
Flash Memory Performance on a Highly Scalable IOV System

Peter Kirkpatrick, Adel Alsaadi, Purnachandar Mididuddi, Prakash Chauhan, Afshin Daghi,
Daniel Kim, Sang Kim, K.R. Kishore, Paritosh Kulkarni, Michael Lyons, Kiran Malwankar,

Hemanth Ravi, Swaminathan Saikumar, Mani Subramanian, Marimuthu Thangaraj,
Arvind Vasudev, Vinay Venkataraghavan, Carl Yang, and Wilson Yung

Aprius, Inc.
peter.kirkpatrick@aprius.com

Abstract

We present an enterprise-class I/O virtualization (IOV) system, discuss the architecture, and share performance
characterization results using extremely high performance flash memory as a load generator. This work describes an
IOV system built on the PCI-Express over Ethernet (PCIeOE) protocol, which combines these two ubiquitous,
standardized technologies in a novel fashion. By preserving the PCI-Express (PCIe) device and software model,
computers interface to the system without modifications to hardware or software. By utilizing 10G Ethernet as a
transport, the system integrates with enterprise environments, achieves very high scalability and benefits from the
favorable economics of the Ethernet ecosystem. Further, we present a thorough characterization of the latency and
performance of the system using very high performance flash memory as an endpoint device. Flash memory serves
as a high-intensity traffic generator, and also represents a compelling application of the PCIeOE technology.

1. Introduction

The main goal of a modern large scale computing
installation is to efficiently support a diverse and
bursty set of workloads at the lowest possible
operational cost. To support this goal, computing
systems are scaling out to dizzying proportions, with
the million-server datacenter on the horizon [1]. The
economics of such a large system drive the edge
nodes (servers) to the minimal set of components,
and the networks toward convergence of physical and
link layers, with flat topologies [2-4]. The network
must further support many protocols such that servers
can utilize the access network, multiple tiers of
storage, and access other resources such as
accelerators and utility I/O.

On this physical infrastructure, server virtualization
has increased utilization of the compute node and
network interfaces [5-6]. Further, virtual machines
enable workload mobility, in terms of the location of
execution, availability of service, and elastic scaling
to support variance in demand [7-10]. Input/output
virtualization (IOV) technologies are evolving to
provide the similar benefits for I/O resources;

efficient performance, high utilization, service
availability, isolation, and elastic scaling [11-17].

Throughout these developments, some common
themes persist. The use of standardized technologies
ensures that large scale systems interoperate reliably
with minimal operational support. Energy efficiency
is essential to minimize operational costs and
environmental impacts. Resiliency is critical to keep
workloads running and to guarantee service level
agreements (SLAs). High performance provides a
competitive advantage to any organization.

In this work, we present an I/O virtualization system
that achieves the goals set forth above, while
supporting standard BIOS, operating systems, and
PCIe cards. The core technology we have developed
is the PCI-Express over Ethernet (PCIeOE) protocol,
which enables any PCIe-based resource to reside on
the converged Ethernet network, accessible to any
server on the network. By preserving the PCI-
Express (PCIe) device and software model,
computers interface to the system without
modifications to hardware or software [18]. By
utilizing 10G Ethernet as a transport, the system

integrates with enterprise environments, achieves
very high scalability and benefits from the favorable
economics that Ethernet enables [19]. The system
architecture is discussed, including the resiliency,
scaling, and management aspects. A thorough
characterization of the system using high
performance flash memory is presented, which the
authors believe represents the most scalable and
highest performance architecture for centralized flash
storage.

HI

DI

mCPU

Host

PCIe

...

...

MI

HI

DI

Host

PCIe

HI

DI

Host

PCIe

Ethernet

Figure 1. IOV System structure.

2. PCIeOE System Architecture

The distributed system structure is given in Figure 1.
Host interfaces (HI) connect the hosts’ PCIe root
ports to the Ethernet fabric. Device interfaces (DI)
connect PCIe devices to the fabric. A management
CPU (mCPU) is connected to the fabric via the
management interface (MI), with lower bandwidth
for control path traffic only.

