
Towards Systematic Evaluation of the Evadability
of Bot/Botnet Detection Methods

Elizabeth Stinson
Stanford University

John C. Mitchell
Stanford University

Abstract

Automated bot/botnet detection is a difficult prob-
lem given the high level of attacker power. We pro-
pose a systematic approach for evaluating the evad-
ability of detection methods. An evasion tactic has
two associated costs: implementation complexity and
effect on botnet utility. An evasion tactic’s implemen-
tation complexity is based on the ease with which
bot writers can incrementally modify current bots
to evade detection. Modifying a bot in order to
evade a detection method may result in a less useful
botnet; to explore this, we identify aspects of bot-
nets that impact their revenue-generating capability.
For concreteness, we survey some leading automated
bot/botnet detection methods, identify evasion tac-
tics for each, and assess the costs of these tactics.
We also reconsider assumptions about botnet con-
trol that underly many botnet detection methods.

1 Introduction

Since malicious botnets are a relatively new security
threat as compared to viruses [2] and worms [1], it is
an opportune time to establish an extensible frame-
work that would enable comparisons across current
and future bot/botnet detection methods.

Comparing Detection Methods: Comparisons
can be made on the basis of an automated detection
method’s false negatives against current bots, false
positives against a representative sample of benign
programs, and practicality, including performance
impact. Also of interest is the time required to detect
a malware instance as this identifies the method’s
opportunity cost. Since we presume an adaptive ad-
versary, we would also like to evaluate evadability.

Our Contributions: We propose a systematic
framework for evaluating a key consideration in as-
sessing the fitness of a detection method: its evad-
ability. Our estimation of the amount and difficulty
of work required to apply an evasion tactic is based
on the ease with which current bots can be incre-

mentally modified. We also identify characteristics
of botnets that impact their revenue-generating ca-
pability; this enables us to evaluate the extent to
which evasive bot modifications result in a less use-
ful botnet. We assume that the attacker has pre-
cise details of the detection algorithm and its imple-
mentation. For brevity, we do not currently consider
the reconnaissance effort required to identify the val-
ues of a detection algorithm’s parameters (e.g., time
thresholds), which may be tuned per installation.

Organization: Section 2 describes bots and their
implementations, control, and attacks. We propose a
framework for quantifying evasion tactics in sect. 3.
Some leading botnet detection methods and the char-
acteristics on which they depend are presented in
sect. 4. Some evasive tactics and the detection meth-
ods they defeat are described in sects. 5 and 6, re-
spectively. We reconsider some assumptions under-
lying current botnet detection methods in sect. 7.

2 Bots

2.1 Definition of a Bot

Since we explore ways that a bot can be changed in
order to defeat detection, we need some baseline no-
tion of what constitutes a bot. A bot (i) participates
in a command-and-control (C&C) network, through
which the bot receives commands (ii) which cause
the bot to carry out attacks. We do not impose tem-
poral constraints on when the attack must be carried
out relative to command receipt nor do we constrain
command format. Our bot definition is more general
than the one proposed in [13], which required (explic-
itly or implicitly) that botnet attacks be performed
in a coordinated fashion and be network-detectable.

2.2 Bot Implementations

A typical bot implementation consists of two in-
dependent engines: a C&C-communication-protocol
processor and a command interpreter, which inter-
prets and executes bot commands, i.e., implements

1

Figure 1: Historically, bots live at the application
layer of the TCP/IP stack, which can be further sub-
divided into the C&C and bot command layers.

the bot’s protocol. Figure 1 provides an abstraction
of the structure of current malicious bots, which live
at the application layer of the TCP/IP stack. A bot
protocol message (i.e., command) is generally encap-
sulated as the payload of a C&C communications
protocol message. A bot’s command syntax encodes
the actions the bot can perform as well as the ways
in which each can be invoked (i.e., the parameters).

2.3 Botnet Control

Botnet control is achieved through a C&C network,
which consists of the: C&C protocol, which de-
fines communication format, network topology, which
identifies who talks to whom, and rendezvous point
(RP), the location to which commands are delivered.
The historical view of botnets is that they are tightly
controlled : the bot master sends a command that is
received and executed by all listening bots more or
less immediately [4], e.g., IRC botnets which have
latency on the order of seconds. Peacomm [6]’s use
of P2P for C&C demonstrates a looser control model
which has higher latency since commands percolate
through a distributed network as bots poll for them.

