
Experience with some Principles for Building an
Internet-Scale Reliable System

Mike Afergan Joel Wein Amy LaMeyer
Akamai and MIT Akamai and Polytechnic University Akamai

Abstract

We discuss the design methodology used to achieve
commercial-quality reliability in the Akamai content de-
livery network. The network consists of 15,000+ servers
in 1,100+ networks and spans 65+ countries. Despite the
scale of the Akamai CDN and the unpredictable nature
of the underlying Internet, we seek to build a system of
extremely high reliability. We present some simple prin-
ciples we use to assure high reliability, and illustrate their
application. As there is some similarity-in-spirit between
our implementation and recent trends in the research lit-
erature, we hope that sharing our experiences will be of
value to a broad community.

1 Introduction

In this paper we discuss the design decisions made by
Akamai Technologies to assure reliability. Akamai [1]
provides distributed computing solutions and services, in-
cluding a Content Delivery Network (CDN), which cus-
tomers use to distribute their content to enhance the scal-
ability, reliability, and/or performance of their web prop-
erties. To accomplish this, Akamai has built a network of
15,000+ servers located in 1,100+ third-party networks.
On these servers we run custom software designed to en-
sure high reliability and performances in spite of the var-
ious failure modes of the underlying Internet.

In our context we define reliability (loosely) as the abil-
ity to deliver web content successfully to an end-user un-
der all circumstances. The abstract goal of course is one
hundred percent reliability. However, given the practical
constraints of the Internet, a more practical benchmark
is substantial improvement in customers’ web properties
reliability with Akamai as opposed to without.

Our approach to reliability is to assume that a signif-
icant and constantly changing number of component or
other failures occur at all times in the network. Conse-
quently, we design our software to tolerate such numer-
ous and dynamic failures as part of the operational net-
work. All builders of distributed systems must handle
failures.

However, our decision to expect frequent and diverse
failures, coupled with our widespread deployment of rel-
atively small regions of machines (typically 2-18 ma-

chines), leads to a design space that is somewhat different
from that of most large distributed systems. For example,
in most commercial distributed systems the failure of a
datacenter would be a major event, requiring immediate
repair. In contrast, multiple datacenter failures in our net-
work are not uncommon events and do not require im-
mediate attention. In this paper, we briefly explain why
we make this fundamental assumption, and then illustrate
some simple design principles that are consequences of
this assumption. We then demonstrate that these prin-
ciples lead to a number of advantages for our software
development and operations processes.

We note here what this short paper is not. It is not
an explication of the entire Akamai architecture; we as-
sume basic familiarity with CDN principles and Akamai
functionality [6]. Nor is it an argument that the Akamai
architecture is the best, nor, given the space constraints, a
comparison to numerous important related efforts in dis-
tributed systems. Neither is this paper a detailed data-
driven study of the reliability of our network or of the
underlying components to justify our fundamental prin-
ciple. Rather, this paper is born of both the sufficient
maturity of our technology to enable us to identify some
principles that we have applied throughout our system,
and our realization that our approach resonates in many
ways with recent academic activity.

One particularly relevant research effort is Recovery
Oriented Computing (ROC) [5, 8]. A fundamental ele-
ment of ROC’s approach is component recovery, in the
form of fail-stop and restart, to increase overall system
reliability. In particular, “ROC emphasizes recovery from
failures rather than failure-avoidance” [3]. While the ap-
proaches presented in this paper and the ROC effort de-
veloped independently, this paper can be viewed as the
summary of a seven-year experiment in implementing a
ROC system.

2 Our Philosophy

To begin, we first motivate and then describe our basic
design philosophy.

