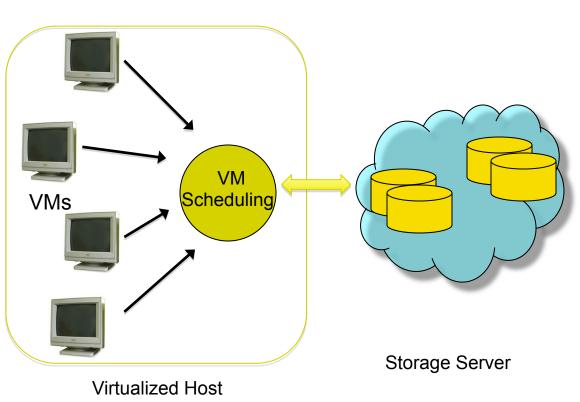


Nested QoS: Providing Flexible Performance in Shared IO Environment

Hui Wang Peter Varman

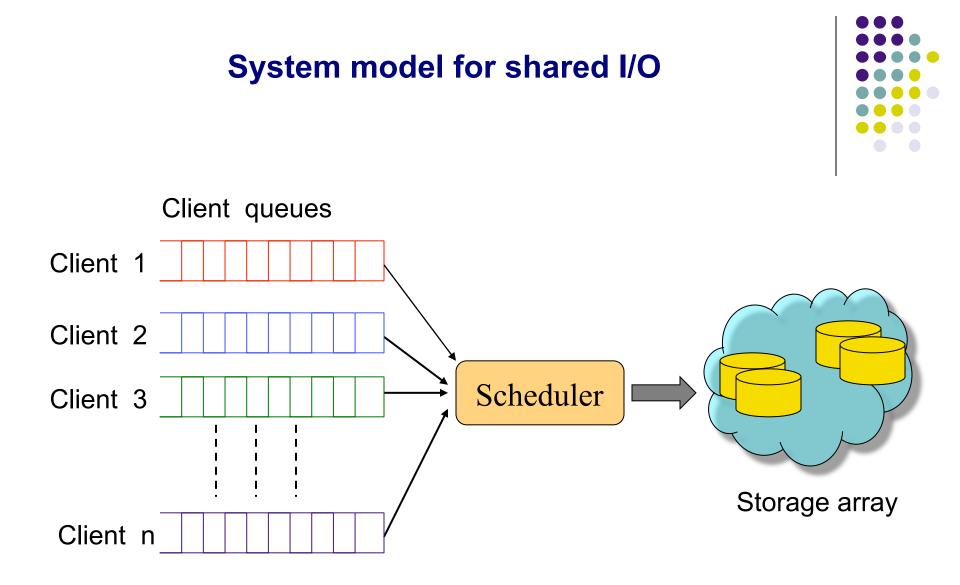
Rice University Houston, TX



- Introduction
- System model
- Analysis
- Evaluation
- Conclusions and future work

Resource consolidation in data centers

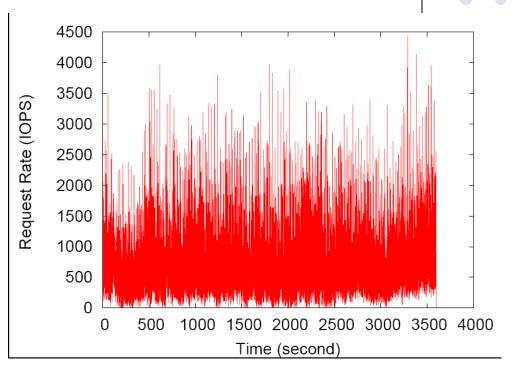
- Economies of scale
- Easier management
- High reliability
- VM-based server consolidation



Issues in resource sharing

Challenges

- Performance guarantees
 - QoS models
- Resource management
- Capacity provisioning
- Difficulties:
 - sharing of multiple clients
 - bursty nature of storage workloads



Sharing: The server has to properly allocated resource to concurrent clients to guarantee their performance.