2.4 Botnet Attacks

Botnet attacks include click fraud, distributed
denial-of-service (DDoS), identity theft (harvesting
the infected host’s file system or registry and/or
keylogging), malware distribution (e.g., pay-per-
install spyware), phishing, piracy (product or license
key theft), proxying, scanning, server hosting (e.g.,
SMTP, HTTP, C&C), spamming, and spreading.

3 The Cost of Evasion

The cost of evading a detection method has two com-
ponents: implementation effort and effect on botnet
utility. Presumably, evasive tactics that are easy to

implement and have little negative effect on botnet
utility are more attractive (to the bot master) than
those which require more work to achieve or reduce a
botnet’s usefulness. Understanding and quantifying
these costs enables us to systematically evaluate the
strength of automated detection methods.

Implementation Complexity: Our rubric is
based on the ease with which bot writers can in-
crementally modify current bots to evade detection.
This approach to measuring implementation effort
tracks with the manner in which bot variants are
generated by their installers. Low : Tactic can be ap-
plied without source modification; e.g., via command
selection or simple binary changes, such as packing.
Medium: Tactic requires source modification which
can be achieved via bot-development kits, such as
agobot’s configgui.exe which provides a point-and-
click interface for specifying bot configuration details
and builds the requested bot. High: Tactic requires
minimal direct source modification, e.g., modifying
a bot to append junk data to its communications.
Very High: Tactic requires extensive or complicated
direct source modification, e.g., changing the C&C
protocol or implementing use of covert channels.

Botnet Utility: Quantifying botnet utility is a
substantial research question. We identify botnet
characteristics that affect its market value. Calculat-
ing overall utility would ideally combine these char-
acteristics in a manner which reflected the price at
which a botnet can be rented to perform attacks.

• Diversity of attacks: The number of different
attack types in which a botnet can be used. At-
tacks could be weighted differently so as to re-
flect their relative lucrativeness.

• Lead time required to launch an attack : This
captures whether bots are available in real-time
as well as latency through the C&C network.

• Botnet size: Given the required lead time, the
number of bots expected to participate in an
attack. May be sensitive to diurnal effects.

• Attack rate: The maximum number of attacks
per hour in which a botnet can be used. May be
affected by required lead time.

• Synchronization level : Identifies the upper
bound on the difference in time between the ac-
tions of the first and last bots participating in an
attack. Is relevant for types of attacks that re-
quire synchronized bot execution (e.g., DDoS).

Calculating Overall Evasion Cost: If evading
a detection method requires simultaneously applying
multiple evasion tactics {E1, E2, ..., En} then the re-
sulting evasion strategy ’s implementation complexity
is obtained by combining each Ei’s complexity us-
ing standard principles from complexity theory. The
strategy’s effects on botnet utility could be obtained
by summing the effects of each Ei. An interesting
question is, how to combine the two components of
a strategy’s cost? In particular, how to weight im-
plementation complexity relative to effects on botnet
utility. Moreover, some effects on utility may be con-
sidered more detrimental than others. Finally, select-
ing an optimal evasion strategy for a method could
be made with an eye toward simultaneous evasion of
multiple methods — so as to amortize implementa-
tion effort. We describe our weights in sect. 6.

4 Automated Detection Methods

To consider the problem of evasion, one must have
an understanding of the detection landscape. In
Table 1, we identify some botnet characteristics on
which various detection methods rely in whole or in
part. Table 2 identifies some leading detection meth-
ods and their dependencies — the first step in de-
vising a plan for evasion. Some methods OR-wise
combine characteristics; in which case, suppressing
a single characteristic would not suffice for evasion.
Additional method details can be found in App. A.

Related Terminology: Information flow tracking
or tainting entails marking data from certain sources
as tainted and propagating taint across select opera-
tions. A communication flow is a four-tuple consist-
ing of the source and destination IP addresses and
port numbers. Flow characteristics include: packets
per flow (ppf) and average: bytes per packet (bpp),
bytes per second (bps), and packets per second (pps).
For aggregated flows, characteristics include: flows
per address (fpa) and flows per hour (fph).

5 Evasive Techniques

Each surveyed method can be evaded by applying
one of the following four tactics. We identify other
evasive techniques for these methods to inform our
discussion on ranking evasion strategies in sect. 6.
We provide each tactic’s expected implementation
complexity and effects on botnet utility. For sim-
plicity, we only consider first-order or direct effects.

5.1 Tactic #1: Encrypt Traffic

Methods which rely on Syntax are vulnerable to eva-
sion via communications encryption which can be ap-
plied at any of the layers in the stack as in fig. 1. Be-
cause a bot which performs encryption can be cre-
ated using a bot-development kit, the implementa-
tion complexity of this tactic is Medium. Encrypting
traffic does not negatively affect a botnet’s utility.