The host interface (HI) enables hosts to access
distributed PCIe resources across the fabric. A
logical block diagram of the device is given in Figure
2. The device presents a PCIe upstream switch port
(PCIe 2.0 x4) to the host. Below the switch are PCIe
embedded endpoints (EEP) that are enumerated
within the host’s PCIe domain. The system manager
controls mapping of the EEPs to remote resources.
Because of the transparent nature of the PCIeOE
protocol, hosts always run the unmodified vendor
driver for the remote endpoint.

PCIeOE

...

EEP

PCIe 2.0 x4

ACD

EEP

PCIe

EEP
XGMAC XGMAC

8

2x 10GbE

Figure 2. PCIeOE host interface (HI).

Downstream PCIe configuration and datapath packets
to remote devices are encapsulated by the PCIeOE
logic into standard 802.1Q Ethernet frames and load
balanced across multiple 10G MACs for transport on
the fabric. The device also presents a PCIe endpoint
to provide a control path between the system
manager and the host OS. This allows the system
manager to invoke the PCIe hot plug and rescan
mechanism within the host OS. Thus, remote
resources may be virtually hot-plugged dynamically
into the host PCIe tree.

The host interface resides on a PCIe adapter as shown
in Figure 3. The adapter has a PCIe 2.0 x4 card edge
and provides two pluggable 10GbE cable interfaces
to the Ethernet fabric.

Figure 3. Host interface adapter.

A logical view of the device interface (DI) is given in
Figure 4. The device interface attaches PCIe devices
to the fabric for remote access by hosts. The fabric
interface and encapsulation are similar to the HI
sections. A unique feature of the device interface is
the capability to translate transactions to/from an
individual PCIe device attached to the interface into
multiple host PCIe domains. The translation is

performed on a per-function basis, which maintains
good isolation between resources in the system. This
capability enables simultaneous sharing of
multifunction devices and SR-IOV endpoints
amongst multiple hosts [21]. PCIe packets are passed
between the interface and the PCIe device through a
downstream PCIe switch port.

PCIeOE

PCIe 2.0 x4 (1.1 x8)

XGMACXGMAC

2x 10GbE

Domain Translation

PCIe (DS Switch Port)

Figure 4. PCIeOE device interface (DI).

The x86 management CPU (mCPU) is connected to
the fabric by the management interface (MI), which
provides an Ethernet interface and performs PCIeOE
protocol encapsulation. The mCPU runs the ApriOS
operating system, based on the stock CentOS 5.4
Linux distribution with 64-bit 2.6.30 kernel. The
standard kernel has been extended to manage a very
large PCIe tree including bridges below the device
interfaces.

Management of all resources is handled from the
management console, where an administrator assigns
and configures I/O resources to hosts. Upon system
boot or upon hot-plug of I/O devices, the manager
enumerates all the PCIe resources on the device
interfaces. For multi-function and SR-IOV devices
with a privileged driver, this driver runs on the
mCPU. This enables configuration of the devices,
ranging from simple address and QoS management
for LAN/SAN interfaces, to RAID and drive
management for storage devices. Hosts see the
devices directly and run the unmodified vendor
driver.

The current system implementation is shown in
Figure 5. Ethernet switching is internal to the
chassis, providing 480 Gb/s non-blocking bandwidth
from two 24-port low-latency 10GbE switches [22].

Thirty-two 10GbE ports are visible in the rear view,
with all-to-all access for hosts to the PCIe slots. The
system provides eight full height slots with PCIe 2.0
x4 or PCIe 1.1 x8 interfaces.

Figure 5. Front (top) and Rear (bottom) views of
the implemented PCIeOE system.

3. PCIeOE Protocol

The central technology we have developed is the
PCIeOE protocol. By preserving the standard
802.1Q frame structure, PCIeOE traffic can coexist
with Ethernet traffic from other sources on the
common datacenter fabric. The encapsulation of a
PCIe transaction layer packet (TLP) into an Ethernet
frame is shown in Figure 6. The frames carry the
PCIeOE Ethertype for identification within the
network. For each PCIe TLP, a PCIeOE header is
constructed, and together the header and TLP are
placed in the frame payload, with padding (if
necessary) to meet the minimum Ethernet frame size.

To increase the protocol efficiency, particularly when
transmitting small packets, PCIe data link layer
packets (DLLPs), used for the ACK/NAK protocol
and flow control, are not sent explicitly. PCIeOE
ACK/NAK and flow control information is
piggybacked along with TLP data. This ensures that
after removing 8b10b encoding and adding the
PCIeOE header, “10G” of PCIe (e.g. 2.5 GT/s x4 =
10 Gb/s) may be transported bidirectionally using
10G Ethernet without imposing a bandwidth
bottleneck. This characteristic holds as the links are
scaled to 20G, 40G, and beyond.

