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Abstract 

 
We present an enterprise-class I/O virtualization (IOV) system, discuss the architecture, and share performance 
characterization results using extremely high performance flash memory as a load generator.  This work describes an 
IOV system built on the PCI-Express over Ethernet (PCIeOE) protocol, which combines these two ubiquitous, 
standardized technologies in a novel fashion.  By preserving the PCI-Express (PCIe) device and software model, 
computers interface to the system without modifications to hardware or software.  By utilizing 10G Ethernet as a 
transport, the system integrates with enterprise environments, achieves very high scalability and benefits from the 
favorable economics of the Ethernet ecosystem.  Further, we present a thorough characterization of the latency and 
performance of the system using very high performance flash memory as an endpoint device.  Flash memory serves 
as a high-intensity traffic generator, and also represents a compelling application of the PCIeOE technology. 
 

1. Introduction 
 
The main goal of a modern large scale computing 
installation is to efficiently support a diverse and 
bursty set of workloads at the lowest possible 
operational cost.  To support this goal, computing 
systems are scaling out to dizzying proportions, with 
the million-server datacenter on the horizon [1].  The 
economics of such a large system drive the edge 
nodes (servers) to the minimal set of components, 
and the networks toward convergence of physical and 
link layers, with flat topologies [2-4].  The network 
must further support many protocols such that servers 
can utilize the access network, multiple tiers of 
storage, and access other resources such as 
accelerators and utility I/O. 
 
On this physical infrastructure, server virtualization 
has increased utilization of the compute node and 
network interfaces [5-6].  Further, virtual machines 
enable workload mobility, in terms of the location of 
execution, availability of service, and elastic scaling 
to support variance in demand [7-10].  Input/output 
virtualization (IOV) technologies are evolving to 
provide the similar benefits for I/O resources; 

efficient performance, high utilization, service 
availability, isolation, and elastic scaling [11-17]. 
 
Throughout these developments, some common 
themes persist.  The use of standardized technologies 
ensures that large scale systems interoperate reliably 
with minimal operational support.  Energy efficiency 
is essential to minimize operational costs and 
environmental impacts.  Resiliency is critical to keep 
workloads running and to guarantee service level 
agreements (SLAs).  High performance provides a 
competitive advantage to any organization. 
 
In this work, we present an I/O virtualization system 
that achieves the goals set forth above, while 
supporting standard BIOS, operating systems, and 
PCIe cards.  The core technology we have developed 
is the PCI-Express over Ethernet (PCIeOE) protocol, 
which enables any PCIe-based resource to reside on 
the converged Ethernet network, accessible to any 
server on the network. By preserving the PCI-
Express (PCIe) device and software model, 
computers interface to the system without 
modifications to hardware or software [18].  By 
utilizing 10G Ethernet as a transport, the system 



integrates with enterprise environments, achieves 
very high scalability and benefits from the favorable 
economics that Ethernet enables [19].    The system 
architecture is discussed, including the resiliency, 
scaling, and management aspects.  A thorough 
characterization of the system using high 
performance flash memory is presented, which the 
authors believe represents the most scalable and 
highest performance architecture for centralized flash 
storage. 
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Figure 1.  IOV System structure. 

2. PCIeOE System Architecture 
 
The distributed system structure is given in Figure 1.  
Host interfaces (HI) connect the hosts’ PCIe root 
ports to the Ethernet fabric.  Device interfaces (DI) 
connect PCIe devices to the fabric.  A management 
CPU (mCPU) is connected to the fabric via the 
management interface (MI), with lower bandwidth 
for control path traffic only. 

The host interface (HI) enables hosts to access 
distributed PCIe resources across the fabric.  A 
logical block diagram of the device is given in Figure 
2.  The device presents a PCIe upstream switch port 
(PCIe 2.0 x4) to the host.  Below the switch are PCIe 
embedded endpoints (EEP) that are enumerated 
within the host’s PCIe domain.  The system manager 
controls mapping of the EEPs to remote resources.  
Because of the transparent nature of the PCIeOE 
protocol, hosts always run the unmodified vendor 
driver for the remote endpoint. 

PCIeOE

...

EEP

PCIe 2.0 x4

ACD

EEP

PCIe

EEP
XGMAC XGMAC

8

2x 10GbE
 

Figure 2.  PCIeOE host interface (HI). 

Downstream PCIe configuration and datapath packets 
to remote devices are encapsulated by the PCIeOE 
logic into standard 802.1Q Ethernet frames and load 
balanced across multiple 10G MACs for transport on 
the fabric.  The device also presents a PCIe endpoint 
to provide a control path between the system 
manager and the host OS.  This allows the system 
manager to invoke the PCIe hot plug and rescan 
mechanism within the host OS.  Thus, remote 
resources may be virtually hot-plugged dynamically 
into the host PCIe tree. 

