
1

Revisiting the Storage Stack in Virtualized NAS Environments

Dean Hildebrand, Anna Povzner, Renu Tewari Vasily Tarasov

 IBM Almaden Stony Brook University

Abstract
Cloud architectures are moving away from a

traditional data center design with SAN and NAS

attached storage to a more flexible solution based on

virtual machines with NAS attached storage. While

VM storage based on NAS is ideal to meet the high

scale, low cost, and manageability requirements of the

cloud, it significantly alters the I/O profile for which

NAS storage is designed. In this paper, we explore the

storage stack in a virtualized NAS environment and

highlight corresponding performance implications.

1. Introduction
There is a shift in cloud architectures from the

traditional data center design based on physical

machines with SAN or NAS attached storage to a more

flexible and lower cost solution using virtual machines

and NAS storage. In these architectures, the virtual

machine’s associated disks exist as files in a NAS data-

store and are accessed using a file access protocol such

as NFS. Storing the disks of a virtual machine as files

(instead of LUNs) makes VMs easier to manage,

migrate, clone, and access. The traditional NAS

storage stack, however, is altered as the guest block

layer now resides above a file access protocol. The

block layer, which expects a consistent and low-

latency I/O layer beneath it, must now utilize a file

access protocol with a higher latency and looser close-

to-open consistency semantics. Moreover, what the

NAS storage system views as a file and optimizes for

file operations is actually a disk.

While some work exists that investigates the

impact of virtualized environments with traditional

block-based storage [1, 2], there is no formal

investigation on the impact of virtual machines with

NAS storage. In this paper, we investigate how a

virtualized stack affects the behavior and workload

characteristics of the NAS storage system. Some key

observations we make in the paper are:

 The NAS workload consists of only I/O requests

and no metadata requests, i.e., no create, delete,

change attribute operations. Using I/O to perform

metadata operations can increase performance in

certain instances.

 All NAS write requests require a commit to the

stable storage instead of the weaker semantics of a

commit-on-close or on an fsync.

 Sequential I/O at the guest level is highly likely to

be transformed to random I/O at the NAS level.

 NAS workload changes from many smaller files to

a small number of considerably larger files.

 Small writes generate a read-modify-write update

from the guest and all writes may generate read-

modify-write update on the server side,

significantly degrading performance (~20-69%).

 Small reads in the guest can double the amount of

data read at the NAS level.

2. VM and NAS: An Overview
Virtual machines encapsulate the entire guest file

system in a virtual disk. A VM residing over NAS

increases the number of layers in the virtual software

stack as shown in Figure 1. Virtual disks are typically

stored as files, e.g., VMWare .vmdk, on the NAS store.

The NAS store in turn consists of an NFS or CIFS

server with a back-end file system such as ZFS,

WAFL, or GPFS [3]. Hypervisors provide VMs with

access to these disk images using a NAS protocol.

Figure 1 shows the VM with NAS storage stack.

Application accesses to the guest file system are sent to

the storage controller emulator in the hypervisor by the

guest block layer. The storage controller emulator then

re-issues requests from the guest block layer as file-

level I/O requests to the disk image via the NAS client.

The NAS client in turn performs I/O requests to the

disk image file stored in the server file system.

Figure 1: VM with NAS - Numerous software layers are

punctuated by a block layer in the guest operating system

driving the requests to the NAS file layer. Our system

traces the stack at 4 points simultaneously to capture the

I/O behavior at each level.

2

The movement of the I/O request through the

various layers of the virtualized stack has two adverse

side effects. First, the increased number of layers in

the software stack increases the amount of processing

each request must experience (and hence increase its

I/O request latency). Second, as Figure 2

demonstrates, files in the guest file system have their

data block addresses stored relative to the guest block

layer addresses. These data blocks are actually offsets

and extents in the disk image file stored on the server

file system. By storing these blocks in a file, the block

layer’s need to cache entire blocks causes read-modify-

write operations over the NAS protocol, which

degrades performance. The server file system then

rearranges the original guest data blocks once again as

it is stored in the server block layer. Guest data blocks

can be split across multiple server file system blocks

depending on the start offset of the file system within

the disk image file, causing even more read-modify-

write operations on the server side.

By storing the VM’s disk as a file, the virtualized

stack changes the workload profile of the server file

system from millions of small files to a much smaller

number of very large disk images. In addition, our

preliminary results indicate that access to these disk

images will most likely consist of small and random

I/O requests with very few metadata requests, such as

create, delete, and change attributes. Supporting small

and random I/O requests to large files runs contrary to

the current focus on optimizing the backend NAS store

for create operations per second and supporting billions

of files in a single directory [4].

