
Reverse Engineering Python Applications

Aaron Portnoy
TippingPoint DVLabs

Ali-Rizvi Santiago
TippingPoint DVLabs

Abstract

Modern day programmers are increasingly making the switch from traditional compiled languages such as C and
C++ to interpreted dynamic languages such as Ruby and Python. Interpreted languages are gaining popularity due
to their flexibility, portability, and ease of development. However, these benefits are sometimes counterbalanced by
new security exposures that developers are often unaware of. This paper is a study of the Python language and
methods by which one can leverage its intrinsic features to reverse engineer and arbitrarily instrument applications.
We will cover techniques for interacting with a running interpreter, patching code both statically and dynamically,
and manipulating type information. The concepts are further demonstrated with the use of AntiFreeze, a new toolset
we present for visually exploring Python binaries and modifying code therein.

1. Introduction

Dynamic languages are defined as high-level languages
that perform type checking at runtime. Many also have
support for reflection, metaclasses, and runtime
compilation. These features are of particular interest to
the reverse engineer as they require a significant
amount of type information to exist in the distributed
application. This paper focuses on some of the potential
security implications that arise when releasing software
written in a dynamic language. Because the current
methods for distributing dynamic language code in
binary form have not been publicly scrutinized by
reverse engineers, there might exist a notion among
developers that their source code is relatively concealed
when distributed in the binary forms provided by the
language. However, their software is in fact more
susceptible to reverse engineering than a compiled
program written in a static language.

In the following sections we will discuss how these
aspects of dynamic languages are implemented in
Python, specifically CPython, and some of the more
interesting reverse engineering techniques that can be
accomplished by leveraging their functionalities.

2. Code Object and Byte Code Primer

To fully understand the inner workings of Python, one
should first become familiar with how Python compiles
and executes code. When code is compiled in Python
the result is a code object. A code object is immutable
and contains all of the information needed by the

interpreter to run the code. The following are some of
the more notable properties of a code object [1][2]:

- co_code: A string representing the byte code.

- co_consts: A tuple containing constant values
referenced by the byte code.

- co_name: A string that contains the name of the code
object, if it has one.

The co_code property is the most significant as it
contains the byte code instructions for the code object.
A byte code instruction is represented as a one byte
opcode value followed by arguments when required.
Data is referenced using an index into one of the other
properties of the code object. For example, take this
byte code string:

'\x64\x02\x64\x08\x66\x02'

The first byte of the byte code string is the opcode,
0x64, which maps to the instruction LOAD_CONST.
The LOAD_CONST instruction takes a single one-byte
argument. The next instruction is the same opcode, but
with a different argument. The final instruction is
opcode 0x66 which maps to BUILD_TUPLE. The
BUILD_TUPLE instruction also takes a single
argument. Thus, the disassembly of this byte code is
simply:

http://dvlabs.tippingpoint.com/team/aportnoy
http://dvlabs.tippingpoint.com/team/arizvi

LOAD_CONST 0x02

LOAD_CONST 0x08

BUILD_TUPLE 0x02

Python byte code operates on a stack of items. The
LOAD_CONST instruction pushes a constant value on
to this stack. Python byte code references data using an
index; the 0x02 argument to LOAD_CONST instructs
the interpreter to fetch the item at index 0x02 from the
co_consts property tuple and push it to the top of the
stack. The LOAD_CONST 0x08 will likewise push the
value at index 0x08. The final instruction,
BUILD_TUPLE, creates a tuple from consecutive
items popped from the stack, the number of which is
specified by the BUILD_TUPLE argument. In this
case, a tuple containing two objects is created and
saved to the top of the stack.

The above example demonstrates the basic process one
would take to disassemble a simple code object. A
more enterprising extension would be to attempt to
decompile the byte code back into readable Python
source code, complete with object and function names.
This could be accomplished by utilizing the other
properties of a code object such as the co_name,
co_names, co_varnames, co_filename, and others.

3. Marshalling and Demarshalling

Python code can be distributed in binary form by
utilizing the marshal module [3]. This module provides
the ability to serialize and deserialize code objects
using the store and load functions. The most commonly
encountered binary format is a compiled Python file
(.pyc) which contains a magic number, a timestamp,
and a serialized object. This file type is usually
produced by the Python interpreter as a cache of the
compiled object to avoid having to parse the source
multiple times.

Python code can also be distributed in what is known as
a frozen Python module (.pyd). This format is produced
by the freeze.py [4] tool distributed with CPython.
Each object within a given Python source is compiled
to a code object and then serialized using the marshal
module. The freeze.py tool will produce a collection of
C source files containing the serialized objects defined
as an array of structures. Each structure is composed of
a table containing the object name, a pointer to its data,
and a length value. The developer will compile this

code into a shared object so that a program written in C
is able to load the file as a module.