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 1



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

2.1 Challenges of running an Internet-
Scale System

Numerous failure modes present challenges to a would-
be reliable Internet-scale system:
Path Failure: Various problems can degrade or destroy
connectivity between any two endpoints in the Internet.
Machine Failure: Servers fail for a variety of reasons,
from hardware failure to cable disconnects.
Region/Rack Failure: The cause here may be within
Akamai’s control, as when a switch fails. It may also be
outside our control, such as a rack losing power, failure
of an upstream router, or datacenter maintenance.
Multiple Rack/Data Center Failure: Multiple racks
within a datacenter or even an entire datacenter can fail,
for reasons ranging from operational error in the host net-
work to physical problems including natural disasters.
Network Failure: ISP-internal failures can affect a sub-
set of datacenters or even the core of a particular network.
Multi-Network/Internet-wide Failures: We continue to
see issues including trans-oceanic cable cuts, Internet-
scale worms (e.g., SQL-Slammer), peering problems [2],
and BGP operator errors. The impact of these incidents
can vary from significantly higher latency or packet loss
to complete disconnection.

To better understand the nature of failures, we exam-
ine manual suspensions in our network. A manually sus-
pended machine can communicate with the rest of the
system but has been flagged to not serve traffic. The
set of machines does not, for example, include servers in
regions with transient packet loss—our mapping system
handles those. Instead, suspended machines are those
with long-term and/or habitual problems. We observe
that this set has a daily churn rate of approximately 4%,
supporting our assumption that components continually
fail. This also implies the mean-time-to-recovery is ap-
proximately 25 days, though this distribution is heavy-
tailed. For some insight into the nature of the failures, we
note that approximately 40% of the suspended machines
are in regions where the whole region is suspended. This
is likely from a region or datacenter error.

2.2 Our Philosophy

Given the significant possibilities for failure throughout
the network, we were led to the following assumption.
Our Assumption: We assume that a significant and con-
stantly changing number of component or other failures
occur at all times in the network.
This leads naturally to the following:
Our Development Philosophy: Our software is de-
signed to seamlessly work despite numerous failures as
part of the operational network.

In other words, we choose to embrace, not confront,

these component failure modes. In particular, we expect
a fraction of our network to be down at all times and
we design for a significant fraction of our network to be
down for particular moments in time. Losing multiple
datacenters or numerous servers in a day is not unusual.
While every designer of robust distributed systems ex-
pects failures and aims to provide reliability in spite of
them, our philosophy, combined with our wide and di-
verse deployment makes our approach relatively unique
among commercial distributed systems.

This philosophy pervasively informs our design. For
example, we buy commodity hardware, not more reli-
able and expensive servers. Because the servers in a re-
gion share several potential points of failure, we build
more smaller regions instead of fewer larger ones. We
spread our regions among ISPs and among the datacen-
ters within an ISP. We rely on software intelligence to
leverage the heterogeneity and redundancy of our net-
work. Finally, we communicate over the public Internet,
even for internal communication. An alternative would
be to purchase dedicated links; instead we augment the
reliability of the public Internet with logic and software.

3 Three Design Principles

In this section we present and illustrate three practical
principles that follow from our philosophy.

3.1 Principle #1: Ensure significant redun-
dancy in all systems to facilitate failover

Realizing the principle in practice is challenging because
of aspects of the Internet architecture, interactions with
3rd-party software, and cost. Because DNS plays a fun-
damental role in our system (it is used to direct end-
users to Akamai servers), we highlight two challenges in
achieving significant redundancy in DNS.

One problem is the size constraints for DNS re-
sponses. The Generic Top Level Domain (gTLD) servers
are critical as they supply the answer to queries for
akamai.net. However, the size of DNS responses lim-
its the number of servers we can return to 13 [9]. This is
a relatively small number and not something we can ad-
dress directly. We take a number of steps to increase this
redundancy, including using IP anycast.

Another problem is that DNS TTLs challenge reliabil-
ity by fixing a resolution for a period of time. If the server
fails, a user could fail to receive service until the TTL ex-
pired. We address this in two ways.

The first is a two-level DNS system to balance respon-
siveness with DNS latency. The top level directs the
user’s DNS resolver to a region with a TTL of 30 to 60
minutes for a particular domain (e.g., g.akamai.net).

USENIX Association2



In the typical case, this region then resolves the lower-
level queries (e.g., a1.g.akamai.net). To prevent
this single region from inducing user-appreciable fail-
ures, the top level returns (low-level) nameservers in mul-
tiple regions. This requires determining an appropriate
secondary choice such that a) performance does not suf-
fer but b) the chance of all nameservers failing simulta-
neously is low.

