,
nodes may miss software updates, however the correct
software state must eventually be reached. In addition,
software must be installed on the nodes efficiently. Each
node runs hundreds of slices, many of which will install
the same software. Having hundreds of copies of the
same software on a node is not feasible; provisions must

be made for sharing copies between slices.
Stork solves this software maintenance problem.

Software installed using Stork is securely shared be-
tween slices, and a package is not downloaded if another
slice on the same node already has it installed. Stork
uses efficient transfer mechanisms such as CoBlitz[4]
and BitTorrent[5] to transfer files. Stork has security fea-
tures that allow developers to share a package on a repos-
itory without trusting each other or the package reposi-
tory administrator.

Stork uses the functionality provided by other long-
running services to enhance its capabilities. Stork uses
Proper[10] to share and protect content, CoDeeN[19]
and CoBlitz to transfer files, and AppManager[8] to de-
ploy itself on every node.

We first give an overview of the Stork project through-
out its development. We then discuss the specific prob-
lems that we encountered during different phases of de-
velopment and how these problems are instances of the
more general problems that plague research services.

2.1 Timeline
We present a timeline for Stork in Figure 2. The time-
line illustrates the different phases of the project during
development and deployment. Each period begins when
the first line of code for a version was written. The re-
sources, implementation and tool features for each ver-
sion are also discussed.

Throughout the design and development of Stork we
performed incremental roll-out and development. Our
intention was to gradually build Stork’s capabilities
along with its user base, relying on user feedback to help
define its development.

2.1.1 Plan-apt (Stork predecessor)
Plan-apt is a precursor to Stork that we developed for the
purpose of installing and updating packages on Planet-
Lab nodes. Plan-apt is essentially a simple remote ex-
ecution program with functionality tailored to package
installation. It allows a single host to push package up-
dates to many client slices. Unfortunately, since plan-apt
required the user to start a daemon in each slice to be
managed, the setup cost was unattractive.

We were frustrated by the inefficiencies of plan-apt
with regard to setup, disk usage, and security. We de-
cided to shelve remote execution to instead focus on a
tool that securely shares package content between slices
on a single node.

2.1.2 Stork (Alpha release)
We developed the first version of Stork to address plan-
apt’s shortcomings. This version uses apt to fetch pack-
ages and resolve dependencies, but provides extra secu-
rity and disk space savings. It was mostly focused on

USENIX Association62



Stork development timeline

May 15, 2003 November 12, 2003 April 27, 2004 Current

Resources

Phase

Implementation

1 Professor 1 Professor 1 Professor
1 Ph. D. student 1 Ph. D. student

3 undergraduates

~2500 lines of C

~20 files
two components

A basic remote shell

No security
Never released

~5000 lines of C

~40 files

Used apt underneath Used apt underneath
Minimal Security

Client −> Slice tool Slice −> Stork tool

Uses apt repositoryUses apt repository

Saves disk space

Minimally released

Shares via NFS

Package manager

~5000 lines of Python

~30 files

four componentstwo components

Package manager

Prominent Features

Full Security

Shares via Proper

Saves disk space

Efficient Transfer (CoBlitz)

Full Release on PlanetLab
Deployed using Appmanager

Stork (Alpha) Stork (Beta)

Everything in Beta version
Package manager

five components

~10000 lines of Python

~60 files

7 undergraduates
1 Ph. D. student

1 Professor

Stork (Version 1.0)

BitTorrent, Coral support
Vserver support

Web repository interface

DSMT interface

Central package control

Automatic Initialization

May 11, 2005

Plan−apt

(working remotely)
1 Ph. D. student

Uses Stork repository

Figure 2: This timeline shows the evolution of the Stork project. We show the resources used during development, the
method of implementation, and the prominent features of each release.

creating a package manager that efficiently and securely
shares content between slices using NFS.