5.2 Tactic #2: Threshold Attacks

For methods which rely on Time, malicious activities
(which correspond to NIDS events) can be spread
out in time so as to fly beneath the radar. Since
most of the events correspond to bot actions, simple
source modifications can be made to the bot which
cause it to inject a bit of delay between events; e.g.
after finding a vulnerable host but before infecting
that host or after receiving but before executing a
command. The implementation complexity is High.
Applying this tactic reduces a botnet’s attack rate.

5.3 Tactic #3: Launder Tainted Data

For methods which rely on Taint, a bot can defeat
detection via “laundering” tainted data using at least
three techniques. First, if there are channels across
which taintedness is not propagated (e.g., persistent
storage), the bot can write the tainted data to such
channels then immediately read the data back from
the same channel. Secondly, if only explicit infor-
mation flow is tracked, laundering can be performed
across control flow operations. In particular, the bot
could invoke the following method on all data re-
ceived over the network and subsequently use the
dst buffer which will not be considered tainted (and
yet whose contents are identical to those of src):

void launder(char* src, char* dst, int n) {
for (int i = 0; i < n; i++) {
char c = 0;
switch(src[i]) {
case ’a’: c = ’a’; break;
case ’b’: c = ’b’; break; ...

} // end of laundering char
dst[i] = c; // write laundered char

} }

An approach to implicit information flow analysis as
in [9] entails statically determining all instructions
whose execution depends on a tainted branch condi-
tion and marking the destination operands of those
instructions as tainted. A bot, however, could devise
a command syntax that used tainted data in a man-

Table 1: Description of some botnet characteristics upon which automated detection methods rely.
Characteristic Description

Basis Type of method as in host- or network-based
Hub Relies on network topology where single server has multiple clients
IRC Relies on specific IRC port number or model of communications patterns
Flow-Chars Uses flow characteristics to correlate C&C communications and/or attacks
Time Correlates events or network traffic that occur within a time window
Net-Det Relies on automated, network-based detection of botnet attacks such as scanning
Syntax Relies on bots’ use of a particular nickname, command, or protocol syntax
Taint Requires that bots’ execution of commands demonstrates explicit information flow

Table 2: Automated botnet detection methods (in chronological order) and some characteristics on which
each depends partially or wholly.

Method Basis Hub IRC Flow-Chars Time Net-Det Syntax Taint

Strayer [4] Net- No Yes bpp, bps, pps, etc. Yes No No No
Rishi [5] Net- No Yes No No No Yes No
Karasaridis [7] Net- Yes Yes bpp, fpa, ppf No Yes No No
BotSwat [8] Host- No No No No No No Yes
BotHunter [10] Net- No Yes No Yes Yes Yes No
BotMiner [13] Net- No No bpp, bps, fph, ppf Yes Yes No No

ner that was indistinguishable from benign programs’
use of tainted data. In particular, rather than a com-
mand being a string that is sent as a packet payload,
each letter of the command could be encoded by the
packet’s length (or by other malleable fields of lower-
layer protocol packets). Upon invocation of recv,
the bot would check recv’s return value which iden-
tifies the number of bytes received; from this the bot
would recover the corresponding letter. The rub is
that normal use of recv entails branching on its re-
turn value to select the appropriate next steps.

Thirdly, bots can use covert channels to obscure their
responsiveness to network-derived data. The im-
plementation complexity of these techniques ranges
from High to Very High. The effects on botnet utility
vary from None to increasing the required lead time
for techniques that entail sending multiple packets to
accomplish what was formerly achieved by one.

5.4 Tactic #4: Perturb Flows

For methods which rely on Flow-Chars to filter, clas-
sify, and/or correlate traffic, perturbing flows pro-
vides a rich avenue for evasion. Regardless of botnet
topology, we can obscure similarities between flows
by modifying sender and/or receiver behavior. Most
flow correlation considers flows during a particular
time window, which implicitly defines the set of flows
to target for perturbation. Also, flow correlation op-

erates with respect to a threshold; e.g., the mini-
mum number of flows which must be correlated or
the closeness required for correlation. Our assump-
tion is that the command channel is idle most of the
time; hence, increased channel utilization does not
adversely affect the botnet’s ability to launch attacks.

