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Abstract

This paper presents a non-invasive, half-blind firmware
extraction technique that subverts a mask ROM boot-
loader in order to recover the firmware of a microcon-
troller. A stack based buffer overflow is used to forcibly
enter the bootloader. Further, a practical method of
blind return-oriented programming is presented in which
a gadget’s entry point is brute forced, being unknown a
priori. In this paper we show that when a software vul-
nerability has been found (e.g. by fuzzing), the attacker
can locate by brute force the sequences of instructions,
gadgets, required for bypassing the protections present
in a bootloader. In a half-blind attack, the presence of a
bootloader in mask ROM helps the attacker in that, while
he must still discover blindly a vulnerability in unknown
firmware and the appropriate gadgets, he knows the exact
contents of the bootloader.

1 Introduction

Microcontrollers are used in a broad range of applica-
tions, from hobbyists projects and consumer devices to
medical and industrial equipment. However, in con-
trast to a hobby project’s open source code, the indus-
trial world often relies on the secrecy of the firmware
to prevent device cloning or re-purposing by competi-
tors. Such confidentiality is often enforced by a boot-
strap loader. For example, the Advanced Metering In-
frastructure (AMI) integrates microcontrollers into each
electric power meter of a city, and many smart cards rely
upon a microcontroller to restrict access to cryptography.
Most manufacturers rely on the possibility of updating
the firmware on these devices as a way of fixing bugs
without replacing physical components. On the other
hand, some users would like to change the configura-
tion of those devices, such as to commit theft of services
by altering their own electricity billing data or extract-
ing the keys to decrypt subscription television channels.
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Competitors with easy access to the firmware of a device
would be able to clone it and provide counterfeit parts. It
is therefore often essential that the firmware remain se-
cret.

As a protection against reverse engineering and tam-
pering, it is often desirable that a device accept firmware
updates but not reveal firmware to an attacker. Bootload-
ers, which allow updates to be performed, include pro-
tective measures to prevent unauthorized modifications.
While the simplest of these will be a password, our tech-
nique is sufficiently generic that it will also apply to a
bootloader which uses symmetric or asymmetric cryp-
tography.

In this paper we show how those bootloaders can be
subverted by an attacker. Previous techniques for re-
covering firmware in microcontrollers were either reliant
on a specific vulnerability of either the bootloader (pass-
word comparison in variable time, weak password [5, 2])
or the hardware (fault injection, micro-probing[13]).
However, if software vulnerabilities are present in the
application firmware, fuzzing can be used to find them.
Then, by brute force, the locations of adequate sequence
of instructions, gadgets, can be found that enable the at-
tacker to bypass the protections present in the bootloader.
In this case, the very existence of the bootloader con-
tributes to the vulnerability, even when the bootloader
itself has no exploitable bugs.

We implemented this attack on the MSP430 microcon-
troller, a widespread microcontroller having a bootloader
in mask ROM. For this purpose we used a demo applica-
tion in which we inserted a stack based buffer overflow
vulnerability. We performed the fuzzing blindly, without
using a debugger, disassembler, or similar tools.

As the bootloader code is shared among all chips of the
same model and version, it is easy enough to purchase a
chip and read its bootloader. We assume the attacker to
have intimate knowledge of it, both as data and as anno-
tated disassembly.

Once the attacker has discovered a vulnerability in



the application, he can brute-force the offset of a return
pointer, having it point to known instructions in the boot-
loader. If a gadget outside of the bootloader is required,
its location may be brute forced, as we demonstrate in
Section 5.1. It is for this reason that we call our attack
half-blind.

The result of this research is an attack which is ex-
tremely fast and low cost when compared to physical
tampering. As the attack uses a vulnerability in appli-
cation code to launch into the bootloader, the mere pres-
ence of a bootloader—even one which has no exploitable
vulnerabilities of its own—is dangerous to the security of
a device. Further, probabilistic defenses, such as a sui-
cide triggered by failed exploit attempt, are of no use
when the attacker has access to many potential victims.

2 Texas Instruments MSP43(

The Texas Instruments MSP430 low-power microcon-
troller is used in many medical, industrial, and consumer
devices. It may be programmed by JTAG or a serial boot-
strap loader (BSL) which resides in mask ROM [10].

The JTAG test access is often deactivated before the
device is shipped to customers, preventing direct recov-
ery of the firmware. Recent versions of the BSL may
be disabled by setting a value in flash memory. When
enabled, the BSL is protected by a 32-byte password.
If these access controls are circumvented, a device’s
firmware may be extracted or replaced.