The host interface resides on a PCIe adapter as shown 
in Figure 3.  The adapter has a PCIe 2.0 x4 card edge 
and provides two pluggable 10GbE cable interfaces 
to the Ethernet fabric. 

 

Figure 3.  Host interface adapter. 

A logical view of the device interface (DI) is given in 
Figure 4.  The device interface attaches PCIe devices 
to the fabric for remote access by hosts.  The fabric 
interface and encapsulation are similar to the HI 
sections.  A unique feature of the device interface is 
the capability to translate transactions to/from an 
individual PCIe device attached to the interface into 
multiple host PCIe domains.  The translation is 



performed on a per-function basis, which maintains 
good isolation between resources in the system.  This 
capability enables simultaneous sharing of 
multifunction devices and SR-IOV endpoints 
amongst multiple hosts [21].  PCIe packets are passed 
between the interface and the PCIe device through a 
downstream PCIe switch port. 
 

PCIeOE

PCIe 2.0 x4 (1.1 x8)

XGMACXGMAC

2x 10GbE

Domain Translation

PCIe (DS Switch Port)

 

Figure 4.  PCIeOE device interface (DI). 

The x86 management CPU (mCPU) is connected to 
the fabric by the management interface (MI), which 
provides an Ethernet interface and performs PCIeOE 
protocol encapsulation.  The mCPU runs the ApriOS 
operating system, based on the stock CentOS 5.4 
Linux distribution with 64-bit 2.6.30 kernel.  The 
standard kernel has been extended to manage a very 
large PCIe tree including bridges below the device 
interfaces. 

Management of all resources is handled from the 
management console, where an administrator assigns 
and configures I/O resources to hosts.  Upon system 
boot or upon hot-plug of I/O devices, the manager 
enumerates all the PCIe resources on the device 
interfaces.  For multi-function and SR-IOV devices 
with a privileged driver, this driver runs on the 
mCPU.  This enables configuration of the devices, 
ranging from simple address and QoS management 
for LAN/SAN interfaces, to RAID and drive 
management for storage devices.  Hosts see the 
devices directly and run the unmodified vendor 
driver. 

The current system implementation is shown in 
Figure 5.  Ethernet switching is internal to the 
chassis, providing 480 Gb/s non-blocking bandwidth 
from two 24-port low-latency 10GbE switches [22].  

Thirty-two 10GbE ports are visible in the rear view, 
with all-to-all access for hosts to the PCIe slots.  The 
system provides eight full height slots with PCIe 2.0 
x4 or PCIe 1.1 x8 interfaces. 

 

 

Figure 5.  Front (top) and Rear (bottom) views of 
the implemented PCIeOE system. 

3. PCIeOE Protocol 
 
The central technology we have developed is the 
PCIeOE protocol.  By preserving the standard 
802.1Q frame structure, PCIeOE traffic can coexist 
with Ethernet traffic from other sources on the 
common datacenter fabric.  The encapsulation of a 
PCIe transaction layer packet (TLP) into an Ethernet 
frame is shown in Figure 6.  The frames carry the 
PCIeOE Ethertype for identification within the 
network.  For each PCIe TLP, a PCIeOE header is 
constructed, and together the header and TLP are 
placed in the frame payload, with padding (if 
necessary) to meet the minimum Ethernet frame size.   

To increase the protocol efficiency, particularly when 
transmitting small packets, PCIe data link layer 
packets (DLLPs), used for the ACK/NAK protocol 
and flow control, are not sent explicitly.  PCIeOE 
ACK/NAK and flow control information is 
piggybacked along with TLP data.  This ensures that 
after removing 8b10b encoding and adding the 
PCIeOE header, “10G” of PCIe (e.g. 2.5 GT/s x4 = 
10 Gb/s) may be transported bidirectionally using 
10G Ethernet without imposing a bandwidth 
bottleneck.  This characteristic holds as the links are 
scaled to 20G, 40G, and beyond. 

One key capability of the protocol is to provide the 
same resiliency expected from native PCIe, 



guaranteeing that any PCIe packet will arrive at its 
destination in-order, exactly once.  Delivery is 
guaranteed in the event of packet loss or latency 
experienced in the fabric, using sequence numbers 
for ordering and a transmit packet replay buffer to 
recover lost or corrupted packets.  Thus, lossless 
Ethernet is not required for the PCIeOE protocol, 
although replay adds latency and thus may reduce the 
performance of an I/O device.  If the fabric is 
lossless, maximum performance can be delivered 
with high confidence.  Given that a “lossless” 
Ethernet network may still drop packets, and that 
transmission errors are still possible, the same 
guaranteed delivery mechanisms are necessary. 

PCIeOE also provides the capability to discover and 
manage hosts and PCIe resources through multiple 
message types, including a heartbeat message to 
enhance system level resiliency. 
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Figure 6.  PCIeOE frame structure. 