The second aspect of our approach is that, within each
level, we have an appropriate failover mechanism. Be-
cause the top-level resolution is long, much of the actual
mapping occurs in the low-level resolution, which has a
TTL of only 20 seconds. This provides us with significant
flexibility to facilitate intra-region reliability. To address
failures during the 20 seconds, a live machine within the
region will automatically ARP over the IP address of a
down machine.

3.2 Principle #2: Use software logic to pro-
vide message reliability

The operation of Akamai’s system entails the distribution
of numerous messages and data within the network, in-
cluding control messages, customer configurations, mon-
itoring information, load reporting, and customer content.

One approach for these communications channels
would be to build dedicated links—or contract for vir-
tually dedicated links—between our datacenters. We did
not choose this architecture because this would not scale
to a large number of datacenters. Further, since even
these architectures are not immune to failures, we still
would have had to invest effort in building resiliency.

We have thus built two underlying systems—a real-
time (UDP) network and a reliable (HTTP/TCP) trans-
port network. Our real-time transport network which was
first built in 1999 uses multi-path routing, and at times
limited retransmission, to achieve a high level of reliabil-
ity without sacrificing latency. (This system is discussed
in detail in [7].) We have since leveraged this system for a
variety of functions including most internal network sta-
tus messages.

Motivated by our customers’ increasing use of dy-
namic or completely uncacheable content, we also built
an HTTP/TCP equivalent network in 2000 to distribute
content from the origin to the edge. In contrast to the
UDP network and RON [4], each file is transmitted as a
separate HTTP request—though often in the same con-
nection. This HTTP subsystem serves as the basis for our
SureRoute product and is an important internal commu-
nication tool. The system explores a variety of potential
paths and provides an HTTP-based tunnel for requests
through intermediate Akamai regions.

3.3 Principle #3: Use distributed control
for coordination

This is not a surprising principle but one which we in-
clude for completeness and because there are often inter-
esting practical subtleties. At a high level, we employ
two forms of decision making. The first and most sim-
ple is failover, for cases where the logic is simple and
we must immediately replace the down component. A
previously discussed example of this is the case where
a machine will ARP over the IP address of a down ma-
chine. The second technique is leader election, where
leadership evaluation can depend on many factors includ-
ing machine status, connectivity to other machines in the
network, or even a preference to run the leader in a region
with additional monitoring capabilities.

4 Example: How Akamai Works Under
Extreme Component Failure

In this section, we examine how Principles 1-3 are ap-
plied by considering a hypothetical failure scenario.

4.1 Basic Operation

The basic HTTP request to the Akamai network consists
of two parts – a DNS lookup and a HTTP request. In
this section we separate the two. The DNS lookup for
a123.g.akamai.net consists of 3 steps:

S.1) The client nameserver looks up akamai.net at
the gTLD servers. The authorities returned are Aka-
mai Top Level Name Servers (TLNSes).

S.2) The client’s nameserver queries a TLNS for
g.akamai.net and obtains a list of IP addresses
of Low Level Name Servers (LLNSes). The LLNSes
returned should be close to the requesting system.
As discussed in Section 3.1, the TLNSes ordinarily
return eight LLNS IPs in three different regions.

S.3) The client requests a123.g.akamai.net from a
LLNS and obtains two server IPs.

In steps (S.1) and (S.2), the responding nameserver
consults a map to select appropriate IPs. In the case of
the TLNSes, this map is produced by a special type of
region called a Mapping Center. Each Mapping Center
runs software components that analyze system load, traf-
fic patterns, and performance information for the Akamai
network and the Internet. With this information, a top-
level map is produced and distributed to the TLNSes.

When the server receives the HTTP request, it serves
the file as quickly as possible subject to the configuration
for the particular file. In this example we assume the file

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 3



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

is not on the server and the server requests the file from
the origin server.