2.1.3 Stork (Beta release)
In the next iteration we rewrote Stork using Python to
clean up the code and provide additional functionality
missing in the alpha version. We also developed Stork
into an independent package management tool no longer
reliant on apt. We added support for additional trans-
fer methods and package types. This version of Stork
uses packages primarily in the RPM format and resolves
dependencies itself. We also use Proper to securely
share packages between slices using hard links and file
immutable bits. This provides a fast and transparent
method to share files instead of NFS.

We divided Stork into four components to handle dif-
ferent tasks. As in the previous version there is a Stork
slice on each node as well as a set of installation tools,
but the beta version also added repository scripts and a
set of tools to authorize package use. Users digitally sign
packages and specify to Stork which other users’ digital
signatures they trust for groups of packages. Stork ver-
ifies package signatures before installing a package in a
slice.

2.1.4 Stork (Version 1.0)
The latest version of Stork features another re-write and
additional functionality. We changed to a more modu-
lar design that allows developers to write simple stubs
to perform similar actions using different implementa-

tions. For example, Stork has a stub interface for net-
work transfers with stubs such as HTTP, CoDeeN, FTP,
CoBlitz, and BitTorrent available. A developer could
create a new stub for Bullet[9] and then use that stub
with Stork without modifying any other code.

2.2 Problems

The problems with different versions of Stork were
mainly due to competing interests. Since Stork is a re-
search service, we tried to balance research and useful-
ness. Where practical, we made use of other research
services so as to increase Stork’s functionality. For ex-
ample, Stork downloads content using CoBlitz and Bit-
Torrent, shares files across slices using Proper, and has a
novel technique for validating packages. The complex-
ity of providing these features has greatly decreased the
usability and stability of Stork as a whole.

When developing the beta version of Stork we de-
cided to include intelligent content transfer. Point-to-
point HTTP transfers worked fine for the loads experi-
enced by earlier versions of Stork, but clearly would not
scale to larger numbers of users. As a result we added
support for other transfer types, including BitTorrent,
CoBlitz, and CoDeeN. We allowed the user to choose
what transfer type they wanted to use for their trans-
fer, but unfortunately when a transfer type failed, we did
not retry with another type. From a research standpoint
this was an appropriate simplification because all of the
functionality was there. From a service point of view, it
caused failures that our users did not appreciate.

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 63



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

Stork also depends on Proper, a research service that
enables inter-slice interaction such as file sharing. This
dependency has also proven problematic, as getting
Stork and Proper to work well together has been diffi-
cult. When an error occurs it isn’t clear where the prob-
lem lies. Stork must depend on Proper because shar-
ing package files between slices is a key motivation for
Stork. Sharing files allows Stork to save disk space,
avoid unnecessary information downloads, and reduces
the memory use of shared programs. However, these
features are more beneficial to the PlanetLab infrastruc-
ture than individual users; users want a service that al-
ways works, rather than one that works most of the time
and provides only intangible benefits.

Downloading packages securely is a major feature of
Stork. The standard solution is a package repository that
is trusted to contain only valid packages. This security
model is inappropriate for PlanetLab’s unbundled man-
agement. Instead, Stork allows users to sign packages
digitally, and only install packages with acceptable sig-
natures. Acceptable signatures can be specified on a per-
package basis, allowing a user to accept another user’s
signature for certain packages but not others.

Although these measures greatly increase Stork’s se-
curity, it makes Stork more complicated for our users.
Users must not only sign packages that they upload to
our repository, but they must also configure Stork to
accept the appropriate signatures. This complexity has
been the source of much confusion and frustration by
our users.

3 Making Research Services Viable
The requirements for research and stability oppose each
other and create a fundamental tension in research ser-
vice development. This tension helps to create a down-
ward spiral for each research service on PlanetLab and
underscores the gap between research and real world
practices. In this section we describe the downward spi-
ral, and offer suggestions for escaping it.

3.1 The Downward Spiral of Research
Services on PlanetLab

One problem that most services face is they get into a
negative cycle that stunts project development and pre-
vents the growth of a strong user base. A service cannot
build a user base because it lacks stability and features.
The features and stability cannot be provided without a
large user base to drive the feature set and do the neces-
sary third-party testing.