4. Flash Memory Benchmarking 
 
To establish the potential for centralizing high 
performance PCIe-based flash memory, a thorough 
comparison was made between flash performance in 
a server (native) and in the PCIeOE system.  By 
coupling closely with the CPU/DRAM complex and 
eliminating storage protocol conversion, PCIe-based 
flash has proven to be the highest performance non-
volatile storage available today, even compared to 
high performance RAID systems using flash SSD.  
This performance characteristic is currently driving 
significant change in computing architecture [23-24]. 

4.1 Experimental Configuration 
 
The server used in this study is an HP DL380 G6, 
with two Intel Xeon X5670 6-core CPUs at 2.93 
GHz, and 12 GB (6x 2 GB) DDR3-1333 DRAM 
[25].  The platform chipset is an Intel 5520 with PCIe 
2.0 root ports. The flash memory devices are 
FusionIO ioDrive Duo, with 320 GB of SLC NAND 
flash [26].  These PCIe card form factor devices 
present two flash “DIMMs” to the host per card.  To 
create the heaviest possible workload for writes, the 
cards were formatted with 50 % capacity reserved to 
ensure ample free space for the card to perform 
NAND management in the background.  Before 
benchmarking at a given block size, the cards were 
formatted and pre-conditioned using the same size 
writes, enough to write to the entire capacity of the 
drive several times over (typically 9x). 

The server runs the Windows Server 2008 Enterprise 
Edition operating system.  The micro-benchmarking 
tool is IOmeter 2006.  IOmeter is configured with 
two workers per DIMM, each with 32 outstanding 
I/Os for an effective queue depth (QD) of 64 per 
DIMM.  The individual workloads measured are 
given in Table 1. 

ID Pattern Read/Write Block Size QD 

1 Rand 100% Read 512 B 

  

64 

2 Rand 100% Write 512 B 64 

3 Rand 70% Read 4 kB 64 

4 Seq 100% Read 64 kB 64 

5 Seq 100% Write 64 kB 64 

Table 1.  IOmeter workloads measured. 

Each workload is measured in the server (native) and 
in the system.  The experimental configuration for the 
native cases is given in Figure 7.  Each flash card is 
installed on a PCIe root port. 
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Figure 7.  Native experimental configuration. 

The experimental configuration for the system tests is 
given in Figure 8.  For each flash card that is tested 
by the benchmark, one host initiator is installed on a 
system PCIe root port.  So for each case (1, 2, or 4 
cards), the system provides the equivalent PCIe 
bandwidth to the native case. 
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Figure 8.  System test configuration. 

4.2 Experimental Results 
 
To verify that CPU utilization was not a limiting 
factor, the server CPU utilization (average across all 
cores) was measured during the experiments.  The 
results are given in Figure 9.  For all the results 
provided, the CPU utilization did not exceed 70 %. 
 
The utilization is generally lower in the PCIeOE 
cases because the increase in storage transaction 
latency causes the CPU to spend more time waiting 
for these transactions to complete.  The delays are 
small on the scale of a flash storage transaction (tens 
of µs) but are more significant when compared to a 
CPU clock cycle (<1 ns). 

 

0

10

20

30

40

50

60

70

80

90

100

Native PCIeOE Native PCIeOE Native PCIeOE

1 Card 2 Cards 4 Cards

CP
U

 U
til

iz
at

io
n 

[%
]

CPU Utilization, All workloads

RR-512 RW-512 RR70-4k SR-64k SW-64k

 

Figure 9.  CPU utilization for all workloads. 

For small block random workloads (512 B), the 
results are given in Figures 10 and 11.  With 4 cards, 
the IOmeter application hung during the write pre-
conditioning (for both native and system cases).  
Thus, the results for 512 B workloads across 4 cards 
are not valid and are not included here. 
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Figure 10.  IOPS for small block workloads. 

 
The results show that for small transfers, the system 
performs very close to 100 % of the native cases.  For 
writes to a single card, the system showed increased 
performance (+20 %), and while this result is 
repeatable, it is not considered an indicator of broad 
improvement across various configurations. 
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Figure 11.  Latency for small block workloads. 

These results indicate that for small transfers, which 
are highly sensitive to latency, the small increase in 
latency due to placing the flash on the network has a 
trivial impact on performance. 
 
To emulate a typical database workload, the 
benchmark was configured for a mixed workload of 4 
kB blocks, random pattern, and 70 % reads, 30 % 
writes.  The results are given in Figures 11 and 12.  
For all the cases tested, the system performed very 
close to 100 % of the native cases (100 ± 0.5 %). 
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Figure 12.  IOPS for the database workloads. 
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Figure 13.  Latency for the database workloads. 