One key capability of the protocol is to provide the
same resiliency expected from native PCIe,

guaranteeing that any PCIe packet will arrive at its
destination in-order, exactly once. Delivery is
guaranteed in the event of packet loss or latency
experienced in the fabric, using sequence numbers
for ordering and a transmit packet replay buffer to
recover lost or corrupted packets. Thus, lossless
Ethernet is not required for the PCIeOE protocol,
although replay adds latency and thus may reduce the
performance of an I/O device. If the fabric is
lossless, maximum performance can be delivered
with high confidence. Given that a “lossless”
Ethernet network may still drop packets, and that
transmission errors are still possible, the same
guaranteed delivery mechanisms are necessary.

PCIeOE also provides the capability to discover and
manage hosts and PCIe resources through multiple
message types, including a heartbeat message to
enhance system level resiliency.

Destination MAC Address

Source MAC Address
IEEE 802.1Q Tag

Ethertype 0x22E4 PCIeOE Reserved
PCIeOE Header
PCIeOE Header

Encapsulated PCIe
Transaction Layer Packet

Ethernet FCS

Byte 0 Byte 1 Byte 2 Byte 3

Figure 6. PCIeOE frame structure.

4. Flash Memory Benchmarking

To establish the potential for centralizing high
performance PCIe-based flash memory, a thorough
comparison was made between flash performance in
a server (native) and in the PCIeOE system. By
coupling closely with the CPU/DRAM complex and
eliminating storage protocol conversion, PCIe-based
flash has proven to be the highest performance non-
volatile storage available today, even compared to
high performance RAID systems using flash SSD.
This performance characteristic is currently driving
significant change in computing architecture [23-24].

4.1 Experimental Configuration

The server used in this study is an HP DL380 G6,
with two Intel Xeon X5670 6-core CPUs at 2.93
GHz, and 12 GB (6x 2 GB) DDR3-1333 DRAM
[25]. The platform chipset is an Intel 5520 with PCIe
2.0 root ports. The flash memory devices are
FusionIO ioDrive Duo, with 320 GB of SLC NAND
flash [26]. These PCIe card form factor devices
present two flash “DIMMs” to the host per card. To
create the heaviest possible workload for writes, the
cards were formatted with 50 % capacity reserved to
ensure ample free space for the card to perform
NAND management in the background. Before
benchmarking at a given block size, the cards were
formatted and pre-conditioned using the same size
writes, enough to write to the entire capacity of the
drive several times over (typically 9x).

The server runs the Windows Server 2008 Enterprise
Edition operating system. The micro-benchmarking
tool is IOmeter 2006. IOmeter is configured with
two workers per DIMM, each with 32 outstanding
I/Os for an effective queue depth (QD) of 64 per
DIMM. The individual workloads measured are
given in Table 1.

ID Pattern Read/Write Block Size QD

1 Rand 100% Read 512 B

64

2 Rand 100% Write 512 B 64

3 Rand 70% Read 4 kB 64

4 Seq 100% Read 64 kB 64

5 Seq 100% Write 64 kB 64

Table 1. IOmeter workloads measured.

Each workload is measured in the server (native) and
in the system. The experimental configuration for the
native cases is given in Figure 7. Each flash card is
installed on a PCIe root port.

DL380 G6

Duo
DIMM-1
DIMM-2

Duo
DIMM-3
DIMM-4

Duo
DIMM-5
DIMM-6

Duo
DIMM-7
DIMM-8

Intel
5520

Intel
Xeon
X5670

2GB DDR3

Intel
Xeon
X5670

2GB DDR3

PCIe 2.0 x4

Figure 7. Native experimental configuration.

The experimental configuration for the system tests is
given in Figure 8. For each flash card that is tested
by the benchmark, one host initiator is installed on a
system PCIe root port. So for each case (1, 2, or 4
cards), the system provides the equivalent PCIe
bandwidth to the native case.