We can defeat correlations on the basis of bytes per
packet, bytes per second, packets per flow, and pack-
ets per second by inserting a random number of junk
bytes into each packet and/or junk packets into each
flow. By striping a command across packets, we can
increase the range of packet sizes. We can defeat
correlations based on flows per address or flows per
hour by having bots stay connected, disconnect, and
reconnect at random intervals rather than using a
long-lived persistent connection model. Noise injec-
tion does not affect botnet utility whereas perturbing
flow durations may affect botnet size since bots are
not consistently connected to the C&C network.

5.5 Other Tactics

Below we identify other techniques that could be
used against the surveyed methods.

• Only perform a subset of attacks: For meth-
ods which rely on Net-Det to distinguish bot-
nets from other tightly-controlled overlay net-
works, evasion can be achieved by confining the
botnet’s attacks to those which have marginal

network-visible effects. In practice, this means
that the botnet can perform all attacks ex-
cept DDoS, scanning, spamming, and spreading.
Since the attacks in which a botnet is used are
determined by commands sent to that botnet,
the implementation complexity of this approach
is Low. Applying this tactic results in a botnet
with decreased attack diversity.

• Restrict attack targets: For methods which rely
on observing traffic at the network boundary (as
inbound or outbound flows), e.g., [10, 13], one
can restrict botnet communications or attacks
to target hosts on the same internal network.
Since attack targets are specified as command
parameters, this has Low complexity and results
in decreased botnet size for any given attack.

• Induce IP churn: For methods [4, 7, 10, 13] that
correlate a host’s activities over time using the
host’s IP, a bot that can obtain a different IP ad-
dress on demand will defeat such correlations.
The implementation complexity of this is un-
known and it would not affect botnet utility.

• Defeat cross-host clustering : Cross-host cluster-
ing entails identifying when some threshold of
hosts demonstrates similar behavior. Such cor-
relations can be defeated by having bots partic-
ipate in different attacks. Moreover, which bots
participate in which attack at which time can be
biased so that bots in the same administrative
domain are less likely to participate in the same
attack. The complexity is High and this would
reduce the number of bots involved in an attack.

• Coordinate bots out-of-band (OOB): There are
indirect ways to achieve coordinated bot re-
sponse, including synchronization on a source
other than command receipt (High to Very
High) and fast-flux (Low), which entails fre-
quently re-mapping a host name’s DNS record
to different IP addresses. For example, Storm
bots synchronize via the Network Time Proto-
col [12] and fast flux is used in phishing attacks.
These tactics do not affect botnet utility.

• Attack the process monitor : For systems that
monitor process behavior [8], the bot can halt
execution, escape the sandbox, or attack the
monitor. The implementation complexity of this
is Very High; it does not affect botnet utility.

6 Choosing an Evasion Approach

We weighted effects on botnet utility more highly
than implementation complexity and sought to ap-

ply the fewest tactics. For this reason, even though
Karasaridis and BotMiner can be evaded by restrict-
ing a botnet’s diversity of attacks (which has Low
implementation complexity), we favored evasion tac-
tics that required more work to implement but which
did not result in this hit to botnet utility. Each ef-
fect on botnet utility was weighted equally. Table 3
identifies the resulting optimal evasive strategy for
each method as discussed below.

Defeating Strayer: The method in [4] consists of
three stages, each of which uses flow characteristics:
filtering traffic unlikely to be bot C&C (# of packets,
bps, packet size, duration), classifying traffic as likely
to be IRC or not (duration, role, bpp, bps, pps),
and clustering related flows (characteristics relating
to inter-arrival time and packet size). The output
of each stage becomes the input for the next. Flow
perturbation could be used to defeat each stage; the
simplest approach targets the filtering of high bit-
rate flows via injecting packet- and flow-level noise.

Defeating Rishi: The cheapest approach to de-
feating the method in [5], which identifies IRC pack-
ets with client nicknames that match pre-specified
templates, entails encrypting communications traffic.
Other approaches include changing the C&C proto-
col or the syntax of nicknames or IRC keywords.

Defeating Karasaridis: The method in [7] identi-
fies “suspected bots” as hosts involved in spamming,
scanning, DDoS, or sending viruses in email. All flow
records for suspected bots are fetched then pruned —
keeping flows: whose server port is one of the stan-
dard IRC ports or which involve a hub server. Of
these, the flow records for <server ip, server port>
tuples which have the most suspected bots are aggre-
gated. Those which sufficiently resemble the model
for IRC in terms of average fpa, bpp, and ppf un-
dergo heuristics analysis which entails identifying
the number of peers, idle clients, etc. By injecting
packet- and flow-level noise, we can perturb bpp and
ppf. Since all three flow characteristics are equally
weighted, this likely suffices to break similarities be-
tween C&C traffic and the model for IRC. Employing
a connect-disconnect-reconnect model would perturb
fpa. Other approaches include limiting the botnet’s
attack types, inducing IP churn, using OOB coor-
dination, using C&C protocols other than IRC, and
thwarting identification of hub servers.