There are other less popular binary formats that have
been developed and all are created in some fashion
using the marshal module. This commonality allows a
reverse engineer to utilize the deserialization
capabilities of the marshal module to extract code
objects and all associated metadata. Once extracted, a
code object can then be modified and serialized back
into the binary medium.

It should be noted that the marshal module makes no
claims that it secures or obfuscates source code,
however this appears to be assumed by many
developers as sensitive portions of code are still
commonly distributed in these binary forms.

4. Code Object Modification

In Python many internal objects including code are
immutable during runtime. However, due to Python's
ability to utilize reflection one can clone a code object
by re-creating it, passing the same parameters the
original had. In order to do this the code object type
must first be obtained. This can be accomplished with
the following line of code:

code = type(eval("lambda:x").func_code)

This line of code will create a function and retrieve the
type of the function’s func_code property. Now that the
type has been saved, an object can be instantiated by
calling the code constructor. The prototype for a code
object is as follows:

code(argcount, nlocals, stacksize, flags,

codestring, constants, names, varnames,

filename, name, firstlineno, lnotab[,

freevars[, cellvars]])

At this point, the original code object can be re-created,
modifying its properties and their values if desired. To
replace a code object within a compiled or frozen file,
one would need to re-serialize the newly created code
object using the marshal module and write it back into
the data structure it was extracted from.

5. AntiFreeze

To streamline this process we have developed a toolset
for interacting with frozen Python files. AntiFreeze [5]

Figure 1: AntiFreeze GUI Screen Shot

is a set of utilities that enables one to easily browse,
modify, and inject code objects from binary Python
code. It provides the ability to view and edit
disassembled Python code directly, as well as edit any
properties of a code object.

The toolset is comprised of four major components:
functionality for extracting code objects, a disassembly
engine, a Python assembler, and the interface itself.
Figure 1 shows the interface layout which was built
upon the Ext-JS javascript library [6]. The pane on the
left of Figure 1 is a tree view representing the hierarchy
of objects. For example, if a given node represents a
Python class, its child nodes could be sub classes or
functions defined within its scope. Once an object is
selected from the left pane, the center pane is updated
with that object's disassembly. This field is editable so
that a user may edit instructions or data indices by hand
and re-assemble if they wish. The far right pane allows
a user to inspect and edit any of the current code
object's properties. The data for these components is
obtained via the disassembly engine portion of the
toolset. The code is a rewrite of the “dis” module [7]
distributed with CPython with some useful additions
including the display of de-referenced data and code
location labels.

Through the interface a user is also able to re-assemble
their new code object, at which point the value of the
center editor is passed to the Python assembler, along

with any changed code properties. The assembler
performs a simple 2-pass scan and, if valid, the code
object becomes assembled and injected to replace the
old object within the original file.

6. Execution of a Code Object

The preceding sections demonstrate how code logic can
be obtained statically. This section deals with methods
by which we can gather runtime information to aid in
reverse engineering an application. When Python
executes a code object it must first be bound to its
locals and globals by the Py_EvalCode function
exported by the Python shared library. In addition to
binding references, this function is responsible for
creating an internal type known as a Frame. Frame
objects are handled by the Py_EvalFrame function
which is responsible for processing the object’s byte
code. Both Py_EvalCode and Py_EvalFrame are
convenient places to hook execution during runtime to
produce code flow data. This type of dynamic
information can also add a meaningful level of
comprehension to the reverse engineering process.

Due to Python's support for introspection and the fact
that all objects are first-class [8], the Python interpreter
must know about all currently executing objects. This
requires a substantial amount of information be
available about an object's methods and properties

Figure 2: ToonJumpForce Cheat Screen Shot

during runtime. This information can also be leveraged
by a reverse engineer to achieve a variety of objectives.

Aside from passive actions, while within the context of
the Python interpreter, one can execute arbitrary code.
The Python interpreter has the ability to re-evaluate
code which requires the compiler to exist in memory.
This feature can best be utilized by calling the function
PyRun_SimpleString from the context of the
interpreter. The process to do so begins by obtaining
the Global Interpreter Lock [9], then one would call
PyRun_SimpleString and release the lock afterwards.
Injecting code into the Python interpreter allows one to
execute any code of their choice. This enables a reverse
engineer to perform a multitude of useful tasks such as
logging all function calls using sys.settrace [10] and
utilize ihooks [11] for hooking tasks performed
internally by the interpreter.

7. Case Study: Pirates of the Caribbean
Online MMORPG

To demonstrate the impact of the discussed techniques,
this section will present a case study involving injecting
cheats into a popular multiplayer online game.