IOV System

DI

DI

DI

DI

2x
 2

40
G

Et
he

rn
et

..
.8

DL380 G6

Intel
5520

Intel
Xeon
X5670

2GB DDR3

Intel
Xeon
X5670

HI

HI

HI

HI

Duo
DIMM-1
DIMM-2

Duo
DIMM-3
DIMM-4

Duo
DIMM-5
DIMM-6

Duo
DIMM-7
DIMM-8

2GB DDR3

MI mCPU
2x10GbE

PCIe 2.0 x4

PCIe 2.0 x4

..
.16

Figure 8. System test configuration.

4.2 Experimental Results

To verify that CPU utilization was not a limiting
factor, the server CPU utilization (average across all
cores) was measured during the experiments. The
results are given in Figure 9. For all the results
provided, the CPU utilization did not exceed 70 %.

The utilization is generally lower in the PCIeOE
cases because the increase in storage transaction
latency causes the CPU to spend more time waiting
for these transactions to complete. The delays are
small on the scale of a flash storage transaction (tens
of µs) but are more significant when compared to a
CPU clock cycle (<1 ns).

0

10

20

30

40

50

60

70

80

90

100

Native PCIeOE Native PCIeOE Native PCIeOE

1 Card 2 Cards 4 Cards

CP
U

 U
til

iz
at

io
n

[%
]

CPU Utilization, All workloads

RR-512 RW-512 RR70-4k SR-64k SW-64k

Figure 9. CPU utilization for all workloads.

For small block random workloads (512 B), the
results are given in Figures 10 and 11. With 4 cards,
the IOmeter application hung during the write pre-
conditioning (for both native and system cases).
Thus, the results for 512 B workloads across 4 cards
are not valid and are not included here.

0

20

40

60

80

100

120

140

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1 Card 2 Cards 1 Card 2 Cards

Read Write

Re
la

tiv
e

to
 N

at
iv

e
[%

]

O
pe

ra
tio

ns
 p

er
 se

co
nd

 [I
O

PS
]

IOPS (512B, Random)

Native PCIeOE Relative

Figure 10. IOPS for small block workloads.

The results show that for small transfers, the system
performs very close to 100 % of the native cases. For
writes to a single card, the system showed increased
performance (+20 %), and while this result is
repeatable, it is not considered an indicator of broad
improvement across various configurations.

0

20

40

60

80

100

120

0

50

100

150

200

250

300

350

400

450

1 Card 2 Cards 1 Card 2 Cards

Read Write

Re
la

tiv
e

to
 N

at
iv

e
[%

]

Av
er

ag
e

Re
sp

on
se

 Ti
m

e
[µ

s]
Latency (512B, Random)

Native PCIeOE Relative

Figure 11. Latency for small block workloads.

These results indicate that for small transfers, which
are highly sensitive to latency, the small increase in
latency due to placing the flash on the network has a
trivial impact on performance.

To emulate a typical database workload, the
benchmark was configured for a mixed workload of 4
kB blocks, random pattern, and 70 % reads, 30 %
writes. The results are given in Figures 11 and 12.
For all the cases tested, the system performed very
close to 100 % of the native cases (100 ± 0.5 %).

0

20

40

60

80

100

120

0

100,000

200,000

300,000

400,000

500,000

600,000

1 Card 2 Cards 4 Cards

70% Read

Re
la

tiv
e

to
 N

at
iv

e
[%

]

O
pe

ra
tio

ns
 p

er
 se

co
nd

 [I
O

PS
]

IOPS (4kB, Random)

Native PCIeOE Relative

Figure 12. IOPS for the database workloads.

0

20

40

60

80

100

120

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1 Card 2 Cards 4 Cards

70% Read

Re
la

tiv
e

to
 N

at
iv

e
[%

]

Av
er

ag
e

Re
sp

on
se

 Ti
m

e
[µ

s]

Latency (4kB, Random)

Native PCIeOE Relative

Figure 13. Latency for the database workloads.

To provide coverage of a high bandwidth streaming
pattern, the benchmark was also run with large
sequential (64 kB) workloads. The results are given
in Figures 14 and 15. For writes, the system
performs between 90-102 % of native. In the case of
pure reads, the latency introduced by the system
exposes a limitation of the flash card under the
default settings. The default settings allow a fixed
number of outstanding memory requests from the
card DMA engines, and thus the results show 83 % of
native performance for 1-2 cards, and slightly lower
for 4 cards. It is expected that this condition can be
rectified by tuning the card and driver settings, such
as increasing the allowed outstanding IO requests and
the timing of interrupts.