4.2 Operation under Failure

Let us now consider this operation under a case of ex-
treme failure. Consider a model where a user selects a
TLNS in network X, which also contains the current lead
Mapping Center. In normal mode, the user would select
Akamai region A, which would in this case need to fetch
content from an origin in network C (for Customer).

We now assume three independent and simultaneous
failures:

1. Network X has significant packet loss across its
backbone.

2. Akamai region A fails.

3. Another network, B, has a problem with a peering
point that is on the default (BGP) route between re-
gion �� and network C.

We now examine how these problems might be han-
dled. The particulars of the response of course depend on
other circumstances and failures that may be occurring.

1. Network X degrades

� One of the metrics for leader election of Mapping
Centers is connectivity to the rest of the Akamai net-
work. Therefore, a second Mapping Center (MC) ��

assumes leadership from MC X and begin publish-
ing the top-level maps. (Principles 1 and 3)

� The user’s nameserver may fail over to using another
one of the TLNSes. (Principle 1)

� Since some users may continue to query TLNS X, it
still obtains the top level maps from MC �� via the
real time multi-path system. (Principle 2)

2. Region A fails

� Upon seeing that LLNS A does not respond, the
client’s nameserver will start using one of the other
LLNSes. Let us call that LLNS ��. (Principle 1)

� Since region A is no longer optimal for the client,
LLNS �� directs the user to region ��. (Principle 1)

� Mapping Center �� considers this failure and up-
dates the top level maps. This includes removing
region A as a choice for users and perhaps some ad-
ditional load balancing. (Principle 1)

3. Network B has a problem at a peering point.
Those edge regions that use this peering point will at-
tempt to route around this problem using SureRoute
(Principle 2) by finding appropriate intermediate regions
(Principle 1). This decision is made at the Edge Server in
network �� (Principle 3).

5 Realizing the Benefits of our Approach in
our Software and Operations

In this section, we present a second group of principles
relating to how Akamai designs reliable software and in-
sulates the system from software faults. It is impossible in
any system for any piece of software to function correctly
always. While 100 percent correctness is our goal, we
invest significant effort to ensure that if something goes
wrong, the system can recover appropriately. Most im-
portantly, we argue that this set of principles is informed
and facilitated by the first set of principles presented in
the previous two sections.

5.1 System Principle #4: Fail Cleanly and
Restart

We aggressively fail and restart from a last known good
state (a process we call “rolling”) in response to errors
that are not clearly addressable. There are two reasons
that we made this decision. The first is that we knew
that our network was already architected to handle server
failure quickly and seamlessly. As such, the loss of one
server does not pose a problem. The second is that while
it may be possible to recover from these errors, the risk of
operating in a mode where we are possibly behaving in-
correctly can be quite high (e.g., serving the wrong home-
page). Thus, comparing the low cost of rolling and the
high risk of operating in a potentially corrupted state, we
choose to roll.

The naive implementation as described above is how-
ever not sufficient. The problem we first encountered
is that a particular server may continually roll. For ex-
ample, a hardware problem may prevent a machine from
starting up. While losing the server is not a problem, the
state oscillations create problems (or at least complexity)
for the overall system. Part of our current solution is to
enter a “long-sleep” mode after a certain number of rolls.
This is a very simple and conservative strategy, enabled
by the overall system’s robustness to individual machine
failures.

The second problem with failing-and-recovering is
network-wide rolling. While even a set of machines can
restart at any time, it is not acceptable for the whole net-
work (or all the machines in a particular subnetwork) to
roll at once. This could be a problem for events that affect
the whole network at once—such as configuration up-
dates or a new type of request—that could suddenly trig-
ger a latent bug. It is also a complex problem to solve. In
our current solution, we enter a different mode of opera-
tion when we observe a significant fraction of the network
rolling. In particular, instead of rolling we will attempt to
be more aggressive in recovering from errors—and per-
haps even shut down problematic software modules.

USENIX Association4



Table 1: Minimum Phase Durations

Release Type Phase One Phase Two
Customer Configuration 15 mins 20 mins
System Configuration 30 min 2 hours

Standard Software Release 24 hours 24 hours

5.2 System Principle #5: Zoning

In addition to standard quality practices, our software de-
velopment process uses a phased rollout approach. Inter-
nally, we refer to each phase as a zone and thus call the
approach zoning. The steps of zoning for both software
and for configuration releases are:

� Phase One: After testing and QA, the release is de-
ployed to a single machine.