Providing QoS for Bursty Workloads

- Requests have response time QoS
- Storage workloads are bursty
 - Large capacity needed to meet response time during bursts
 - Low average server utilization
- Providing QoS for bursty workloads which have response time QoS requirement

Eg. Open Mail trace, with 100ms window size

- Average rate:~700 IOPS
- Peak rate: 4500 IOPS

Related Work

Proportional Resource Sharing

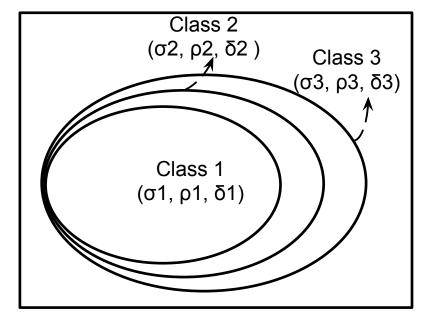
- Algorithms:
 - Fair Queuing, WFQ, WF2Q, Start Time Fair Queuing , Self-Clocking
- Allocate active clients bandwidth (IOPS) in proportion to their weight w_i
- Limitations:
 - Response time is not independently controlled
 - Low throughput transactions requiring short response time
 - High throughput file transfer insensitive to response time
 - No provisioning for bursts

Related work (cont'd)

- Providing response time guarantees
 - Algorithms:
 - SCED, *p*Clock
 - Client traffic must be within a specified traffic envelope then client requests are guaranteed a maximum response time of δ i
 - Limitations:
 - No isolation of non-compliant part of workload
 - Loss of QoS guarantee over extended (unbounded) portions
 - Only a single response time guarantee is supported
 - Lack of flexibility & high capacity requirement

- QoS often specified as a percentage of workload meeting the response time bound
- Absolute percentage guarantees are hard to support
 - Can provide response time guarantees if entire workload is bounded by a traffic envelope
 - Requires high capacity
 - Guarantee any fixed percentage (say 90%) of the workload
 - Unrestricted traffic above the traffic envelope can decrease the guaranteed percentage arbitrarily

Nested QoS

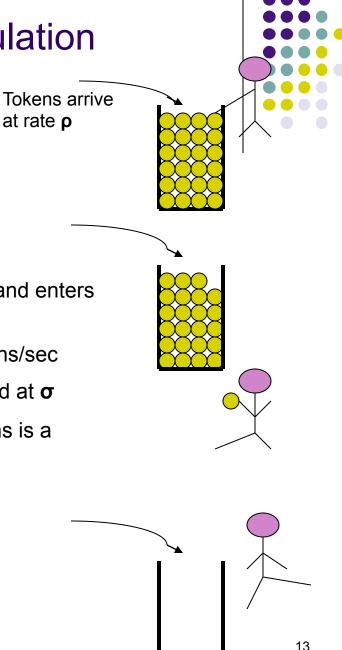

- We propose:
 - Multiple traffic envelops (classes) to describe one bursty workload
 - Performance guarantees based on portion of traffic that satisfies traffic envelope (not percentage)
 - Different performance guarantees for different classes

- Introduction
- System Model
- Analysis
- Evaluation
- Conclusions and future work

Traffic envelopes

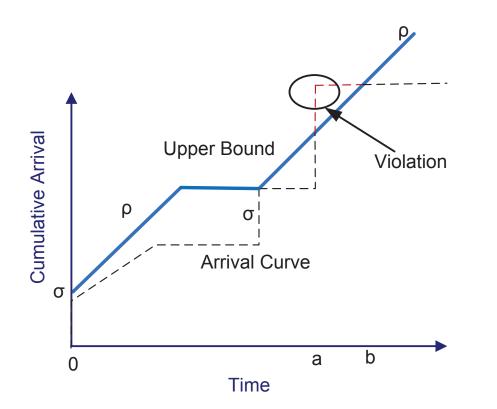
- Abstract model
- Each class i has
 - Traffic envelope (Token bucket) (σi, ρi)
 - Response time δi
- Eg: 3-class Nested QoS model
 - (30, 120 IOPS, 500ms)
 - (20, 110 IOPS, 50ms)
 - (10, 100 IOPS, 5ms)