0

20

40

60

80

100

120

140

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 Card 2 Cards 4 Cards 1 Card 2 Cards 4 Cards

Read Write

Re
la

tiv
e

to
 N

at
iv

e
[%

]

Th
ro

ug
hp

ut
 [M

B/
s]

Throughput (64kB, Sequential)

Native PCIeOE Relative

Figure 14. IOPS for the streaming workloads.

60

70

80

90

100

110

120

130

140

150

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1 Card 2 Cards 4 Cards 1 Card 2 Cards 4 Cards

Read Write

Re
la

tiv
e

to
 N

at
iv

e
[%

]

Av
er

ag
e

Re
sp

on
se

 Ti
m

e
[µ

s]
Latency (64kB, Sequential)

Native PCIeOE Relative

Figure 15. Results for the streaming workload.

To characterize the system interfaces under
oversubscription, the large streaming workloads were
run in an alternate configuration. The streaming
workloads were found to be the most stressful for
oversubscription due to high bandwidth saturation of
the PCIe links. To oversubscribe the host interface
(1:2), a single host interface was used to access two
cards (1:2). To oversubscribe the device interface,
two hosts were used to access a single flash card
(2:1), with one DIMM assigned to each host. This
scenario represents the compelling use case of
sharing the flash card amongst multiple servers. Note
that in these experiments, the performance is not
CPU-bound, but the hosts have lower-powered CPUs
(4-cores, 2.0 GHz), so the performance of the
baseline case is slightly lower than the previous
results.

0

250

500

750

1,000

1,250

1,500

1,750

Read Write

Th
ro

ug
hp

ut
 [M

B/
s]

Throughput (64kB, Sequential)

PCIeOE (1 Host, 1 Card)
PCIeOE (2 Hosts, 1 Card)
PCIeOE (1 Host, 2 Cards)

Figure 16. Results for oversubscribed interfaces.

The results for oversubscription are given in Figure
16. In the sharing case, under 2:1 oversubscription

(PCIeOE 2 Hosts, 1 Card), the host interface
performance slightly exceeds the baseline system
case (PCIeOE 1 Host, 1 Card), indicating that the
device is robust under this condition. Under 1:2
oversubscription (PCIeOE 1 Host, 2 Cards), the
device interface performance exceeds the system
baseline as well, indicating ideal performance. Note
that the performance is not a full 2x because although
there is more flash available, the single host interface
is still bandwidth constrained for these workloads.

5. Related Work

The notion of virtualizing a PCIe device within the
bounds of a single host domain has been standardized
by the PCI-SIG as the SR-IOV specification [21].
Support for SR-IOV is now included in many
commercial PCIe endpoints, from Intel, LSI Logic,
Broadcom, Emulex and others [27-30]. Similarly,
the extension of this concept to enable access by
multiple host domains has resulted in the MR-IOV
specification [31]. At least two commercial entities
have developed switching products based on the MR-
IOV standard, notably NextIO and Virtensys [32-33].

A technology known as ExpressEther has been
proposed and developed by the System Platform
Research Labs at NEC [34]. This work has detailed
an alternate approach to transporting PCIe data on
Ethernet, and has presented the performance of a
shared 10G Ethernet NIC as a remote resource [35-
36].

Another approach to virtualizing and sharing I/O
resources include using RDMA as a transport
mechanism, which can be switched on various
physical layers such as Inifiband or RoCEE, a path
taken by Xsigo Systems [37]. Using the RDMA
model typically means that the native bus protocol
and thus drivers are modified. The additional
software layer introduced in this method generally
increases flexibility at the cost of additional latency.

Within the PCIeOE system, there are many
interesting directions for future study. The
performance of the system on more complex Ethernet
topologies and co-existence between PCIeOE and
other Ethernet-based traffic are important to
understand the limits of scalability. The
characterization of different PCIe devices and

protocols, as well as higher level (application)
benchmarks are also useful to expand insights beyond
the micro-benchmarks discussed here.