2.1 Serial Bootstrap Loader (BSL)

The BSL of the MSP430 resides in mask ROM between
addresses 0x0c00 and 0x1000. As the BSL continues
to function after the JTAG fuse has been blown, it is of-
ten used to allow for write-only updates without expos-
ing internal memory to a casual attacker. For the same
reason, it is a valuable attack vector. Each firmware im-
age contains a password, and without that password little
more is allowed by the BSL than erasing all of mem-
ory. While some versions of the BSL are vulnerable to
a timing attack [7, 6], version 1.61 as found within the
MSP430F1611 is invulnerable to timing attacks '. Fur-
ther, Becher et al. demonstrated in [2] that brute forc-
ing of the password—in the absence of a timing attack—is
quite impractical. As our attack demonstration is against
this version, all pointers and similar details refer to this
version.

The BSL has two entry points. The first, a hard entry
point, may be started by use of a test pin reset sequence.
The second, a soft entry point, exists to allow an appli-
cation to cede control to the BSL [10]. A disassembly of

TAll BSL code fragments quoted within this document are of that
version.

Address | Data/Instruction Comment
0x0c00 | 0x0c04 hard entry addr.
0x0c02 | 0x0cOe soft entry addr.
hard entry point

0x0c04 | mov 0x0220, rl set stack pointer
0x0c08 | clr rl1l clearrll
0x0cOa | mov.b 0, 0xf60a | ?

soft entry point

0x0c0Oe

Table 1: BSL Prologue

the BSL (Table 1) reveals few instructions between the
two. The hard entry point executes only three instruc-
tions before continuing at the soft entry point.

The first instruction sets the stack pointer, r1, to ad-
dress 0x0220, a valid SRAM position commonly used
for the stack. The second instruction clears 711, ensur-
ing that all bits of r1; are low. The password checking
code sets bit 4 of r1; after proper password authentica-
tion. Clearing this bit during hard entry to the bootstrap
loader ensures that a password must be presented before
access.

When a user application calls the soft entry point,
these three instructions are not run. The stack pointer
is not reset, as it is assumed that the parent application
already has a proper stack. Further, as r1; is not cleared,
the BSL will grant the user administrative privileges if
the relevant bit happens to be high.

In the rest of this paper we demonstrate that by using a
vulnerability in the application the attacker can force the
entry to the bootloader with administrative access. This
is done by calling a gadget that pops a word from the
stack into r17.

2.2 Calling Convention

The MSP430 is a RISC processor with 16 general-
purpose registers that are not memory-mapped. rg is re-
served as the program counter. r is the stack pointer. 7o
and r3 are used as constant generators; further, ro is also
used as a status register. ri2, 713, 14, and r15 are used
for function parameters and a return value; they are also
the only clobber registers.

As the lower registers must be preserved between
function calls, it is common for a function to pop a saved
value from the stack immediately before returning. GCC,
for example, will often begin a function with “push r11;
push r10; push r9; push r8; ...” and end the same func-
tion with “...; pop r8; pop 19; pop r10; pop r11;”. This
fact will become important in Section 5.



3 Stack Based Buffer Overflow on Embed-
ded Systems

A stack based buffer overflow involves the abuse of
a string copy or a buffer copy to overwrite the return
pointer of a function. Stack based buffer overflows were
first demonstrated for the MSP430 in [4]. By overwrit-
ing the return pointer with an address within an incoming
packet, an attacker can execute arbitrary code.

By overwriting the return pointer with the BSL’s soft
entry point, an attacker can enter the BSL without first
clearing r1;. Further, as the BSL is in unchanging mask
ROM, the attacker can be confident of its entry addresses.

Variants of stack based buffer overflows have been
proposed that calls full function or call sequences of in-
structions [14, 9]. A more sophisticated technique is
known as return-oriented programming. Here, the at-
tacker constructs a stack which returns from one function
suffix, or gadget, into another. This was first demon-
strated for the X86 architecture in [11], then extended to
Harvard-architecture embedded systems in [3].

4 Simple BSL Forced Entry

The simplest of our attacks involves the injection of the
soft entry address, 0x0cOe, into the program counter 7
by overwriting the return pointer of the stack. This pro-
vides access to the BSL without first clearing 11, such
that if bit 4 of r1 is set, access is granted to the BSL as if
a valid password had been entered. The TX Data Block
command of the BSL may then be used to transmit the
password to the attacker, providing for future access.

In the case that the relevant bit of ry; is clear, it is
necessary to use return-oriented programming to set it.
This technique will be described in Section 5.

4.1 Locating Return Pointer Offset

Further, it was found that the technique of fuzzing al-
lowed for a proper injection even when the stack pointer
depth was unknown. As shown in Figure 1, the re-
turn pointer was surrounded by the byte Oxff. In
the event that the offset is guessed correctly, 0x0cOe
falls into the program counter ry and BSL execution be-
gins. When guessed incorrectly, 7 is set to Oxffff,
Ox0eff, or Oxff0c. Of these, Oxffff and Oxf£f0c
reset the device, which then waits to receive another
packet. 0x0eff, being odd, also causes the chip to re-
set. Therefore, an attacker who guesses at the packet off-
set through fuzz testing can be assured that the victim
device will continue to receive packets until the exploit
lands.

