
Insecure Context Switching: Inoculating regular expressions for
survivability

Will Drewry and Tavis Ormandy
Google, Inc.

{wad,taviso}@google.com

Abstract

For most computer end–users, web browsers and Internet
services act as the providers and protectors of their per-
sonal information, from bank accounts to personal cor-
respondence. These systems are critical to users’ con-
tinued lifestyles but often show no evidence of surviv-
ability [45], or robustness against present and future at-
tacks. Software defects, considered the largest risk to
survivability [45], are quite prevalent in consumer prod-
ucts and Web service software components [12]. Recent
widespread security issues [20] [19] serve to emphasize
this fact and show a lack investment in survivability en-
gineering practices [22] [23] [50] [53] that may have mit-
igated the risk.

Common software components that comprise indus-
try software, commercial or free, were authored and
deployed with functional isolation in mind. Despite
original intent, many of these components are migrat-
ing in to Internet–connected systems. The context
switch from functional isolation to extreme connectiv-
ity changes the threat environment of these components
dramatically [10] [53]. Most software that has under-
gone this sort of insecure context switch has received
very little security attention. This paper briefly surveys
recent examples of these sorts of context switches. In
particular, we focus on the survivability and inocula-
tion [31] of regular expression engine implementations
in connected environments. Through the course of this
research, a number of critical vulnerabilities were un-
covered that traverse operating systems and applications
including Adobe Flash, Apple Safari, Perl, GnuPG, and
ICU.

1 Introduction

The existence of software defects are attributed to many
causes, ranging from expected human error to poor de-
veloper education [42] [43] [96]. In the past decade,

the evolution of software use and analysis were added as
complicating factors. Survivability engineering [45] fo-
cuses on these factors and the of application risk mitiga-
tion tactics at all levels, especially technical ones, to aid
in fortifying software as it ages [22] [23] [50] [53]. Even
though there has been extensive research into survivabil-
ity engineering, very few of the guidelines [50] [53], or
even other known good security practices, appear com-
monplace in industry software, and the general state of
software security may still be as Blakley described nearly
twelve years ago [10]. A basic review of software de-
fect occurrence rates, as a contraindicator of survivabil-
ity, reinforces the bleak outlook on the current environ-
ment [12] [69] [68].

Survivability engineering, however, is largely a
counterintuitive concept in normal software develop-
ment [53], especially when it comes to code reuse. Code
reuse is encouraged [47] and common, as evidenced by
the large number of commercial and open source soft-
ware libraries and their extensive use across the software
industry. Software libraries, or any reusable components,
are often designed with specific usage contexts in mind.
These uses may be well–defined using any number of
formal, such as UML [71], or informal techniques, but
rarely are the complete intentions effectively commu-
nicated to the end–developer, especially as these com-
ponents age. There is no established standard for de-
scribing the expected threat environment of a software
library, and even if there was, there is no mechanism to
enforce the use of such a standard. While domain spe-
cific repositories aid in context–safe reuse [30], there are
not many comprehensive repositories which match func-
tional domains with security domains [60]. This leaves
little option for developers except to rely on program-
ming language–supplied features and software compo-
nents selected by their advertised functionality. This be-
havior, when not carefully considered, leads to insecure
context switching.

This paper contributes a thorough examination of the



survivability and inoculation [31] of a prime example
of insecure context switching: modern regular expres-
sion [44] use. Regular expressions are an idiomatic tech-
nique for text search and manipulation with a presence
in nearly every modern programming language, from C
to Ruby. Their widespread acceptance has lead regular
expressions to be exposed unquestioningly in potentially
hostile, connected environments. This would be unsur-
prising, and unimportant, if regular expression engine
implementation was trivial or if regular expression en-
gines were implemented with connected environments in
mind. However, the creation of robust implementations
is still an open topic of research [48] [24], and regular ex-
pressions were implemented, initially, in functional iso-
lation as a text editor feature [18].

1.1 Background

Survivability of specific software components is not the
only measurement of overall system survivability. While
a number of serious vulnerabilities are discussed later in
the paper, the view should not be overly bleak. Many
legacy, and even just poorly implemented, software com-
ponents exist and are in common use, but there are inoc-
ulation, or risk–mitigating tactics, already at play at a
lower–level.

Most modern operating systems deploy a number of
risk–mitigating mechanisms to add to the overall robust-
ness of the system. Many tactics are used explicitly to
prevent software defects from becoming fully exploitable
vulnerabilities. Some of these tactics are address–
space layout randomization [70], non–executable mem-
ory pages [61] [95], and capability-enforcement sys-
tems [51] [5]. In addition, compilers, like GNU GCC,
provide the addition of stack canaries [25] and position
independent executable support [41]. The combined ef-
forts of base system libraries, language compilers, and
the operating system layers add to the overall survivabil-
ity. While none of these techniques prevent exploitation
entirely, they do increase the complexity of creating reli-
able exploits.