6. Conclusions

In this paper, we presented a highly scalable I/O
virtualization system based on the PCIeOE protocol
along with measured characterization results using
high performance NAND flash. The system
architecture enables wide scaling of link bandwidth
by utilizing multiple 10G Ethernet interfaces for host
access. The architecture enables wide scaling of host
and device counts by utilizing dense commodity
Ethernet switching as a fabric. By using Ethernet as
a transport, the system can be integrated with the
ubiquitous converged Ethernet fabric in use in
datacenters now and in the future. The system
provides easy integration of any PCIe-based resource
by preserving the PCIe device and software models,
allowing native vendor drivers to be used by hosts.

Thorough testing of the system using NAND flash
has indicated that the system and protocol are very
robust, low-latency, and high performance. Very
demanding NAND flash devices perform at near-
native performance levels across a wide range of
workloads in the system. For the most common
workloads, flash performance in the system is
indistinguishable from the native server case. Thus,
the system provides a compelling architecture for
centralizing and sharing the emerging tier of flash
storage in scalable performance computing systems.

7. References

[1] Randy H. Katz. Tech Titans Building Boom. In
IEEE Spectrum, February 2009.

[2] John Kim, William J. Dally, Steve Scott, Dennis
Abts. Cost-Efficient Dragonfly Topology for
Large-Scale Systems. OFC/NFOEC 2009,
March 2009.

[3] Dennis Abts, Michael R. Marty, Philip M. Wells,
Peter Klausler, Hong Liu. Energy Proportional
Datacenter Networks. ISCA’10, June 2010.

[4] Pradeep Sindhu. Defining Characteristics of
Qfabric. From http://www.juniper.net/us/en/
local/pdf/whitepapers/2000384-en.pdf, February
2011.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield. Xen and the Art of Virtualization.
Proceedings of SOSP, Oct. 2003.

[6] Edouard Bugnion, Scott Devine, Kinshuk Govil,
and Mendel Rosenblum. Disco: Running
Commodity Operating Systems on Scalable
Multiprocessors. ACM Transactions on
Computer Systems, Vol. 15, No. 4, Pages 412–
447, November 1997.

[7] Christopher Clark, Keir Fraser, Steven Hand,
Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. Proc. of the 2nd
Symp. on Networked Systems Design and
Implementation, May 2005.

[8] Michael Nelson, Beng-Hong Lim, and Greg
Hutchins. Fast transparent migration for virtual
machines. Proceedings of the annual conference
on USENIX Annual Technical Conference, April
2005.

[9] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph,
R.H. Katz, A. Konwinski, G. Lee, D.A.
Patterson, A. Rabkin, I. Stoica, M. Zaharia.
Above the Clouds: A Berkeley View of Cloud
Computing. University of California, Berkeley
Technical Report No. UCB/EECS-2009-28,
February 2009.

[10] Amazon Web Services. From
http://aws.amazon.com, March 2011.

[11] J. Sugerman, G. Venkitachalan, B.H. Lim.
Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor.
Proceedings of the USENIX Annual Technical
Conference, June 2001.

[12] Darren Abramson, Jeff Jackson, Sridhar
Muthrasanallur, Gil Neiger, Greg Regnier,
Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig,
Balaji Vembu, and John Wiegert. Intel
virtualization technology for directed I/O. Intel
Technology Journal, 10(3), August 2006.

[13] Advanced Micro Devices. AMD IOMMU
Specification. From http://support.amd.com/us/
Processor_TechDocs/34434-IOMMU-
Rev_1.26_2-11-09.pdf, February 2009.

[14] Julian Satran, Leah Shalev, Muli Ben Yehuda,
and Zorik Machulsky. Scalable I/O—A Well-
Architected Way to Do Scalable, Secure and
Virtualized I/O. USENIX WIOV 2008, December
2008.

[15] Joshua LeVasseur, Ramu Panayappan, Espen
Skoglund, Christo du Toit, Leon Lynch, and
Alex Ward, Dulloor Rao, Rolf Neugebauer and
Derek McAuley. Standardized But Flexible I/O
for Self-Virtualizing Devices. USENIX WIOV
2008, December 2008.

http://www.juniper.net/us/en/%20local/pdf/whitepapers/2000384-en.pdf�
http://www.juniper.net/us/en/%20local/pdf/whitepapers/2000384-en.pdf�
http://support.amd.com/us/�

[16] Jose Renato Santos, Yoshio Turner, G. (John)
Janakiraman, and Ian Pratt. Bridging the gap
between software and hardware techniques for
I/O virtualization. USENIX Annual Technical
Conference, June 2008.