Research services on PlanetLab tend to be either
very successful in attracting users (e.g. CoDeploy and
Coral[7]) or have few users (e.g. Stork, Bellagio[1],
and DSMT[6]). There doesn’t appear to be any mid-
dle ground. Most of the successful research services

6/1/05 6/15/05 7/1/05 7/15/05 8/1/05 8/20/05
0

1

2

3

4

5

N
um

be
r 

of
 S

to
rk

 U
se

rs

Day

Figure 3: The number of slices that used Stork on each
day from June 1st to August 20th, 2005.

on PlanetLab are HTTP content distribution networks
that provide the same functionality as existing non-
PlanetLab services. They do not have dependencies on
external research services: either they don’t need such
services, or the research groups developed the necessary
research services themselves. For example, CoBlitz de-
pends on CoDeeN, CoMon, and CoDNS, all developed
by the same research group.

The failed research services tend to only be useful for
other PlanetLab researchers, and have dependencies on
other research services. The former reduces the avail-
able user base, while the latter decreases stability. As
a research service depends on more and more research
services, the size and number of corner cases increases.
Eventually, almost the entire operational space is cor-
ners, leaving very little of the service functional. This
leads users to avoid the service and continues the spiral.

3.2 Escaping the Spiral
We have several suggestions to help improve the quality
and usability of research services on PlanetLab.

1. Fall-back gracefully to independent operation.
Although a research service may depend on other

research services, it should fall back to more reli-
able functionality if necessary. For example, Stork
uses Proper to share files but will directly download
and install them if Proper fails. Stork also falls back
to direct HTTP transfers should the more sophisti-
cated download mechanisms fail. In many cases
this fall-back does not inconvenience the user, it
only decreases the overall efficiency of the system.
Since users prefer functionality to efficiency, this
seems a reasonable trade-off, at the cost of addi-
tional complexity to implement the fall-back mech-

USENIX Association64



anism.
2. Build on other research services.

The previous suggestion does not mean that re-
search services should never rely on one another. It
should just be done in moderation. We believe that
inter-dependency is a good thing, as it increases re-
search service functionality and potential user base.
To date, we have tried to be active users of any ap-
propriate research service on PlanetLab. Stork uses
Proper, CoDeeN, CoBlitz, and AppManager to pro-
vide it with improved functionality. We have also
investigated using PLuSH[16], DSMT, Coral, Bel-
lagio, PsEPR, and Sirius to various degrees.

3. There must be a reliable core.
While research services are interesting because

of the research component, users just want them to
work. If a research service provides an operational
subset that always works, then users can be assured
that there are some functions that are well tested
and can be depended upon. In other words, the
research service developer should make a reliable
service and build the research framework around it.

4. Incentives are needed for research service cre-
ation.

Services like AppManager work very well in
practice, but are uninteresting from a research
standpoint. For that reason few of them exist on
PlanetLab, although those that do exist are stable
and well-used. The motivation for creating such
services isn’t clear, but may be similar to that of
people who write open source software. Service
creators obtain a certain amount of renown within
the community but largely donate their effort with
the hope that others will also donate useful soft-
ware.

If the PlanetLab Consortium were to offer prizes
for service creation and deployment (similar to the
Ansari X-Prize [20]), it would increase the interest
in service creation. Currently there are too many
research prototypes and too few services to have a
stable base to build upon.

Perhaps PlanetLab should start its own confer-
ences and/or journals that focus on research ser-
vices that have real user bases. WORLDS is a
step in the right direction, but workshop publica-
tions don’t have the same weight as conferences
and journals. Not only would these publications
help other researchers to develop research services,
it would give them an incentive to do so. Alterna-
tively, sessions which focus on high-quality expe-
riences papers could be added to existing confer-
ences.