In addition to these base system extensions, there is
work which provides risk–mitigation at the application
layer. Systrace [63], presented in 2003, provides a mech-
anism for intrusion prevention aiding the overall sur-
vivability of the system. Unfortunately, system call–
based policy enforcement systems, like systrace, are not
supplied by default with most operating system distri-
butions. There are also other software fault isolation,
or software sandboxing, systems in existence [100], but
their deployment is similarly scarce.

The lack of sandbox integration and the unenforced
nature of many of the base system mitigation tactics
leaves single components liable for full system surviv-

ability. Dowd’s recent whitepaper [20], describes such
a scenario. Flash suffered from an exploitable vulnera-
bility, but as it was not compiled in a fashion compat-
ible with Windows Vista’s ASLR functionality, no ran-
domization occured which allowed for reliable exploita-
tion on Vista. This is not an isolated incident; many
systems and software do not support or use these fea-
tures [65] [13], and when they do, they are still not im-
pervious to all known attack techniques, much less future
developments in software security research.

1.1.1 Regular Expression History

Since the introduction of regular expressions to the
QED text editor [18] and the Unix environment in the
1970s [94], regular expression use, as a means of suc-
cinctly expressing acceptable grammars, has increased
continuously. They have even garnered an accepted place
in many IETF standards. A simple review of IETF stan-
dards, or RFCs, shows a continued reliance on regular
expressions. This is likely due, in large part, to the re-
lease of a public domain, regular expression engine by
Henry Spencer in 1986 [72] [73].

Beginning around 1990, regular expressions moved
from a command–line environment and text edi-
tor feature to an expected piece of functionality in
most programming languages. Starting with Tcl,
EMACS/Lisp [49], and Perl [92], this trend [11] contin-
ues into modernity with PHP, Python, Ruby, Javascript,
Actionscript, C#, Java, and so on. In spite of the contin-
ued inclusion of regular expressions as core functional-
ity, many of the engines derive their code, at least tangen-
tially, from Spencer’s 1986 release. This ancestry leads
to heavily patched implementations blind to newer, or
even parallel, advances in this area of research [48] [14].
Even for engines that have emancipated themselves from
this legacy, regular expression implementation is not a
trivial task.

1.1.2 Regular Expression Security

Past research into the security of regular expression en-
gine implementation has been limited to specific features
in specific engines or to the overall execution–time ro-
bustness issues which affect most full–featured, non–
deterministic finite automata–based engines. In a re-
cent article, Cox provides a detailed discussion of the
exponential execution–time issues across multiple well–
known implementation [14]. Additionally, these issues
are well–defined as the risks of regular expression en-
gines [48] [24] [33] and of exponential algorithms in gen-
eral [15].

Exponential search algorithms aside, the most promi-
nent example of regular expression security research is



the vulnerability [75] found in PCRE’s [35] validation of
quantifier values. The vulnerability received substantial
attention due to its use in attacking Apple’s Safari web
browser. Other than this discovery, no regular expression
security code auditing or testing appears to be noted in a
public forum prior to this research.

Additionally, it is important to note that the publicly
disclosed vulnerabilities included in this work were pre-
sented, as slides, at IT Defense 2008. This presentation
provided a discussion of the vulnerabilities discovered as
well as demos of most of the findings [58].

1.2 Paper Structure
This paper continues with a discussion of recent exam-
ples of insecure context switches. Section 3 examines the
survivability of the surveyed regular expression engines
in terms of software defects as well as specific inocula-
tion tactics. Section 4 discusses an additional discussion
of general inoculation tactics. Section 5 provides con-
clusions and information on the availability of the fault
testing software developed.

2 Insecure Context Switches

There are a number of quite recent examples which ex-
emplify the increased risk of security-sensitive context
switches. In particular, the examples below all involve
the exposure of software to hostile environments. Of-
ten, the exposure created when migrating software to an
unexpected threat environment opens a whole area for at-
tack research which was unavailable in the original con-
texts. Two recent examples are discussed below.

2.1 Malware analysis
Malware, or malicious software, is subjected to exten-
sive analysis by industry and academic researchers. This
research is considered vital to the stability of the Inter-
net [64], but analysis may leave the researchers open to
attack. In particular, dynamic, or runtime, analysis of
malicious code exposes tools to explicitly hostile code.

The use of virtual machines is a standard technique
which has long been considered a reasonable approach
for dynamic analysis, if the virtual machine and its mon-
itor are securely implemented [26]. However, many re-
searchers were using standard, consumer-targeted virtual
machines for this analysis work. Using virtual machines
written with an emphasis on consumer software compat-
ibility in this context exposes the software to new, un-
expected threats. A full discussion of these threats and
some inoculation efforts were presented last year [57].
This analysis led to increased security attention from
consumer-grade virtual machine authors. It also raised

the general awareness of the risks involved with using
virtual machines in unexpected contexts [38] [27].