When the return pointer is correctly overwritten, the
attacker will begin to see replies to BSL serial commands

Attempt Payload PC

1 Ox0E Ox0C OxFF OxFF OxFF OxFF  OxFF OXxFFFF

2 OxFF  OxOE Ox0C OxFF OxFF OxFF  OxFF OxFFOC
3 OxFF  OxFF OxOE Ox0C OxFF OxFF  OxFF Ox0COE
4 OxFF  OxFF  OxFF OxOE Ox0C OxFF  OxFF OxOEFF
5 OxFF  OxFF  OxFF OxFF OxOE Ox0C OxFF OxFFFF

6 OxFF  OxFF  OxFF  OxFF OxFF  OxOE Ox0C OxFFFF

Figure 1: Packet payloads when fuzzing.
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Figure 2: Experimental setup

that are unique to the BSL application. If bit 4 of 7
is set, he will also have direct access to protected com-
mands through this port (which enables him to recover
the firmware from the serial port using BSL features). If
the bit is clear, he will only have access to unprotected
commands, but he can elevate his privileges by the tech-
nique described in the next section.

5 Using a Gadget to Set R11

As the technique of the Section 4 is insufficient when bit
4 of rq; is clear, it will sometimes be necessary to set
this register by use of a gadget. Lucky for the attacker,
the relevant gadget is quite common. Because r1; is the
highest register which must be restored before a return,
it is quite common for GCC generated functions to end
with “pop r11; ret;”.

5.1 Blind Gadget Chain Injection

Searching our test application for this gadget yields 59
valid entry points between 0x4000 and 0x7000 in the
victim application. Guessing an even address in this
range at random yields success with a probability just

beneath 1%, as
2 x 59 1

3x 163 104



Figure 3: Observed Injection Markov Chain

Thus, even if an attacker does not have access to a
copy of the victim firmware, he can guess the gadget en-
try point at random, succeeding in a reasonably small
number of attempts. Similar frequencies are found in
other TinyOS applications: 1/93 in BaseStation, 1/86
in MultihopOscilloscopeLqi, and 1/150 in MViz.

This gadget is unique to applications compiled with
GCC, and it is often not found within applications from
other compilers. While this particular gadget is unavail-
able, others may be used instead. For example, the gad-
get “pop rll; pop rl0; ret;” can commonly be found
within firmware images produced by the popular IAR C
Compiler.

Figure 3 demonstrates the probabilities of an active
node’s responses to an injection attempt, the coefficients
having been rounded for convenient calculation. Each
event is a blind injection attempt, with the new program
counter value being the attacker’s guess at a gadget. 95
percent of injections result in the node rebooting, result-
ing in another attempt for the attacker. In the 4 percent of
attempts which result in an unrecoverable state, equiva-
lentto while (1) ;, the victim device may be manually
reset to return to the active state.

6 Related Microcontrollers

In reviewing some common microcontrollers, we found
that many include a mask ROM bootloader, sometimes
documented as a utility ROM. These include the Dal-
las Maxim MAXQ3210, Siemens C167, ST Micro-
electronics STM ST10, and STM8S. We expect that our
half-blind attack will work on them.

We also note that the bootstrap loader we analyzed
from the MSP430 is an almost completely inlined. It

has only three child functions 2 none of which contain

the desired code (i.e. “poprl1” in our attack) before their
ending “ret” instructions. As a result, the desired gadgets
do not exist within the mask ROM bootloader, requiring
the use of a half-blind attack.

By contrast, if a mask ROM were to contain a function
with the required gadget, the attacker might make use of
that gadget for return-oriented programming without re-
sorting to the half-blind technique. The MAXQ3210/12,
for instance, has many functions within its utility ROM,
fourteen of which are documented for use by the child
application [8].

7 Countermeasures

7.1 Using a Flash Based Bootloader

Chips which lack bootloaders in mask ROM may have
a bootloader in flash ROM. While the device will be
slightly more expensive to manufacture (or have less
flash memory available for the application), this gives
more flexibility to the developer to include a bootloader
with the functionality he needs or not to have a boot-
loader at all. Moreover, as our attack is outlined, if each
application were to come with its own bootloader, an at-
tacker cannot use the previous knowledge of the boot-
loader. In this case, an attack will become fully blind,
reducing its chances of success.