� Phase Two: After monitoring this machine and run-
ning checks, the release is deployed to a single re-
gion (not including the machine used in Phase One.)

� Phase Three: Only after allowing the release to run
in Phase Two and performing appropriate checks do
we allow it to be deployed to the world.

The minimum duration of each phase per release type is
summarized in Table 1. The actual time can be longer
based on the nature of the release and other concurrent
events. On the extreme end, operating system releases
are broken into many more sub-phases and we will often
wait days or weeks between each phase.

While the concept of a phased rollout is not unique, our
system is interesting in that the process is explicitly sup-
ported by the underlying system. This facilitates a more
robust and clean release platform which benefits the busi-
ness. The properties of redundancy (P1) and distributed
control (P3) enable us to lose even sets of regions with
minimal user-appreciable impact. Consequently, this ob-
viates any concern about taking down a machine for an
install—or even a full region in Phase Two. This is in
stark contrast even to some well-distributed networks.
For example, a system with 5 datacenters is more dis-
tributed that most, but even in this case, taking even
one datacenter down for an install reduces capacity by
a 20%—significant fraction.

We believe this is an example where our design princi-
ples present us with a significant yet unexpected benefit.
Principles 1 (significant redundancy), 3 (distributed con-
trol), and 4 (aggressively fail-stop) were not chosen to
facilitate software roll-outs. However, over time we have
seen that these principles have enabled a much more re-
liable and aggressive release process, both of which have

been a huge benefit to our business. We present some
metrics substantiate this claim in Section 6.1.

5.3 System Principle #6: The network
should notice and quarantine faults

While many faults are localized, some faults are able to
move or spread within the system. This is particularly
true in a recovery-oriented system—and this behavior
must be limited. One hypothetical example is a request
for certain customer content served with a rare set of
configuration parameters that triggers a latent bug. Sim-
ply rolling the servers experiencing problems would not
solve the problem since the problematic request would
be directed to another server and thus spread. It is im-
portant that such an event not be allowed to affect other
customers to the extent possible.

We address this problem through our our low-level
load balancing system. Low level load balancing decides,
for each region, to which edge servers to assign which
customer content. To achieve fault isolation, we can con-
strain the assignment of content to servers to limit the
spread of particular content. In the unlikely case that
some customer content instantly crashes all the servers
to which it is assigned, this approach allows us to mostly
serve all other content.

To effectively respond when seeing problems, we must
involve both localized and globally distributed logic. In
a purely local solution, we could constrain all regions
equally. This has the downside that, for example, a cus-
tomer with geographically localized traffic may produce
more load relative to the number of servers than we’d
be able to load balance effectively, even though the cus-
tomer posed little risk to the global network. As a result,
we’ve designed a two-level solution. The mapping sys-
tem, via the messaging infrastructure, gathers data from
all regions and tells the low-level load balancing systems
in each region what constraints they need to impose in
order to keep the system in a globally safe state.

6 Evaluation

Evaluating our decisions in a completely scientific fash-
ion is difficult. Building alternative solutions is often in-
feasible and the metric space is multi-dimensional or ill-
defined. While it is not a rigorous data-driven evaluation,
this section presents two relevant operational metrics.

6.1 Benefits to Software Development

Zoning, as presented in Section 5.2, allows us to be more
aggressive in releasing software and other changes by

WORLDS ’05: Second Workshop on Real, Large Distributed SystemsUSENIX Association 5



WORLDS ’05: Second Workshop on Real, Large Distributed Systems

Table 2: Software Release Abort Metrics

Phase Number Aborted Percent of Total Releases
Phase One 36 6.49%
Phase Two 17 3.06