Even though most dynamic malware analysis tech-
niques involve the use of some form of sandbox, native
or virtual machine, systrace, or other approach, there are
still many instances where it is considered safe to an-
alyze software without those additional risk-mitigating
systems in place. One example involves the analysis
of malicious javascript, presented last year [55]. The
technique discussed uses command–line javascript in-
terpreters, like NJS [8] and Rhino [54], to evaluate po-
tentially malicious javascript. In theory, this approach
is similar to sandboxing the code because its execution
context is now not within a live browser. However, this
change of execution context is also a change of security
context for the command-line javascript interpreters. The
change provides a new surface for the attacker to explore
and a surface that was not designed with the analysis of
explicitly malicious software in mind. For example, NJS
may suffer from unreported, or undisclosed [91], vulner-
abilities that have little impact in their current context.
In the other case, using Rhino may allow the attacker to
instantiate and use any number of native Java classes.

2.2 Databases

Databases and their use have evolved in a large num-
ber of ways since their inception [56]. Given the im-
portance of databases to Web services, database soft-
ware has adapted with usage, even if at slightly delayed
pace. A major example of this switch of contexts was
the move of databases from use in internal, controlled
environments to exposure via the Internet. Bina, et. al.
discussed some of the first database-wrapping Web in-
terfaces in 1994 [9], but research into effective database
use in that context was still considered an active research
topic in 1999 [17]. Even with the security concerns taken
in to account in Bina’s 1994 work, the details of the expo-
sure via a frontend wrapper had not yet been considered.
Since then, the backend databases have changed and at-
tacks like SQL injection have become quite prominent.
As database-driven Web content became more common,
yet another unforseen security context was added. Com-
panies began to offer databases as a service. This new
context meant that multiple unrelated users may have ac-
cess to a database containing each other’s information.
It also means that the hosting provider must now worry
about direct, malicious attacks against the database inter-
face itself [4].

The fundamental relationship of databases to modern
software drives its use in to new and unexplored ter-
ritories. The most recent shift comes with the devel-
opment of HTML 5, standard browser-based database
support [36]. This functionality entails browser-side



databases that are manipulated via server-supplied code.
In fact, these are already deployed and can be found in
Firefox 3 [28], Adobe Air [2], and Google Gears [32]. As
with past context switches, this change opens databases
to new threats. The prior risk of trusted users attack-
ing the database now broadens to include the risk of un-
trusted users. This is a very different environment. Thus
far, efforts in this direction have focused on a shared
database implementation, SQLite [37]. SQLite has re-
ceived some security attention from one of the authors of
this paper [21] as well as context-aware work from its de-
velopers. Even with these steps towards inoculation, this
context switch still requires close, continued scrutiny to
avoid repeating the events of similar, historic switches.

3 Regular Expression Survivability

Much like databases, regular expressions have a long
history in computer science [94] and are heavily inter-
twined with its future. The ubiquitious reliance on reg-
ular expression engines conjoined with the considerable
age of many of the implementations provides an ideal
case study in survivability. In order to determine the
overall survivability of regular expressions, multiple can-
didates were selected across platform and programming
language. Empirical analysis of survivability was per-
formed against each of the candidates using both manual
and automated security testing techniques. Results were
publicly confirmed. In addition, specific conclusions re-
garding the inoculation of regular expressions engines
were put into practice with, as of writing, success.

Table 1: Regular expression engines analyzed
engine language platform

Adobe Flash Actionscript multiple
Adobe Reader Javascript multiple

GNU grep shell Unix–based
ICU C/C++ multiple

jscript Javascript windows
mono C# multiple

OCaml OCaml multiple
oniguruma ruby multiple

PCRE C multiple
PostgreSQL SQL/c multiple

Python python multiple
Spidermonkey Javascript multiple

Tcl Tcl multiple
Sun’s util.regex Java multiple

3.0.1 regfuzz

A majority of the testing was performed through the
automated generation and evaluation of complex and,
potentially, malformed regular expressions. Regular
expression patterns were generated iteratively using a
seeded, pseudo–random number generator to determine
each subsequent term and the overall length of the pat-
tern. The generator started with an innermost term
and expanded outward. Both standard and non-standard
constructs were supported for analysis. Nearly every
implementation supports submatch extraction, character
classes, and repeating terms, but some engines, like that
of Perl, also support Unicode character classes and back–
references. The analysis of engine–specific features di-
rectly contributed to our final findings.

The automated testing library is called regfuzz. It is
written in C along with small test harnesses for each lan-
guage, where possible. Also, SWIG [74] was used to
enable this single library to test additional languages like
Perl, python, OCaml, and Tcl. For languages that could
not be used with SWIG, such as Javascript and Action-
script, regfuzz was translated manually to the target lan-
guage. To ensure optimal performance when testing, a
pure SQL version of regfuzz was written for use with
PostgreSQL, but the performance was an order of mag-
nitude worse than a C–based module.

3.1 Results

All of the regular expression engines tested suffered
from the well documented exponential–time execution,
or compilation, vulnerabilities [33] [14] [15]. Those
findings will not be discussed in detail nor will any undis-
closed vulnerabilities. Instead, attacks which affect the
overall survivability of regular expressions in a highly
connected, or highly exposed, context are discussed. Due
to space constraints, detailed discussion is limited to
PCRE and Adobe Reader with a note regarding addi-
tional findings.