7.2 Program Randomization

It has been shown in [12] that randomizing the address
layout is often insufficient to defend against an attacker
who has the luxury of being able to attempt multiple in-
jections. This is particularly true in an embedded system,
where the memory space is further constrained than that
of an X86 host PC. For example, an X86 has 32 bit point-
ers, while the MSP430 has 15-bit instruction pointers 3,
In any case, as our example assumes no prior knowledge
of the contents of memory, it should be clear that further
randomization serves no purpose.

7.3 Self Destructing Firmware

As it has been shown that randomization is ineffective
because of an attacker’s privilege of multiple attempts, a
logical defense might be to restrict the number of tries
that an attacker has.

First, consider Figure 4 which extends Figure 3 to in-
clude a conservative defense. In this example, the de-
vice detects a crash and returns to an active state in
most cases, with a random suicide that occurs with a

2rxbyte (), txbyte (), and tarebitwidth ()
3Though addressed in 16-bit, all instructions are even aligned.



Figure 4: Conservative Defense

Figure 5: Aggressive Defense

slight probability. This is intended to model the case
that an unreliable application wishes to erase its mem-
ory in the face of an attack, but not necessarily to kill
itself in the case of an isolated, accidental crash. In
this case, there is a probability P[s] = 0.01 that an at-
tempt will be a success and P[s’] = 0.04 that an at-
tempt will result in a suicide. Combining neutral resets
to P[r] = 0.0440.50%0.92 4 0.45 = 0.95, we find that
Pls|F] = 0.20 and P[s'|F] = 0.80. Therefore, while a
suicide s’ is more likely than a success s, the difference
is rather small, and an attacker need only purchase a few
extra units to increase the likelihood of a success. As
the probability of all n devices self-destructing in case
of an assault would be P[S’|(n) = P[s'|F]™ = 0.80™,
an attacker with thirty units to attack will succeed with a
probability of P[S](30) = 1 — 0.803" = 0.9988.

Figure 5 presents a less conservative defense, one in
which any fatal crash is assumed to be an attack, result-
ing in suicide. While such a behavior is likely to be un-
acceptable in many industries, more so with unreliable
products, it is well worth considering, especially because
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Figure 6: Optimistic Estimate of Defense Probabilities

it does not work. While P[s] is still 0.01, P[s’] = 0.50.
Thus, rounding a bit, P[s|7] = 0.02 and P[s'|F] = 0.98,
which implies that P[S’](n) = 0.98". While the odds
are better, an attacker might still feasibly buy enough vic-
tim devices as P[S’](300) < 0.01. Therefore, a suicide
behavior is insufficient to defend a device which is avail-
able to an attacker in quantity, even when false positives
are not a concern and half of all attempted exploits can
be detected.

The calculations of this section are only to be con-
sidered a back-of-the-envelope attempt at a worst case
for the attacker. Supposing that the probability of any
attempt succeeding is independent of the past attempts
neglects the likelihood that an attacker will search lin-
early or in some other manner that eliminate unnecessary
guesses. As such, we have shown that probabilistic self
defenses are not effective at protecting the contents of
firmware from the half-blind attack, even supposing that
the attacker guesses gadget addresses with no advanced
strategy and that the defender does not ignore detectable
overflows. An attacker may need fewer attempts than
this, but he will not need more.

7.4 Limiting ROM Code Access

Making the mask ROM code available only during pro-
gramming or debugging, e.g. when a specific fuse bit is
set high, would effectively prevent it from being present
in memory during normal operation. Such a mechanism
might prevent an attacker from abusing it as we presented
here.

An example of such a mechanism is found in some At-
mel ARM7 based microcontrollers [1]. Those microcon-
trollers have a bootloader in mask ROM; however, this



ROM is not mapped to any address space during normal
execution. Rather, the code is copied to an executable
RAM only when a specific test sequence is applied to
the chip.

On the MSP430 a similar mechanism might be im-
plemented as a defense in which the bootloader only
becomes executable—or perhaps even mapped—when the
BSL entry sequence is performed. Care should be taken
to ensure that such a mechanism cannot be called by re-
turn oriented programming.

8 Conclusion

We have demonstrated a technique for leveraging the ex-
istence of a bootloader ROM to break the firmware con-
fidentiality of a microcontroller by a return-oriented pro-
gramming attack against a vulnerable, but unknown ap-
plication. Further, we have demonstrated that a prob-
abilistic defense is not effective when the attacker may
purchase multiple victim devices. As our exploit only
uses pre-existing code, it is suitable for use on those
Harvard-architecture chips which cannot execute RAM.

There are many exciting possibilities for future work.
As a gadget can be found in isolation, an attacker can
identify the gadgets individually. While our attack only
required a single gadget, it should be feasible to construct
blindly a library of gadget entry points, then to com-
bine those for more sophisticated return-oriented pro-
gramming.
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