Defeating BotSwat: The implementation in [8]
could be evaded by certain uses of communications
encryption and attacking the process monitor. Since

Table 3: The surveyed methods and an optimal evasive tactic which could be used to defeat each as well as
the tactic’s implementation complexity and effects on botnet utility, as applicable.

Method Evasive Tactic Implementation Complexity Effects on Utility

Strayer [4] Inject packet- or flow-level noise High None
Rishi [5] Encrypt C&C traffic Medium None
Karasaridis [7] Inject packet- or flow-level noise High None
BotSwat [8] Launder tainted data High None
BotHunter [10] Attack time thresholds High ↓Attack rate
BotMiner [13] Inject packet- or flow-level noise High None

the method relies on explicit information flow to
identify execution of bot commands, it is generally
susceptible to data laundering.

Defeating BotHunter: The method in [10] uses
five different NIDS event types; certain combinations
of these events seen within a fixed time window (four
minutes in their evaluation) cause alarm generation.
The most straight-forward approach to evasion en-
tails spacing events out in time such that the neces-
sary combinations do not occur sufficiently closely to-
gether. There are myriad other approaches, however,
which entail targeting NIDS detection of the various
events. For example, the Snort rulesets used to de-
tect C&C communications rely largely on content-
based matching and hence could be evaded via en-
crypting or changing the syntax of messages. Scan
detection can be foiled by restricting attack targets
or rate-limiting. Inducing IP churn is another tack.

Defeating BotMiner: The method in [13] identi-
fies hosts with similar communications activity; i.e.,
hosts whose flows are similar in terms of bpp, bps,
ppf, and fph. In parallel, they identify hosts with
similar attack traffic; i.e., that are scanning the same
ports, spamming, or downloading similar files. They
perform cross-planar correlation to identify hosts
with both similar communications and attack traffic.
An optimal approach to evasion is to inject packet-
and flow-level noise such that communications-plane
clustering will come up empty-handed. Other ap-
proaches include defeating scan detection, foiling
binary-download clustering, and restricting commu-
nications and attack targets.

7 Discussion

We believe that much research into automated
network-based botnet detection has operated from
an assumption that may have been historically valid
but is less true of botnets today. In particular, the
tight-control myth is that (i) for a botnet attack to be

effective, bots must simultaneously participate (co-
ordinate) in attack execution and (ii) that this coor-
dination must come through the C&C network. We
addressed (ii) in 5.5, which identified ways to achieve
bot coordination outside of the C&C network. Be-
low, we consider (i), i.e., the extent to which each
botnet attack type relies upon the simultaneous, co-
ordinated (synchronized) execution of the bots.

To determine the necessity of bot synchronization for
each type of botnet attack, we may ask: is the con-
tribution of each bot to the attack greater than x/N
where x is the amount of time this bot spent par-
ticipating in the attack and N is the total amount
of time spent by all bots in this attack? That is, is
there a synergy in having multiple bots simultane-
ously participating in an attack? Of the eleven bot-
net attacks listed in sect. 2.4, only a few obviously
require some bot synchronization: DDoS, phishing,
and spamming. Of these, only DDoS requires a syn-
chronization level on the order of seconds. For phish-
ing attacks where the botnet both sends the luring
spam email and hosts the web site, it is necessary
to coordinate the bot hosting the website with the
bots sending the spam, which can be achieved via
fast-flux migration of the web site from bot to bot.
Beyond that, there may be value in having bots si-
multaneously participating in a spam campaign but
the necessary synchronization level here is likely to
be on the order of minutes or tens of minutes.

8 Conclusion

In this paper, we establish a broad framework for
evaluating the evadability of automated bot/botnet
detection methods. In so doing, we identify myriad
areas which warrant further study, including: quan-
tifying the reconnaissance effort necessary to evade
a method, improving the precision of implementa-
tion complexity estimations, enhancing understand-
ing of botnet utility, and identifying how to best
combine the components of an evasive tactic’s cost
so as to reflect market realities, the ultimate drivers

in bot development. The exploration of evadability
also yields interesting insights relating to future di-
rections for detection research, including: identifying
the fundamental characteristics of botnets and over-
all approaches to detection method design.