The following classes of vulnerabilities were encoun-
tered during this research:

• Stack overflows due to unbounded recursion

• Memory exhaustion attacks resulting in failure or
crash

• Unexpected or poorly decoded values, such as
back–references

• Invalid expressions, such as impossible submatch
conditions

• Compiled byte code, memory–use estimation errors

• Long or infinite compile–time and execution–time
attacks



The vulnerabilities of primary concern are those of
memory-use estimation errors and poorly decoded val-
ues. In those cases, the result is almost always ex-
ploitable. Often those vulnerabilities are expressed
through improperly handled unicode, escape sequences,
and quantifiers.

3.1.1 PCRE

PCRE is a popular BSD licensed regular expression li-
brary written in C. It supports a wide range of regu-
lar expression-related functionality and has bindings for
most popular programming languages. The comprehen-
sive nature of PCRE’s feature set only serves to increase
the overall potential for bugs.

Numerous exploitable vulnerabilities in PCRE
were discovered. Four heap overflow vulnerabil-
ities [76] [77] [80] [82] were found due to the
mismanaged escape sequences, incorrect compiled
byte code size estimates, and poorly parsed Unicode
characters. Two of the vulnerabilities were denial of
service attacks [79] [81] due to other incorrect Unicode
character and character class handling. Finally, an
information leakage vulnerability [78] occurred with
certain input bytes were used in non–UTF8 mode.

As PCRE migrated into connected environments ac-
cepting remotely–supplied regular expression patterns as
input, its security context changed immensely. All of the
vulnerabilities discussed below would be mere software
defects in its original context. Now, all of these defects
are exploitable vulnerabilities. The impact is amplified
by its widespread use. PCRE is used and accessible to
hostile users in Konqueror, WebKit and Apple Safari [6],
Adobe Flash [1], and all browsers where Flash is sup-
ported as a plugin. This wide deployment of PCRE into
highly connected environments shows both a lack of fo-
cus on survivability and the high level of risk that stems
from this inattention. The vulnerabilities above were
prime candidates for widespread exploitation much like
Mark Dowd’s recent vulnerability.

3.1.2 Adobe Reader

Adobe Reader is a well–known PDF viewer that is sup-
ported on most popular operating systems. In addi-
tion, it is often used as a Web browser plugin which
is started automatically when a PDF file is visited. It
supports regular expressions via the embedded javascript
engine. When javascript support is enabled, the de-
fault state, all loaded PDFs have access to its facilities.
Reader used an old version of Netscape’s publicly re-
leased javascript engine which predates the more mod-
ern Spidermonkey. This dated implementation suffered
from a number of vulnerabilities in regular expression

handling, in part due to the regular expression code itself,
but also due to legacy string handling memory vulnera-
bilities present in the Netscape javascript engine. The
combination of these problems resulted in multiple, po-
tentially exploitable Reader vulnerabilities [3].

Like Adobe Flash, these vulnerabilities may be used
to attack Web browsers on all popular operating systems.
In addition, malicious PDF files may also be emailed to
targets or shared on public file sharing nodes on internal
networks with similar effect. The outdated libraries used
in Adobe Reader showed very little awareness of the risk
associated, and the use of Adobe Reader as a browser
plugin undermined the survivability of the browser on
the whole. Since this research, Adobe has taken strides
to modernize, such as the replacement of its javascript
engine, in order to avoid additional attacks against legacy
code in this highly connected context.

3.2 Additional findings

A number of other libraries suffered from vulnerable
software defects. This includes systems ranging from
programming languages to databases. Normally, attacks
against programming languages are of little interest since
they only impact the software authors. As features, like
regular expressions, become more accepted, they are ex-
posed regularly to end-users. This context switch trans-
lates software defects, like those below, in to security
vulnerabilities.

• Perl [93] suffered from an exploitable heap over-
flow [87]

• Tcl [59] and PostgreSQL [62] were vulnerable to
one out of bounds read [83] and two denial of ser-
vice attacks [86] [88]

• ICU4C [40] had one heap buffer overflow [85], and
an out of bounds memory access [84]

• Boost::Regex++ suffered from two denial of service
conditions [90] [89], one of which may have further
implications

These findings affect a large number of web applica-
tion and end-user software, as well as backend services,
all due to the exposure of regular expressions to poten-
tially hostile users without deploying any risk mitigating
tactics.

3.3 Inoculation

Safe and robust regular expression engine implemen-
tation is quite difficult. The expected features of any
modern regular expression engine range from submatch
extraction and back references to Unicode character



classes. Its complexity and ubiquity are reasons why it is
such a compelling attack target.

For completeness, specific inoculation tactics for users
of regular expression engines are discussed below. Many
of these these techniques are supported in the surveyed
engines. Where possible, the authors of this paper aided
the adoption. While no quantified benefit analysis is dis-
cussed, many of these tactics mitigate the specific risks
of the attack classes presented earlier.