Token Bucket Regulation


• Traffic Envelope

Arrival Curve Limit

- (**σ**, **ρ**) Token Bucket Model
- Bucket of capacity is **σ** tokens;
- Arriving request takes a token from the bucket and enters system
- Tokens replenished at a constant rate of **ρ** tokens/sec
- Maximum number of tokens in bucket is capped at σ
- A request that arrives when there are no tokens is a violation of traffic envelope (constraints)

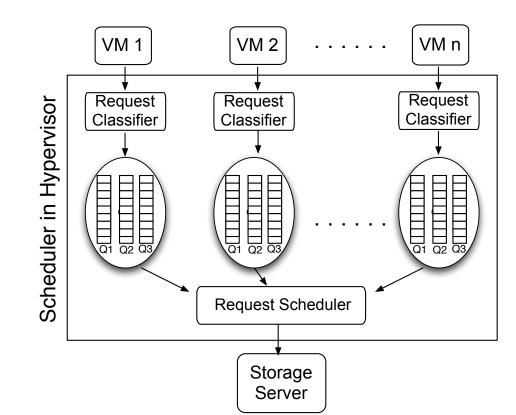

• Service Level Agreement (SLA):

- Client traffic limited by the Traffic Envelope
- Response time is guaranteed on requests

Bounding the arrival curve with traffic envelope (token bucket)

Token-bucket regulator:

ρ: token-generation rateσ: maximum tokens /instantaneous burst size

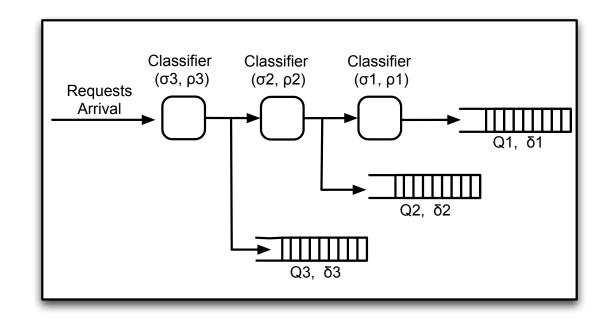

Maximum # requests arriving in any time interval t: $\leq \sigma + \rho^* t$

If the arrival curve lies below the Upper Bound then all requests will meet their deadlines

Architecture in VM environment

- Request Classification
 - Multiple token buckets

- Request Scheduling
 - Two levels: EDF within VM queues and FQ across VMs
 - Alternative: 1-level EDF
 - Pros: Capacity & Simplicity
 - Cons: Low robustness to capacity variation



Request Classification

• Queues

• Token Buckets

- Introduction
- System Model
- Analysis
- Evaluation
- Conclusions and future work

Analysis

Lemma 1 The capacity required for all requests to meet their deadlines in the Nested QoS model, when all ρ_i are equal to ρ , is given by: $max_{1 \le j \le n} \{\sigma_j / \delta_j + \rho(1 - \delta_1 / \delta_j), \rho\}$.

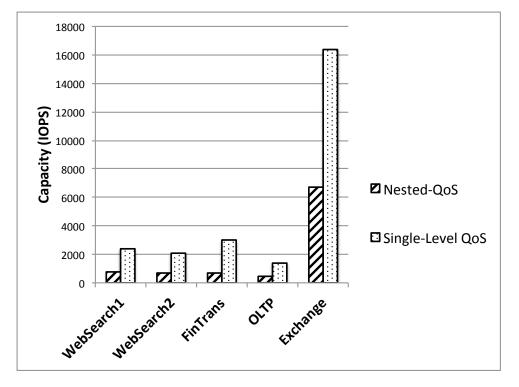
Lemma 2: Let $\alpha = \delta_{i+1}/\delta_i$, $\beta = \sigma_{i+1}/\sigma_i$ and $\lambda = \beta/\alpha$ be constants. The server capacity required to meet SLOs is no more than: $\max_{1 \le j \le n} \{\rho, \lambda^j(\sigma_1/\delta_1) + \rho(1-1/\lambda^j)\}$. For $\lambda < 1$, the server capacity is bounded by $\sigma_1/\delta_1 + \rho$, which is less than twice the capacity required for servicing C_1 .

• Proof see paper.