The most resilient detection methods are those which
identify fundamental characteristics of bots/botnets
rather than incidental traits of current bots. Hence,
there is value in assessing the extent to which various
characteristics used in detection are necessary, i.e.,
affect botnet utility. We identified the limitations of
detection methods which require: synchronized bot
execution (only a very small number of botnet at-
tacks require tight coordination), that bot synchro-
nization be achieved via the C&C network (synchro-
nization can be obtained via external sources), or
network-based botnet attack detection (many botnet
attacks have negligible network-visible effects).

Considering evadability also yields alternative ap-
proaches to designing detection methods. First, we
note that many of the leading detection methods can
be evaded using the same tactic. Hence, there may be
value in a novel detection method merely if evading it
requires applying a new (non-trivial) evasive tactic.
Additionally, while the traditional approach to devis-
ing detection methods has been to consider current
bot/botnet structure and behavior, an alternative
approach would focus on botnet utility and attempt
to devise methods whose evasion would negatively
affect this utility. For example, we know that a bot-
net’s utility includes the diversity of attacks in which
that botnet can be used. Consequently, we might de-
sign a detection method that used this diversity to
identify bots/botnets. Then, evading that hypothet-
ical method would entail reducing this diversity and
hence sacrificing some botnet utility. Superior detec-
tion methods force the bot writer to choose between
detection and reduced utility.

9 Acknowledgments

We are grateful to Dan Boneh, who gave us the paper
idea and suggested venue, and to Phil Porras, who
promptly provided additional BotHunter implemen-
tation details. Thanks also to Adam Barth, Matt
Fredrikson, Guofei Gu, Collin Jackson, and Lorenzo
Martignoni for reading earlier versions and providing
helpful feedback. Finally, we thank the reviewers for
their thoughtful questions and commentary.

References

[1] B. Page. A Report on the Internet Worm. Risks
Digest, Volume 7, Issue 76, Nov. 1988.

[2] R. M. Slade. History of Computer Viruses. 1992.

[3] W. Cui, R. H. Katz, W. Tan. Design and Imple-
mentation of an Extrusion-based Break-In De-
tector for Personal Computers. In Annual Com-
puter Security Applications Conf., Dec. 2005.

[4] W. T. Strayer, R. Walsh, C. Livadas, D. Lap-
sley. Detecting Botnets with Tight Command
and Control. In IEEE Conference on Local Com-
puter Networks, Nov. 2006.

[5] J. Goebel, T. Holz. Rishi: Identify Bot Con-
taminated Hosts by IRC Nickname Evaluation.
In Workshop on Hot Topics in Understanding
Botnets, April 2007.

[6] J. B. Grizzard, V. Sharma, C. Nunnery, B.
B. Kang, D. Dagon. Peer-to-Peer Botnets:
Overview and Case Study. In Workshop on Hot
Topics in Understanding Botnets, April 2007.

[7] A. Karasaridis, B. Rexroad, D. Hoeflin. Wide-
scale Botnet Detection and Characterization. In
Workshop on Hot Topics in Understanding Bot-
nets, April 2007.

[8] E. Stinson, J. C. Mitchell. Characterizing Bots’
Remote Control Behavior. In Detection of Intru-
sions & Malware, and Vulnerability Assessment,
July 2007.

[9] H. Yin, D. Song, M. Egele, C. Kruegel, E. Kirda.
Dynamic Spyware Analysis. In USENIX Secu-
rity Symposium, Aug. 2007.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong,
W. Lee. BotHunter: Detecting Malware Infec-
tion Through IDS-Driven Dialog Correlation. In
USENIX Security Symposium, Aug. 2007.

[11] C. Kreibich, C. Kanich, K. Levchenko, B. En-
right, G. M. Voelker, V. Paxson, S. Savage. On
the Spam Campaign Trail. In USENIX Work-
shop on Large-Scale Exploits and Emergent
Threats, April 2008.