Do not expose regular expressions to a hostile environ-
ment. This is the ideal scenario from a security perspec-
tive, but it is, of course impractical. Regular expressions
are a core feature of Javascript which is a core feature of
modern web browsers. However, this is not the case in
all instances. For example, javascript may be disabled by
the user in Adobe Reader rendering the discussed attack
vector nonexistent.

Do not compile with -DNDEBUG. In the engines sur-
veyed, many sanity tests in the code bases were done
with assert calls. These assertions are removed on com-
pilation if the NDEBUG value is defined. By not defining
this, the software will unexpectedly abort on assertions.
This is equivalent to allowing a denial of service attack,
but it minimizes the exposure to more severe attacks.

Time and memory bound all phases. The compilation
phase and execution phase of regular expression han-
dling should be limited by total time and by total mem-
ory. This practice will avoid both exponential execution
time and asymmetric memory usage. When used, appro-
priate timeout behavior must be well-defined. If it is not,
the most likely result will be vulnerability to denial of
service attacks.

Limit recursion and/or backtracking. Engines, like
PCRE, support limiting the maximum amount of recur-
sion for a particular regular expression. This is crucial
for avoiding stack overflows when recursive evaluation
techniques are used. This is often the case in backtrack-
ing algorithms. As with the time and memory bounding,
an limitations must be accompanied by appropriate han-
dling to avoid introducing additional issues.

Limit number of NFA states. When regular ex-
pressions are compiled to non–deterministic finite au-
tomata, limiting the maximum number of states pro-
vides an upper bound on both the execution time and
memory usage of a particular pattern. This has been
used in parser–generators [52] for years, but was only
recently added to Mozilla Spidermonkey through the
javascript.options.relimit option. As part of this re-
search, Tcl and PostgreSQL added state–limiting as a
compile–time option to their regular expression engine.

Only use white–listed patterns. The use of white-listed
patterns allows the developer to ensure that the engine
will behave in a pre-defined manner. In most cases, it
also guards against vulnerabilities introduced through fu-

ture pattern-language features. As part of this research,
the authors of GnuPG [46] were contacted and chose
to make this exact change. Since GnuPG implements
the OpenPGP standard, it allows a trust signature packet
which relies on regular expressions for trust signature
validation. The range of required regular expression pat-
terns was quite small, but the existing implementation
allowed for any possible pattern to be supplied, and even
via a remote key server or e-mailed key file.

When authoring patterns, avoid exponential evalua-
tion. When using known good regular expressions, it
is important to avoid patterns which may have an ex-
ponential evaluation time on specially crafted text input.
Friedl [29] supplies examples of expensive expressions,
as does Cox [14].

4 General Inoculation

Inoculation techniques are often very specific to the soft-
ware being inoculated. Specifically, the layers close to
the primary software functionality will be the most tai-
lored to its expected contexts. This is seen in the mit-
igation tactics recommended for regular expression en-
gines. However, this does not preclude more generalized
approaches. Below, two well-known techniques are men-
tioned as well as commentary resulting from the authors’
experience with the three context switches discussed ear-
lier. All of these recommendations may aid the the sur-
vivability of consumer systems.

Use system facilities: Operating systems, system li-
braries, and compilers all provide functionality that in-
crease the difficulty of successful, reliable exploitation.
These are easy for developers to use and have minimal
impact on performance or usability. There is no reason
for software to not employ them.

Software fault isolaton: There are numerous tech-
niques for isolating software in sandboxes, from sys-
trace to ptrace [97] and more [98] [99]. Fault isolation
is a proven intrusion prevention technique and, in some
ways, approximates the original, functionally–isolated
context of the software. It allows for centralized soft-
ware access policy management and a single, smaller
source code base for security auditing. In addition, this
is a technique that can be deployed by both tech–savvy
end–users with coarse–grain control and developers with
fine–grain control. In particular, developer integration of
sandboxes in software, especially software with plugin
support offers huge gains in survivability. This was dis-
cussed in the work by Grier, et. al. on secure web brows-
ing [34]. By placing all plugins in a sandboxed environ-
ment, SELinux in their case, the potential for successful
intrusion was decreased dramatically. This form of inte-
gration with existing codebase is extremely desirable.

Context-aware development: Developers must be



aware of the context in which their code will be de-
ployed. With this awareness, they can apply inoculation
tactics that will minimize their software’s use outside of
its expected context. For example, several of the miti-
gation tactics for regular expressions involve supporting
configurable limits on compilation and execution. These
limits allow the risks of any future, unknown, contexts to
be controlled by the users of the software. In addition,
there are a number of excellent references for writing
secure software with context-appropriate recommenda-
tions [66] [39] [67] [16].

SQLite provides an excellent example for active
context-aware development. Instead of solely mitigat-
ing risks in legacy code, its transition requires contin-
ued attentiveness to the new threat environment. As is,
the change required a substantial number of additional
checks to the SQL command parsing layer in order to
perform robustly.