[17] Paul Willmann, Scott Rixner, and Alan L. Cox.
Protection strategies for direct access to
virtualized I/O devices. Proceedings of the
annual conference on USENIX Annual Technical
Conference, 2008.

[18] Jeffrey Shafer, “I/O Virtualization Bottlenecks in
Cloud Computing Today”, USENIX WIOV 2010,
March 2010.

[19] PCI-SIG, “PCI-Express Base Specification 3.0”,
http://www.pcisig.com/specifications/pciexpress/
November 2010.

[20] IEEE 802.3 Ethernet Working Group, from
http://standards.ieee.org/about/get/802/802.3.html

[21] PCI-SIG, “Single-Root I/O Virtualization and
Sharing 1.1 Specification”, from
http://www.pcisig.com/specifications/iov/single_root/,
January 2010.

[22] Fulcrum Microsystems,
http://www.fulcrummicro.com/.

[23] Adam Leventhal. Flash Storage Today. ACM
Queue, July/August 2008.

[24] William K. Josephson, Lars A. Bongo, David
Flynn, Kai Li. DFS: A File System for
Virtualized Flash Storage. 8th USENIX File and
Storage Technologies, February 2008.

[25] Hewlett-Packard. Proliant DL380 G6 Server.
http://www.hp.com.

[26] FusionIO. ioDrive Duo. http://www.fusionio.com.
[27] Intel. 82599 10Gb Ethernet Controller.

http://www.intel.com.
[28] LSI Logic. LSISAS2208 ROC.

http://www.lsi.com
[29] Emulex. Emulex OCe11000 UCNA.

http://www.emulex.com.

[30] Broadcom. BCM57712 10GbE C-NIC.

http://www.broadcom.com.
[31] PCI-SIG, “Multi-Root I/O Virtualization and
Sharing 1.0 Specification”, from
http://www.pcisig.com/specifications/iov/multi-root/, May
2008.
[32] NextIO. http://www.nextio.com.
[33] Virtensys. http://www.virtensys.com.
[34] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi,

Takashi Yoshikawa, Atsushi Iwata. ExpressEther
- Ethernet-Based Virtualization Technology for
Reconfigurable Hardware Platform. IEEE
HOTI'06, September 2006.

[35] Nobuyuki Enomoto, Hideyuki Shimonishi,
Junichi Higuchi, Takashi Yoshikawa, Atsushi
Iwata. High-Speed, Short-Latency Multipath

Ethernet Transport for Interconnections. IEEE
HOTI’08, September 2008.

[36] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi,
Teruyuki Baba, Nobuharu Kami, Takashi
Yoshikawa. Multi-Root Share of Single-Root
I/O Virtualization Compliant Device. IEEE
HOTI’10, September 2010.

[37] Xsigo Systems. http://www.xsigo/com.

http://www.pcisig.com/specifications/pciexpress/�
http://www.pcisig.com/specifications/pciexpress/�
http://standards.ieee.org/about/get/802/802.3.html�
http://www.pcisig.com/specifications/iov/single_root/�
http://www.fulcrummicro.com/�
http://www.hp.com/�
http://www.fusionio.com/�
http://www.intel.com/�
http://www.lsi.com/�
http://www.emulex.com/�
http://www.broadcom.com/�
http://www.pcisig.com/specifications/iov/multi-root/�
http://www.nextio.com/�
http://www.virtensys.com/�
http://www.xsigo/com�

	[1] Randy H. Katz. Tech Titans Building Boom. In IEEE Spectrum, February 2009.
	[2] John Kim, William J. Dally, Steve Scott, Dennis Abts. Cost-Efficient Dragonfly Topology for Large-Scale Systems. OFC/NFOEC 2009, March 2009.
	[3] Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, Hong Liu. Energy Proportional Datacenter Networks. ISCA’10, June 2010.
	[4] Pradeep Sindhu. Defining Characteristics of Qfabric. From http://www.juniper.net/us/en/ local/pdf/whitepapers/2000384-en.pdf, February 2011.
	[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. Proceedings of SOSP, Oct. 2003.
	[6] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: Running Commodity Operating Systems on Scalable Multiprocessors. ACM Transactions on Computer Systems, Vol. 15, No. 4, Pages 412–447, November 1997.
	[7] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. Proc. of the 2nd Symp. on Networked Systems Design and Implementation, May 2005.
	[8] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual machines. Proceedings of the annual conference on USENIX Annual Technical Conference, April 2005.
	[9] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. University of California, Berkeley Technical Report No. UCB/E...
	[10] Amazon Web Services. From http://aws.amazon.com, March 2011.
	[11] J. Sugerman, G. Venkitachalan, B.H. Lim. Virtualizing I/O devices on VMware workstation’s hosted virtual machine monitor. Proceedings of the USENIX Annual Technical Conference, June 2001.
	[12] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel virtualization technology for directed I/O. Intel Technology Journal, 10(3), Aug...
	[13] Advanced Micro Devices. AMD IOMMU Specification. From http://support.amd.com/us/ Processor_TechDocs/34434-IOMMU-Rev_1.26_2-11-09.pdf, February 2009.
	[14] Julian Satran, Leah Shalev, Muli Ben Yehuda, and Zorik Machulsky. Scalable I/O—A Well-Architected Way to Do Scalable, Secure and Virtualized I/O. USENIX WIOV 2008, December 2008.
	[15] Joshua LeVasseur, Ramu Panayappan, Espen Skoglund, Christo du Toit, Leon Lynch, and Alex Ward, Dulloor Rao, Rolf Neugebauer and Derek McAuley. Standardized But Flexible I/O for Self-Virtualizing Devices. USENIX WIOV 2008, December 2008.
	[16] Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and Ian Pratt. Bridging the gap between software and hardware techniques for I/O virtualization. USENIX Annual Technical Conference, June 2008.
	[17] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection strategies for direct access to virtualized I/O devices. Proceedings of the annual conference on USENIX Annual Technical Conference, 2008.
	[18] Jeffrey Shafer, “I/O Virtualization Bottlenecks in Cloud Computing Today”, USENIX WIOV 2010, March 2010.
	[19] PCI-SIG, “PCI-Express Base Specification 3.0”, http://www.pcisig.com/specifications/pciexpress/November 2010.
	[20] IEEE 802.3 Ethernet Working Group, from http://standards.ieee.org/about/get/802/802.3.html
	[21] PCI-SIG, “Single-Root I/O Virtualization and Sharing 1.1 Specification”, from http://www.pcisig.com/specifications/iov/single_root/, January 2010.
	[22] Fulcrum Microsystems, http://www.fulcrummicro.com/.
	[23] Adam Leventhal. Flash Storage Today. ACM Queue, July/August 2008.
	[24] William K. Josephson, Lars A. Bongo, David Flynn, Kai Li. DFS: A File System for Virtualized Flash Storage. 8th USENIX File and Storage Technologies, February 2008.
	[25] Hewlett-Packard. Proliant DL380 G6 Server. http://www.hp.com.
	[26] FusionIO. ioDrive Duo. http://www.fusionio.com.
	[27] Intel. 82599 10Gb Ethernet Controller. http://www.intel.com.
	[28] LSI Logic. LSISAS2208 ROC. http://www.lsi.com
	[29] Emulex. Emulex OCe11000 UCNA. http://www.emulex.com.
	[30] Broadcom. BCM57712 10GbE C-NIC. http://www.broadcom.com.
	[31] PCI-SIG, “Multi-Root I/O Virtualization and Sharing 1.0 Specification”, from http://www.pcisig.com/specifications/iov/multi-root/, May 2008.
	[32] NextIO. http://www.nextio.com.
	[33] Virtensys. http://www.virtensys.com.
	[34] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Takashi Yoshikawa, Atsushi Iwata. ExpressEther - Ethernet-Based Virtualization Technology for Reconfigurable Hardware Platform. IEEE HOTI'06, September 2006.
	[35] Nobuyuki Enomoto, Hideyuki Shimonishi, Junichi Higuchi, Takashi Yoshikawa, Atsushi Iwata. High-Speed, Short-Latency Multipath Ethernet Transport for Interconnections. IEEE HOTI’08, September 2008.
	[36] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Teruyuki Baba, Nobuharu Kami, Takashi Yoshikawa. Multi-Root Share of Single-Root I/O Virtualization Compliant Device. IEEE HOTI’10, September 2010.
	[37] Xsigo Systems. http://www.xsigo/com.