[12] T. Holz, M. Steiner, F. Dahl, E. Biersacky, F.
Freiling. Measurements and Mitigation of Peer-
to-Peer-based Botnets: A Case Study on Storm-
Worm. In USENIX Workshop on Large-Scale
Exploits and Emergent Threats, April 2008.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Bot-
Miner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Bot-
net Detection. In USENIX Security Symposium,
July 2008.

http://www.ee.ryerson.ca/~elf/hack/iworm.html
http://vx.netlux.org/lib/static/vdat/epsladeh.htm
http://research.microsoft.com/~wdcui/papers/binder-acsac05.pdf
http://research.microsoft.com/~wdcui/papers/binder-acsac05.pdf
http://research.microsoft.com/~wdcui/papers/binder-acsac05.pdf
http://people.csail.mit.edu/clivadas/pubs/StrayerWLL06.pdf
http://people.csail.mit.edu/clivadas/pubs/StrayerWLL06.pdf
http://www.usenix.org/event/hotbots07/tech/full_papers/goebel/goebel.pdf
http://www.usenix.org/event/hotbots07/tech/full_papers/goebel/goebel.pdf
http://www.usenix.org/event/hotbots07/tech/full_papers/grizzard/grizzard_html/
http://www.usenix.org/event/hotbots07/tech/full_papers/grizzard/grizzard_html/
http://www.usenix.org/event/hotbots07/tech/full_papers/karasaridis/karasaridis.pdf
http://www.usenix.org/event/hotbots07/tech/full_papers/karasaridis/karasaridis.pdf
http://www.stanford.edu/~stinson/pub/botswat_long.pdf
http://www.stanford.edu/~stinson/pub/botswat_long.pdf
http://www.seclab.tuwien.ac.at/papers/tqana.pdf
http://www.cyber-ta.org/releases/botHunter/BotHunter-Usenix07.pdf
http://www.cyber-ta.org/releases/botHunter/BotHunter-Usenix07.pdf
http://www.usenix.org/event/leet08/tech/full_papers/kreibich/kreibich_html/
http://www.usenix.org/event/leet08/tech/full_papers/kreibich/kreibich_html/
http://www.usenix.org/event/leet08/tech/full_papers/holz/holz_html/
http://www.usenix.org/event/leet08/tech/full_papers/holz/holz_html/
http://www.usenix.org/event/leet08/tech/full_papers/holz/holz_html/
http://www.cc.gatech.edu/~guofei/paper/Gu_Security08_BotMiner.pdf
http://www.cc.gatech.edu/~guofei/paper/Gu_Security08_BotMiner.pdf
http://www.cc.gatech.edu/~guofei/paper/Gu_Security08_BotMiner.pdf
http://www.cc.gatech.edu/~guofei/paper/Gu_Security08_BotMiner.pdf

A Current Automated Bot Detection

The aspects of the surveyed methods which are rele-
vant to the consideration of evasion are presented in
sect. 4. Below, we provide additional details pertain-
ing to the surveyed detection methods.

A.1 Network-Based

A.1.1 Strayer

The goal of Strayer et al. in [4] is to identify tight
C&C as exhibited by IRC networks. There are sev-
eral stages in their analysis, where the output of
each stage becomes the input for the next. First,
eliminate flows that are unlikely to be botnet C&C
(e.g., bulk data transfers, port scans, non-TCP traf-
fic, short-lived connections, flows with average packet
size greater than 300 bytes). Secondly, use ma-
chine learning algorithms to further prune flows keep-
ing only those which are likely to be IRC (using
flow characteristics, such as duration, role, bytes per
packet (bpp), bytes per second (bps), packets per sec-
ond (pps)). Thirdly, only keep flows from a period of
time during which the botnet was active. Fourthly,
correlate flows by having each represent a point in
a five-dimensional space, where the dimensions re-
late to packet inter-arrival time and size. The dis-
tance between two points in this 5D space represents
the likelihood that two flows are correlated. Fifthly,
obtain a cluster of flows that are highly correlated
(small distance between them). Then perform topo-
logical analysis on these to identify the RP and pos-
sibly manual analysis to identify the bot master’s IP.

A.1.2 Rishi

Rishi [5] identifies hosts that are likely to be infected
with a bot by passively monitoring network traffic
and identifying certain IRC protocol packets to/from
users which specify suspicious (bot-like) nicknames
as defined by pre-constructed templates.

A.1.3 Karasaridis

The goal of Karasaridis et al. in [7] is to identify
botnet controllers (e.g., IRC servers) given transport
layer data. First, they identify “suspected bots” as
those hosts which are spamming, sending viruses in
email, port scanning, or participating in DDoS at-
tacks. All flow records to/from suspected bots are
fetched. Of these, they identify flow records that may
be connections to controllers (referred to as candidate
control flows) using three criteria: the server port is a
standard IRC port, the <server ip, server port> has
incoming connections from multiple suspected bots

(i.e., is a “hub server”), or flow records whose char-
acteristics are “within the bounds of a flow model
for IRC traffic”. The candidate control flows for
each distinct <client ip, server ip, server port> are
summarized into a candidate control conversation
(CCC).