Context-aware usage: Developers must be aware
of the intended security contexts of the software they
choose to (re)use. This awareness will enable them to
gauge the newly introduced risks and take mitigating
steps, such as configuring maximum run–time or sand-
boxing riskier components.

5 Conclusions

Regular expression engine use is a strong example of
the lack of survivability engineering practices in modern
Internet-connected software. Legacy software libraries
are used without regard for their original context or the
risks that are introduced through the high level of con-
nectivity. The disregard for context is only magnified by
the lack of any risk mitigation techniques. This behavior
undermines the survivability of the entire software sys-
tem, and in many cases, the entire computing platform.

With the addition of new security contexts, new and
dangerous attack vectors will continue to be introduced.
These attacks will be barely mitigated by the slow, reac-
tive patching of affected software [7]. Only through the
proactive application of inoculation techniques, like soft-
ware sandboxing, operating system-provided defenses,
and security context aware development, will the risks be
truly minimized for the end user. Until that point, com-
plex, legacy code used in new contexts will continue to
be a highly effective attack vector.

6 Future Work

This work provides a light survey of both past and com-
ing examples of software in new threat environments. An
in-depth analysis of the attacks these systems are now

subject to and the success or failure of specific inocula-
tion techniques are areas for further research.

In addition, the inoculation of widely used, legacy
software in unforseen environments should be continued.
In parallel, inoculation tactics should be introduced to
software systems in wide-use, such as adding software
sandboxing for extensions in browsers. Without this sort
of work continuing, the overall survivability of consumer
systems will continue to be poor.

7 Acknowledgments

Thanks to multiple anonymous reviewers for their exten-
sive feedback and Google and the Google Security Team
for supporting this work. In addition, the authors would
like to thank all of the maintainers of regular expression
engines whose lives we made difficult with our bug re-
ports.

References

[1] Adobe Inc. APSB07-20.
http://www.adobe.com/support/security/bulletins/apsb07-
20.html, December 2007.

[2] Adobe Inc. Adobe Air.
http://www.adobe.com/products/air/, 2008.

[3] Adobe Inc. APSB08-13.
http://www.adobe.com/support/security/bulletins/apsb08-
13.html, May 2008.

[4] Anonymous. Mysql maxdb
webtool remote stack overflow.
http://labs.idefense.com/intelligence/vulnerabilities/
display.php?id=234, April 2005.

[5] Apparmor linux application security.
http://www.novell.com/linux/security/apparmor/
overview.html.

[6] Apple Inc. About the security content of Safari 3.1.
http://support.apple.com/kb/HT1315, April 2008.

[7] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Win-
dows of vulnerability: A case study analysis. Computer,
33(12):52–59, 2000.

[8] B. Bassett. Njs. http://www.njs-javascript.org/, 2008.
[9] E. J. Bina, R. M. McCool, V. E. Jones, and M. Winslett.

Secure access to data over the internet. In PDIS, pages
99–102, 1994.

[10] B. Blakley. The emperor’s old armor. In NSPW ’96:
Proceedings of the 1996 workshop on New security
paradigms, pages 2–16, New York, NY, USA, 1996.
ACM.

[11] Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang. An
empirical study of programming language trends. IEEE
Software, 22(3):72–78, 2005.

[12] S. M. Christey. Vulnerability Type Distribu-
tion in CVE. http://attrition.org/pipermail/vim/2006-
September/001032.html, September 2006.



[13] M. J. Cox. Vulnerability and threat
mitigation features in rhel and fedora.
http://www.awe.com/mark/blog/200801070918.html,
January 2008.

[14] R. Cox. Regular Expression Matching Can Be Simple
And Fast (but is slow in Java, Perl, PHP, Python, Ruby,
...). http://swtch.com/ rsc/regexp/regexp1.html, January
2007.

[15] S. A. Crosby and D. S. Wallach. Denial of service via
algorithmic complexity attacks.

[16] N. Daswani, C. Kern, and A. Kesavan. Foundations
of Security: What Every Programmer Needs to Know.
Apress, Berkeley, CA, USA, 2007.

[17] H. Davulcu, J. Freire, M. Kifer, and I. V. Ramakrish-
nan. A layered architecture for querying dynamic web
content. SIGMOD Rec., 28(2):491–502, 1999.

[18] L. P. Deutsch and B. W. Lampson. An online editor.
Commun. ACM, 10(12):793–799, 1967.

[19] S. Di Paolo and G. Fedon. Subverting ajax. In 23rd
Chaos Communication Congress, December 2006.

[20] M. Dowd. Application-specific attacks:
Leveraging the actionscript virtual machine.
http://documents.iss.net/whitepapers/IBM X-
Force WP final.pdf, 2008.

[21] W. Drewry and D. McNamee. sqlite ¡ 3.4.0 Possible is-
sues. http://bugs.gentoo.org/show bug.cgi?id=192094,
September 2007.