- Introduction
- System Model
- Analysis
- Evaluation
- Conclusions and future work

Evaluation

- Determine the parameters empirically
 - Number of classes & traffic envelope
 - Tradeoff between capacity required (cost) and performance.
- Workloads
 - Block-level workloads from trace repository

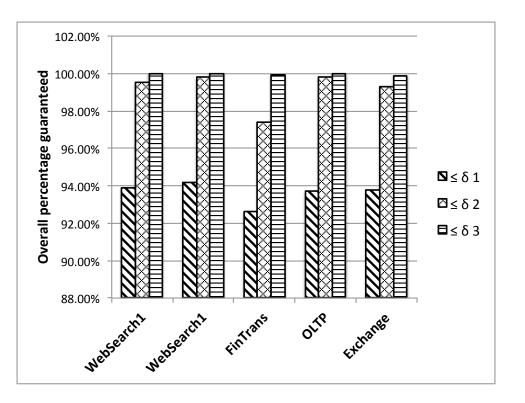

Nested QoS for a single workload

Workloads

- WebSearch1: (3, 650IOPS, 5ms)
- WebSearch2: (3, 650IOPS, 5ms)
- FinTrans: (4, 400 IOPS, 5ms)
- OLTP: (3, 650IOPS, 5ms)
- Exchange: (33, 6600IOPS, 5ms)

• Goal

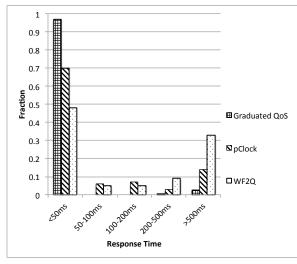
- 90% requests in class 1 (5ms)
- 95% requests in class 2 (50ms)
- 100% requests in class 3 (500ms)
- Singe level QoS
 - 100% requests in 5 ms

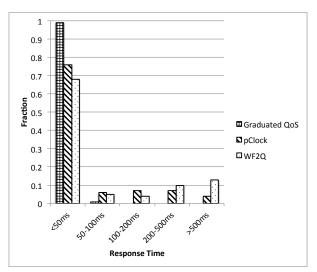


Capacity Requirement

Nested Nested QoS for a single workload

Goal

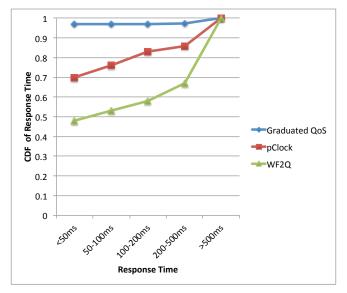

- 90% requests in class 1 (5ms)
- 95% requests in class 2 (50ms)
- 100% requests in class 3 (500ms)
- Singe level QoS
 - 100% requests in 5 ms


Performance for Nested QoS

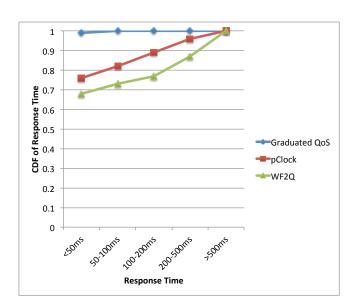
Nested QoS for Concurrent Workloads

- Two workloads
 - W1: Web Search; ~350 IOPS
 - W2: Financial Transaction; ~170 IOPS
 - Total capacity 528 IOPS
- Response times:
 - 50ms for class 1; 500ms for class 2 and 5000ms for class 3

WebSearch performance



FinTrans performance



Nested QoS for Concurrent Workloads

- Two workloads
 - W1: Web Search; ~350 IOPS
 - W2: Financial Transaction; ~170 IOPS
 - Total capacity 528 IOPS
- Response times:
 - 50ms for class 1; 500ms for class 2 and 5000ms for class 3

WebSearch: CDF of Response time

FinTrans: CDF of Response time

- Introduction
- System Model
- Analysis
- Evaluation
- Conclusions and future work

Conclusions and future work

Conclusions

- Large reduction in server capacity without significant performance loss
- Analytical estimation of the server capacity
- Providing flexible SLOs to clients with different performance/cost tradeoffs
- Providing a conceptual structure of SLOs in workload decomposition

• Future work

• Workload characteristics for nested model parameters