5. Standardized interfaces are not the solution.
The problem with inter-service dependency is

not the lack of standardized interfaces. Dealing
with different interfaces for different services is not
that difficult; adding a new data transfer service
to Stork is as simple as writing a few stub rou-
tines. The problem is running into corner cases
in which the research service does not work cor-
rectly. Working around a bug in another service
is extremely difficult and time-consuming. Effort
should be expended reducing corner cases and doc-
umenting those that remain, rather than standardiz-
ing interfaces.

4 Conclusion
Throughout this paper we have described the problems
that research services face on PlanetLab. The require-
ments for novelty and interuse cause instability that frus-
trates users. We have provided suggestions explaining
how to build a reliable and stable tool for users with-
out sacrificing the research value of the service. New
incentives for research services along with better tech-
niques for building research service would help to de-
velop PlanetLab. With time, PlanetLab may fulfill the
dream of having long-running research services running
alongside research prototypes.

5 Acknowledgements
We would like to thank Vivek Pai and Steve Muir for
suggesting we write this paper and the entire Stork team,
especially Jason Hardies, for keeping other projects
moving while we worked on this. We would also like to
thank our shepherd, Dave Andersen, and the anonymous
reviewers for their comments that greatly improved this
paper.

References
[1] AuYoung, A., Chun, B., Snoeren, A., Vahdat, A., “Resource allocation

in Federated Distributed Computing Infrastructures”, In Proceedings of
the 1st Workshop on Operating System and Architectural Support for the
On-demand IT InfraStructure (2004).

[2] Brett, P., Knauerhase, R., Bowman, M., Adams, R., Nataraj, A., Sedayao,
J., Spindel, M., “A Shared Global Event Propagation System to Enable
Next Generation Distributed Services”, First Workshop on Real, Large
Distributed Systems (WORLDS), 2004

[3] Brooks, F., “The Mythical Man Month”, 1975

[4] CoBlitz, http://codeen.cs.princeton.edu/coblitz/

[5] Cohen, B., “Incentives Build Robustness in BitTorrent”, Workshop on
Economics of Peer-to-Peer Systems, 2003

[6] Distributed Service Management Toolkit, http://yum.psepr.org/

[7] Freedman, M., Freudenthal, E., and Mazires, D., “Democratizing Con-
tent Publication with Coral”, In Proc. 1st USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI ’04) San Fran-
cisco, CA, March 2004.

[8] Huebsch, R., PlanetLab application manager.
http://appmanager.berkeley.intel-research.net/

[9] Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A., “Bullet: High Band-
width Data Dissemination Using an Overlay Mesh”, in Proceedings of
ACM SOSP, 2003.

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 65



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

[10] Muir, S., Peterson, L., Fiuczynski, M., Cappos, J., Hartman, J., “Proper:
Privileged Operations in a Virtualised System Environment”, USENIX
2005

[11] Peterson, L., “Dynamic Slice Creation”, PDN-02-005 Draft, 2002.

[12] Peterson, L., Anderson, T., Culler, D., Roscoe, T., “A Blueprint for In-
troducing Disruptive Technology into the Internet”, PDN-02-001, 2002.

[13] Peterson, L., Roscoe, T., “PlanetLab Phase 1: Transition to an Isolation
Kernel”, PDN-02-003, 2002.

[14] PlanetLab Sirius Scheduler, http://snowball.cs.uga.edu/ dkl/pslogin.php

[15] Plkmod. http://www.cs.princeton.edu/ acb/plkmod/

[16] PLuSH, http://sysnet.ucsd.edu/projects/plush/

[17] Stork. http://www.cs.arizona.edu/stork/.

[18] Vservers. http://linux-vserver.org/

[19] Wang, L., Park, K., Pang, R., Pai, V., Peterson, L., “Reliability and Secu-
rity in the CoDeeN Content Distribution Network”, Proceedings of the
USENIX 2004 Annual Technical Conference, 2004

[20] XP. http://www.xprizefoundation.com/

USENIX Association66