[22] Ellison, Fisher, Linger, Lipson, Longstaff, and Mead.
Survivable systems: An emerging discipline. In Pro-
ceedings of the 11th Canadian Information Techology
Security Symposium (CITSS). Communications Secu-
rity Establishment, May 1999.

[23] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson,
T. A. Longstaff, and N. R. Mead. Survivability: Pro-
tecting your critical systems. IEEE Internet Computing,
03(6):55–63, 1999.

[24] K. Ellul, B. Krawetz, J. Shallit, and M. wei Wang. Reg-
ular expressions: new results and open problems. J.
Autom. Lang. Comb., 9(2-3):233–256, 2004.

[25] H. Etoh and K. Yoda. Propolice: Improved stack-
smashing attack detect on. In IPSJ SIGNotes Computer
SECurity 014(025), October 2001.

[26] D. Farmer and W. Venema. Forensic Discovery. Addi-
son Wesley Professional, 2004.

[27] S. Farrell. Security boundaries. IEEE Internet Comput-
ing, 12(1):93–96, 2008.

[28] Firefox Team. Mozilla Firefox 3.0rc2 Release
Notes. http://www.mozilla.com/en-US/ fire-
fox/3.0rc2/releasenotes, 2008.

[29] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[30] C. Gacek. Exploiting domain architectures in software
reuse. SIGSOFT Softw. Eng. Notes, 20(SI):229–232,
1995.

[31] A. K. Ghosh and J. M. Voas. Inoculating software for
survivability. Commun. ACM, 42(7):38–44, 1999.

[32] Google Inc. Google Gears. http://gears.google.com/,
May 2007.

[33] grep(1). In GNU Project Manual Pages, January 2002.

[34] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the op web browser. sp, 0:402–416, 2008.

[35] P. Hazel. Pcre: Perl-compatible regular expressions.
http://www.pcre.org, February 2008.

[36] I. Hickson and D. Hyatt. Html 5: W3c work-
ing draft. http://www.w3.org/TR/2008/WD-html5-
20080122/, January 2008.

[37] D. R. Hipp and D. Kennedy. sqlite.
http://www.sqlite.org.

[38] T. Holz. Security of virtual machines.
http://honeyblog.org/archives/109-Security-of-virtual-
machines.html, 2007.

[39] M. Howard and D. E. Leblanc. Writing Secure Code.
Microsoft Press, Redmond, WA, USA, 2002.

[40] International components for unicode. http://www.icu-
project.org.

[41] J. Jelinek. -fpie/-fpie/-pie gcc support.
http://gcc.gnu.org/ml/gcc-patches/2003-
06/msg00140.html.

[42] K. Jiwnani and M. Zelkowitz. Maintaining software
with a security perspective, 2002.

[43] E. Jonsson, L. Strömberg, and S. Lindskog. On the
functional relation between security and dependability
impairments. In NSPW ’99: Proceedings of the 1999
workshop on New security paradigms, pages 104–111,
New York, NY, USA, 2000. ACM.

[44] S. C. Kleene. Representation of events in nerve nets
and finite automata. Technical Report RM-704, RAND
Corporation, December 1951.

[45] J. C. Knight, R. W. Lubinsky, J. McHugh, and K. J.
Sullivan. Architectural approaches to information sur-
vivability. Technical report, Charlottesville, VA, USA,
1997.

[46] W. Koch. GnuPG: GNU Privacy Guard.
http://www.gnupg.com.

[47] C. W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[48] V. Laurikari. NFAs with Tagged Transitions, Their Con-
version to Deterministic Automata and Application to
Regular Expressions. In SPIRE, pages 181–187, 2000.

[49] B. Lewis, D. LaLiberte, and the GNU Manual Group.
GNU Emacs Lisp Reference Manual. Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139,
1.03 edition, Dec. 1990.

[50] H. Lipson, N. Mead, and A. Moore. Can we ever build
survivable systems from cots components, 2001.

[51] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the linux operating system. In
Proceedings of the FREENIX Track: 2001 USENIX An-
nual Technical Conference, pages 29–42, Berkeley, CA,
USA, 2001. USENIX Association.

[52] T. Mason and D. Brown. Lex & yacc. O’Reilly & As-
sociates, Inc., Sebastopol, CA, USA, 1990.

[53] N. R. Mead, R. C. Linger, J. McHugh, and H. F. Lip-
son. Managing software development for survivable
systems. Ann. Softw. Eng., 11(1):45–78, 2001.

[54] Mozilla Foundation. Rhino: Javascript for java.
http://www.mozilla.org/rhino, 2008.

[55] J. Nazario. Reverse engineering malicious javascript. In
CanSecWest 2007, 2007.



[56] M. L. Neufeld and M. Cornog. Database history: from
dinosaurs to compact discs. J. Am. Soc. Inf. Sci.,
37(4):183–190, 1986.

[57] T. Ormandy. An empirical study into the security ex-
posure to host of hostile virtualized environments. In
CanSecWest 2007, 2007.

[58] T. Ormandy and W. Drewry. Regular Exceptions. In IT
Defense 2008, January 2008.