To provide coverage of a high bandwidth streaming 
pattern, the benchmark was also run with large 
sequential (64 kB) workloads.  The results are given 
in Figures 14 and 15.  For writes, the system 
performs between 90-102 % of native.  In the case of 
pure reads, the latency introduced by the system 
exposes a limitation of the flash card under the 
default settings.  The default settings allow a fixed 
number of outstanding memory requests from the 
card DMA engines, and thus the results show 83 % of 
native performance for 1-2 cards, and slightly lower 
for 4 cards.  It is expected that this condition can be 
rectified by tuning the card and driver settings, such 
as increasing the allowed outstanding IO requests and 
the timing of interrupts. 
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Figure 14.  IOPS for the streaming workloads. 
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Figure 15.  Results for the streaming workload. 

To characterize the system interfaces under 
oversubscription, the large streaming workloads were 
run in an alternate configuration.  The streaming 
workloads were found to be the most stressful for 
oversubscription due to high bandwidth saturation of 
the PCIe links. To oversubscribe the host interface 
(1:2), a single host interface was used to access two 
cards (1:2).  To oversubscribe the device interface, 
two hosts were used to access a single flash card 
(2:1), with one DIMM assigned to each host.  This 
scenario represents the compelling use case of 
sharing the flash card amongst multiple servers.  Note 
that in these experiments, the performance is not 
CPU-bound, but the hosts have lower-powered CPUs 
(4-cores, 2.0 GHz), so the performance of the 
baseline case is slightly lower than the previous 
results. 
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Figure 16.  Results for oversubscribed interfaces. 

The results for oversubscription are given in Figure 
16.  In the sharing case, under 2:1 oversubscription 

(PCIeOE 2 Hosts, 1 Card), the host interface 
performance slightly exceeds the baseline system 
case (PCIeOE 1 Host, 1 Card), indicating that the 
device is robust under this condition.  Under 1:2 
oversubscription (PCIeOE 1 Host, 2 Cards), the 
device interface performance exceeds the system 
baseline as well, indicating ideal performance.  Note 
that the performance is not a full 2x because although 
there is more flash available, the single host interface 
is still bandwidth constrained for these workloads. 

5. Related Work 

The notion of virtualizing a PCIe device within the 
bounds of a single host domain has been standardized 
by the PCI-SIG as the SR-IOV specification [21].  
Support for SR-IOV is now included in many 
commercial PCIe endpoints, from Intel, LSI Logic, 
Broadcom, Emulex and others [27-30].  Similarly, 
the extension of this concept to enable access by 
multiple host domains has resulted in the MR-IOV 
specification [31].  At least two commercial entities 
have developed switching products based on the MR-
IOV standard, notably NextIO and Virtensys [32-33]. 

A technology known as ExpressEther has been 
proposed and developed by the System Platform 
Research Labs at NEC [34].  This work has detailed 
an alternate approach to transporting PCIe data on 
Ethernet, and has presented the performance of a 
shared 10G Ethernet NIC as a remote resource [35-
36]. 

Another approach to virtualizing and sharing I/O 
resources include using RDMA as a transport 
mechanism, which can be switched on various 
physical layers such as Inifiband or RoCEE, a path 
taken by Xsigo Systems [37].  Using the RDMA 
model typically means that the native bus protocol 
and thus drivers are modified.  The additional 
software layer introduced in this method generally 
increases flexibility at the cost of additional latency. 

Within the PCIeOE system, there are many 
interesting directions for future study.  The 
performance of the system on more complex Ethernet 
topologies and co-existence between PCIeOE and 
other Ethernet-based traffic are important to 
understand the limits of scalability.  The 
characterization of different PCIe devices and 



protocols, as well as higher level (application) 
benchmarks are also useful to expand insights beyond 
the micro-benchmarks discussed here. 

6. Conclusions 
 
In this paper, we presented a highly scalable I/O 
virtualization system based on the PCIeOE protocol 
along with measured characterization results using 
high performance NAND flash.  The system 
architecture enables wide scaling of link bandwidth 
by utilizing multiple 10G Ethernet interfaces for host 
access.  The architecture enables wide scaling of host 
and device counts by utilizing dense commodity 
Ethernet switching as a fabric.  By using Ethernet as 
a transport, the system can be integrated with the 
ubiquitous converged Ethernet fabric in use in 
datacenters now and in the future.  The system 
provides easy integration of any PCIe-based resource 
by preserving the PCIe device and software models, 
allowing native vendor drivers to be used by hosts. 
 
Thorough testing of the system using NAND flash 
has indicated that the system and protocol are very 
robust, low-latency, and high performance.  Very 
demanding NAND flash devices perform at near-
native performance levels across a wide range of 
workloads in the system.  For the most common 
workloads, flash performance in the system is 
indistinguishable from the native server case.  Thus, 
the system provides a compelling architecture for 
centralizing and sharing the emerging tier of flash 
storage in scalable performance computing systems. 
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