Disney’s Pirates of the Caribbean Online [14] is a
multiplayer online RPG game written in Python with
the majority of the code being distributed within a PYD
file. Using AntiFreeze, we can quickly begin to browse
the object hierarchy and determine which code objects
we would like to edit. A quick perusal of the
namespace turns up the promising
‘pirates.piratesbase.PiratesGlobals’ object. Once this
object is selected, the disassembly window is updated
with roughly 3000 lines of code. One particular section
starting at line 897 of this disassembled code appears
interesting:

load_const 161 # '24.0'

store_name 196 # "'ToonForwardFastSpeed'"

load_const 161 # '24.0'

store_name 197 # "'ToonJumpFastForce'"

load_const 162 # '8.0'

store_name 198 # "'ToonReverseFastSpeed'"

load_const 163 # '120.0'

store_name 199 # "'ToonRotateFastSpeed'"

load_const 161 # '24.0'

store_name 200 # "'ToonForwardSpeed'"

load_const 161 # '24.0'

store_name 201 # "'ToonJumpForce'"

These instructions load constant values from the
co_consts tuple and store them to variables within the

code. To edit these values using AntiFreeze, we can
select co_consts from the drop-down menu of
properties and edit accordingly. In this example, we
will change the co_consts at index 161 from 24.0 to
99.0 and test if our in-game character behaves
differently. Editing the field within the AntiFreeze
interface and choosing “assemble” automatically injects
the updated values into the PYD file and it’s ready to
be tested.

The screenshot in Figure 2 confirms that the injection
worked as our in game character is able to jump
considerably higher than normal. This demonstration
illustrates how AntiFreeze can quickly apply static code
object modifications to serialized Python code.

8. Anti-Reversing

The aforementioned techniques rely on the ease of
access to byte code and type information. With a code
object’s byte code, code logic can be modified or even
replaced entirely. Extracting type information can aid in
program design comprehension and identification of
function and object purposes.

The obfuscation and hardening of application byte code
will always be a race between the implementers and
those seeking to break it. To attempt to defend against
byte code retrieval, the logical first step is towards a
runtime translation solution. Properties of a code object
could be stored in any signed, encrypted, or otherwise
obfuscated format that is de-obfuscated or translated
during runtime and used to instantiate a new object.
One could even change the way variable name lookups
work within the interpreter to obfuscate naming
information. By adding a translation layer between the
lookup of the actual names and the names within the
source code, a developer could further mitigate
reversing attempts.

9. Conclusion

The choice of a dynamic language can introduce some
unintended new security exposures to an application.
As their popularity continues to grow, there will likely
be a demand for these languages to include mechanisms
to better protect proprietary code. Until then, however,
their features will continue to introduce susceptibility to
the techniques outlined in this paper.

References

[1] Code Properties, http://effbot.org/pyref/type-
code.htm

[2] Code Properties,
http://www.voidspace.org.uk/python/weblog/arch_d7_
2006_11_18.shtml

[3] Marshal Module,
http://svn.python.org/projects/python/trunk/Python/mar
shal.c

[4] Freeze, http://wiki.python.org/moin/Freeze

[5] AntiFreeze, http://code.google.com/p/antifreeze/

[6] Ext JS, http://extjs.com/

[7] Dis Module,
http://svn.python.org/projects/python/trunk/Lib/dis.py

[8] GIL,
http://wiki.python.org/moin/GlobalInterpreterLock

[9] First-class Object,
http://en.wikipedia.org/wiki/First-class_object

[10] sys.settrace, http://docs.python.org/lib/debugger-
hooks.html

[12] ihooks, http://pydoc.org/2.4.1/ihooks.html

[13] CTypes, http://docs.python.org/lib/module-
ctypes.html

[14] Disney’s Pirates Online,
http://disney.go.com/pirates/online/

[15] Reversing Engineering Dynamic Languages
RECON 2008,
http://www.recon.cx/2008/speakers.html#python

http://effbot.org/pyref/type-code.htm
http://effbot.org/pyref/type-code.htm
http://www.voidspace.org.uk/python/weblog/arch_d7_2006_11_18.shtml
http://www.voidspace.org.uk/python/weblog/arch_d7_2006_11_18.shtml
http://svn.python.org/projects/python/trunk/Python/marshal.c
http://svn.python.org/projects/python/trunk/Python/marshal.c
http://wiki.python.org/moin/Freeze
http://code.google.com/p/antifreeze/
http://extjs.com/
http://svn.python.org/projects/python/trunk/Lib/dis.py
http://wiki.python.org/moin/GlobalInterpreterLock
http://en.wikipedia.org/wiki/First-class_object
http://docs.python.org/lib/debugger-hooks.html
http://docs.python.org/lib/debugger-hooks.html
http://pydoc.org/2.4.1/ihooks.html
http://docs.python.org/lib/module-ctypes.html
http://docs.python.org/lib/module-ctypes.html
http://disney.go.com/pirates/online/
http://www.recon.cx/2008/speakers.html#python