[59] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wes-
ley, 1994.

[60] OWASP Team. Owasp download.
http://www.owasp.org/index.php/ Cate-
gory:OWASP Download.

[61] PaX Team. Pax. http://pax.grsecurity.net.
[62] PostgreSQL. Postgresql. http://www.postgresql.org,

2008.
[63] N. Provos. Improving host security with system call

policies. In SSYM’03: Proceedings of the 12th con-
ference on USENIX Security Symposium, pages 18–18,
Berkeley, CA, USA, 2003. USENIX Association.

[64] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser analysis
of web-based malware. In HotBots’07: Proceedings of
the first conference on First Workshop on Hot Topics in
Understanding Botnets, pages 4–4, Berkeley, CA, USA,
2007. USENIX Association.

[65] T. Ptacek. Gunnar peterson’s os security fea-
tures chart. http://www.matasano.com/log/611/gunar-
petersons-os-security-features-chart/, November 2006.

[66] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Proceedings of the
IEEE, volume 63, pages 1278–1308, 1975.

[67] R. Seacord. Secure coding in c and c++: Of strings and
integers. IEEE Security and Privacy, 4(1):74–76, 2006.

[68] Secunia. 2006 report.
http://secunia.com/gfx/Secunia Year-
end Report 2006.pdf, 2007.

[69] Secunia. 2007 report.
http://secunia.com/gfx/SECUNIA 2007 Report.pdf,
2008.

[70] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effective-
ness of address-space randomization. In CCS ’04:
Proceedings of the 11th ACM conference on Computer
and communications security, pages 298–307, New
York, NY, USA, 2004. ACM.

[71] K. Siau and T. A. Halpin, editors. Unified Modeling
Language: Systems Analysis, Design and Development
Issues. Idea Group, 2001.

[72] H. Spencer. Re: Regular expression implementa-
tions. http://arglist.com/regex/usenet-spencer-1993-08-
07.txt, August 1993.

[73] H. Spencer. regex: Henry spencer’s regular expression
libraries. http://arglist.com/regex/, October 2002.

[74] S. Stanton et al. Simplified wrapper and interface gen-
erator. http://www.swig.org, February 2008.

[75] The MITRE Corporation. CAN-2005-2491.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2005-2491, August 2005.

[76] The MITRE Corporation. CVE-2007-1659.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-1659, January 2007.

[77] The MITRE Corporation. CVE-2007-1660.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-1660, January 2007.

[78] The MITRE Corporation. CVE-2007-1661.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-1661, January 2007.

[79] The MITRE Corporation. CVE-2007-1662.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-1662, January 2007.

[80] The MITRE Corporation. CVE-2007-4766.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4766, January 2007.

[81] The MITRE Corporation. CVE-2007-4767.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4767, January 2007.

[82] The MITRE Corporation. CVE-2007-4768.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4768, January 2007.

[83] The MITRE Corporation. CVE-2007-4769.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4769, January 2007.

[84] The MITRE Corporation. CVE-2007-4770.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4770, January 2007.

[85] The MITRE Corporation. CVE-2007-4771.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4771, January 2007.

[86] The MITRE Corporation. CVE-2007-4772.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-4772, January 2007.

[87] The MITRE Corporation. CVE-2007-5116.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-5116, January 2007.

[88] The MITRE Corporation. CVE-2007-6067.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2007-6067, January 2007.

[89] The MITRE Corporation. CVE-2008-0171.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-0171, January 2007.

[90] The MITRE Corporation. CVE-2008-0172.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-0172, January 2007.

[91] The oCERT Team. oCERT-2008-0010.
http://www.ocert.org/advisories/ocert-2008-010.html,
July 2008.

[92] The Perl Foundation. perl1.
http://dev.perl.org/perl1/dist/, January 1988.

[93] The Perl Foundation. perl. http://www.perl.org/, 2008.
[94] K. Thompson. Programming techniques: Regular ex-

pression search algorithm. Commun. ACM, 11(6):419–
422, 1968.

[95] A. van de Ven. New security enhanc-
ments in red hat enterprise linux v.3, up-
date 3. http://www.redhat.com/f/pdf/rhel/
WHP0006US Execshield.pdf.

[96] A. van Hoff. The case for java as a programming lan-
guage. IEEE Internet Computing, 01(1):51–56, 1997.



[97] van ’t Noordended, Balogh, Hofman, Brazier, and
Tanenbaum. The case for java as a programming lan-
guage. IEEE Internet Computing, 2002.

[98] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. SIGOPS Oper.
Syst. Rev., 27(5):203–216, 1993.

[99] R. West and J. Gloudon. User-level sandboxing: a safe
and efficient mechanism for extensibility, 2003.

[100] J. Wilander and M. Kamkar. A comparison of pub-
licly available tools for dynamic buffer overflow pre-
vention. In Proceedings of the 10th Network and Dis-
tributed System Security Symposium, pages 149–162,
San Diego, California, February 2003.