Add’l Phase 3 0.54
World 23 4.14

exploiting our resilience to failure. Over the past year,
we have averaged 22 software and network configuration
releases and approximately 1000 customer configuration
changes (approximately 350 change bundles) per month.
Here we examine the number of aborts in each phase of
the release process as a metric for the number of errors
found. This metric is somewhat subjective. It depends on
our ability to catch the errors and our willingness to al-
low a release with a known (presumably small) problem
to continue to a subsequent phase. Further, the optimal
value for this metric is not clear. Zero aborts is an obvi-
ous goal; however, seeing zero aborts would likely imply
little trust in the network’s resiliency—and likely reflect
a longer time-to-market for features. On the other hand,
too many aborts would suggest poor software engineer-
ing practices. An ideal network would likely have some,
but not too many, aborted releases.

Table 2 presents data taken from several hundred soft-
ware and network configuration releases that occurred be-
tween 7/1/02 and 8/9/04 (25 months). Despite the afore-
mentioned limitations, several observations can be made.
First note that the overall level of aborts is roughly as we
desire, relatively low but not zero, at 14.23%. Second,
when we do abort a release it is most often in Phase One,
where the impact to the network is extremely minor. We
also see, surprisingly so, that the number of aborts in the
World Deploy phase is greater than the number of aborts
in Phase Two. This is due in part to the complexity and
difficulty in testing a large-scale real-world system. (This
is an area of ongoing research at Akamai and we believe
an emerging research area of broader interest.) Finally,
we note that all the all of the problems found in zoning
made it through substantial developer testing and QA.

6.2 Benefits to Operations

A third interesting metric is the number of employees and
the amount of effort required to maintain the network.
There are many factors that could make our network dif-
ficult to maintain—including the size, the large number
of network partners, the heterogeneity of environments,
and less technical factors such as long geographical dis-
tances, different timezones, and different languages.

However, these challenges are mitigated by our funda-
mental assumption. In particular:

� We assume in our design that components will fail.
Therefore, the NOCC does not need to be concerned
by most failures.

� Since a component (e.g. machine, rack, datacenter,
network) failure does not significantly impact the
network, the system and the NOCC can be aggres-
sive in suspending and not using components. Even
if the NOCC is mildly concerned, it can suspend a
component.

� We assume that a fraction of components will be
down at any time. Therefore the NOCC does not
need to scramble to get the components back online.

As a result, our minute-to-minute operations team can
be quite small relative to the size of our network. In par-
ticular, our NOCC has seven or eight people on hand dur-
ing the day and only three people overnight. For the sake
of comparison, that means a ratio of over 1800 servers
per NOCC worker during the day and over 5000 servers
per NOCC worker at night.

Acknowledgments
The systems discussed in this paper were designed and
developed by numerous Akamai employees past and
present. We are grateful to Armando Fox for a very care-
ful reading of an early version of the paper and many
useful comments and the help of our shepard, Brad Karp.
We also gratefully acknowledge conversations with Steve
Bauer, Rob Beverly, Leonidas Kontothonasis, Nate Kush-
man, Dan Stodolsky, and John Wroclawski.

References

[1] Akamai technologies homepage. http://www.akmai.com/.
[2] Net Blackout Marks Web’s Achilles Heel.

http://news.com.com/2100-1033-267943.html?legacy=cnet.
[3] Recovery-Oriented Computing: Overview.

http://roc.cs.berkeley.edu/roc overview.html.
[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-

silient overlay networks. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP), 2001.

[5] A. Fox. Toward Recovery-Oriented Computing. In Proceedings
of the 28th International Conference on Very Large Databases
(VLDB), 2002.

[6] J. Dilley et al. Globally distributed content delivery. IEEE Internet
Computing, 6(5):50–58, 2002.

[7] L Kontothanassis et al. A Transport Layer for Live Streaming in a
Content Delivery Network. Proceedings of the IEEE, 92(9):1408–
1419, 2004.

[8] D. A. Patterson. Recovery Oriented Computing: A New Research
Agenda for a New Century. In HPCA, page 247, 2002.

[9] I. E. Paul Vixie and W. Akira Kato. Dns response size is-
sues. Dnsop working group ietf internet draft, July 2004.
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-respsize-01.txt.

USENIX Association6