CCCs are pruned via multi-stage correlation wherein
the output of one stage determines the input for the
next. First, calculate the number of unique sus-
pected bots for each the <server ip, server port> tu-
ple. Of these, consider the most popular servers. For
each such <server ip, server port>, combine all of
that server’s CCCs and calculate the average flows
per (client) address, packets per flow, and bytes per
packet. Then obtain the distance of this traffic from
the model for IRC by giving equal weight to each
flow characteristic. Servers whose distance is below a
threshold will be considered in the final stage, which
entails applying heuristics to order the remaining
candidate controllers, such as number of idle clients
and whether the server uses both TCP and UDP on
the suspected port and has many peers.

A.1.4 BotHunter

BotHunter [10] presents a method for botnet detec-
tion which entails correlating alarms from different
network intrusion detection system (NIDS) elements
which reside at the egress boundary. They introduce
a model of a bot infection sequence which entails cer-
tain combinations of the following events: inbound
port scan (E1), inbound exploit (E2), internal-to-
external binary download (E3), internal-to-external
C&C communications (E4), and outbound port scan
(E5). A port scan detection engine identifies E1 and
E5, Snort signatures and a payload-anomaly detec-
tion engine identify E2, and Snort signatures detect
E3 and E4. Different combinations of alarms —
which occur within a particular time and which all
reference the same internal host (IP) — can satisfy
the threshold for declaring a bot infection. In par-
ticular, E2 followed by E3, E4, or E5 results in an
alarm as does any two of {E3, E4, E5}.

A.1.5 BotMiner

In BotMiner [13] the authors present a botnet detec-
tion method which clusters: communications traffic
(C-Plane), which identifies which hosts are talking
to which other hosts, and activity traffic (A-Plane),
which identifies which host is doing what. A C-Plane
flow (C-flow) contains all of the flows over a given
epoch between a particular internal IP and destina-
tion IP and port which use the same transport layer

protocol. Some flows are excluded from consider-
ation: internal-to-internal, external-to-internal, and
those to “legitimate servers”, such as Google. Cer-
tain C-flow characteristics are extracted: flows per
hour (fph), packets per flow (ppf), bytes per packet
(bpp), and bytes per second (bps). The A-Plane
identifies hosts which are scanning (i.e. demonstrate
an abnormally high: scan rate or weighted failed
connection rate), spamming (high number of: DNS
queries for MX records or connections to external
mail servers), and downloading any Portable Exe-
cutable binary. Clustering algorithms are applied to
group hosts with similar: communication patterns
(C-Planes) and activities patterns (A-Planes). They
then perform cross-plane correlation to identify hosts
with similar communications and activities patterns.

A.2 Host-Based

The relevant work in this area includes systems that
target malware generally as well as those that focus
specifically on bots.

A.2.1 Binder

In [3], Cui et al. present a method for identifying
extrusions, which are user-unintended malicious out-
bound connections. User-driven input is used as a
proxy for user intent, and network connections made
within some time window following receipt of user-
driven input are considered user-intended. Hence,
their system identifies as malicious: network connec-
tions which were not preceded in time by a user input
event. For typical standalone bots, detection could
occur upon the first connection of the bot to its C&C
network since this event is not preceded by receipt of
a user input event to the bot program.

A.2.2 BotSwat

Stinson et al. characterize the remote control behav-
ior of bots via identifying when selected system call
arguments contain data received over the network,
such as occurs when a bot executes a command re-
ceived from its bot master [8]. This approach per-
forms explicit information flow tracking on network
data. To distinguish remotely-initiated from locally-
initiated system call invocations, the method identi-
fies data which is dependent upon local user input
and sanitizes such data.

	Introduction
	Bots
	Definition of a Bot
	Bot Implementations
	Botnet Control
	Botnet Attacks

	The Cost of Evasion
	Automated Detection Methods
	Evasive Techniques
	Tactic #1: Encrypt Traffic
	Tactic #2: Threshold Attacks
	Tactic #3: Launder Tainted Data
	Tactic #4: Perturb Flows
	Other Tactics

	Choosing an Evasion Approach
	Discussion
	Conclusion
	Acknowledgments
	Current Automated Bot Detection
	Network-Based
	Strayer
	Rishi
	Karasaridis
	BotHunter
	BotMiner

	Host-Based
	Binder
	BotSwat