3. Block over File: A Good Idea?
This section investigates how the I/O workload

changes, and the resultant performance impact, when

virtual machines are introduced into the NAS

environment. We ran several benchmarks in standard

NAS (NFS) and virtualized NAS (VM-NFS)

environments and compared the generated I/O

workloads and subsequent performance. Both

environments used GPFS as a server file system

running on an IBM System x3550 equipped with a five

disk RAID-5. In the standard NAS environment,

benchmarks ran directly on an NFS client, and in the

virtualized NAS environment, benchmarks ran in a

virtual machine. The virtual machine ran on VMware

ESX 4.1 with a Fedora 14 guest operating system

stored locally on the ESX server. The experiments

were executed on an Ext2 file system, whose disk

image was stored on the NFS data store. Both VM-

NFS and standard NFS client were configured with

512MB of memory and connected to the NAS server

with a GigE network. NFS data transfer buffer sizes

were set to 64KB (“rsize”) and 512KB (“wsize”).

Filebench was used to generate all workloads. We

used a multi-layer, correlated tracing framework to

collect traces at four trace points in the VM with NAS

stack (as shown in Figure 1). Through these traces, we

could decipher how the guest block layer interacts with

the NAS client file layer and changes the generated I/O

workload at the server file system.

In this paper, we characterize and compare

workloads seen by the NAS storage server in both

standard NAS and virtualized NAS environments by

observing types and number of operations, amount of

I/O, and I/O patterns. We first investigate metadata

transformations in Section 3.1 using create and stat

experiments and then investigate data transformations

in Section 3.2.

3.1 Metadata Workloads
In this section, we show the impact of guest file

system metadata requests as they are transformed into

read and write accesses to a disk image file. The

optimizations made by many file systems for metadata

operations such as creates become irrelevant in

virtualized NAS environments since metadata is

always transformed to data I/O. It is important to note

that the exact type of transformation of metadata to

data and its subsequent performance impact depends

on the guest file system and server file system. We

used a bare-bones guest file system (“Ext2”) in this

paper, but plan to use more advanced file systems such

as Ext4 or btrfs in the future. We chose GPFS for the

server file system due to both our familiarity as well as

its prevalence in real-world data centers.

File creation. To evaluate file creates, we

created a directory and filled it with 100,000 zero-

length files. Each create file operation was followed

by a close file operation. We record the number of

ops/sec, the number of NFS create, getattr and mkdir

operations, and the amount of data read and written by

the server file system.

Figure 2: Data through the layers - File data in the guest

file system are organized as blocks in the guest block layer.

Block boundaries are lost when represented in the disk

image file. Guest data blocks are re-arranged in the server

block layer, possibly straddling server block boundaries.

3

As shown in Table 1, create, getattr and mkdir

metadata operations observed by the NAS storage in

the standard setup (NFS) become read and write

operations in the virtualized NAS (VM-NFS). 100,000

create/close calls from the guest became 21.5MB

worth of reads and 21MB of writes. Figure 3 shows

that all reads are 4KB, while write sizes are larger,

with 49% of writes being 256KB. In addition, 98% of

reads and 52% of writes are sequential. High

sequentiality is attributed to the Ext2 file system

attempting to co-locate created inodes.

In this experiment, the transformation of metadata

to data degraded VM-NFS performance to half of

standard NFS performance (Table 1). However, Figure

4 shows that VM-NFS performance greatly depends on

the directory tree structure. Each experiment in Figure

4 creates files in a different directory structure defined

by a mean number of entries in each directory, mean

dirwidth, starting from 20 (5105 directories, tree depth

4) to 1,000,000 (all files in one directory).

The larger and deeper directory tree results in the

better VM-NFS performance. While the total amount

of data transferred remains similar (Table 1), creating

files in a deeper directory tree results in larger write

sizes (not shown), which translates into higher write

throughput. Standard NFS performance remained

independent of the directory structure and was worse in

most cases than VM-NFS. This can be attributed to

the directory locking and lock contentions in the server

file system that does not exist when VM-NFS performs

I/O instead of file creates.

File stat. To confirm our observations, we

investigate “get file status” transformations. This

experiment performs stat() calls for 2 minutes on

random files in a single directory of 100,000 files.

Table 2 shows that the lookup and getattr

operations observed by the server file system with

standard NFS became 4K read operations with VM-

NFS. About a million stat() calls are transformed into

6743 4K read requests (total 26.3 MB).

Virtual stat performance also depends on the

directory tree structure: stat() files from one directory

resulted in 8622 stat/sec, but using 5105

directories/tree depth 4 (same total number of files)

resulted in 12167 stat/sec. Figure 5 shows that using

larger directory trees causes stat() operations to

transform into read requests with smaller seek distance

between reads, thus improving the stat performance.

Virtual stat performance was better than standard

NFS in our experiments (Table 2). This was a

surprising result, and can be attributed to several

factors: NFS attribute caching timeouts; possible server

file system lock contentions; and most significantly the

ability for Ext2 to co-locate inodes and therefore have

each read request prefetch several inodes at a time.

3.2 Read and Write Workloads
Read and write intensive workloads are also

transformed when introducing VMs into the NAS

environment due to the several layers, including a

block layer, which data must pass through before

arriving at the NAS client in the hypervisor. This

section shows that workloads with smaller than 4KB

reads and writes suffer the most from these additional

layers due to full page read issues and read-modify-

write at the guest. In addition, guest data blocks that

are misaligned with respect to the server block layer

decrease performance by causing additional server disk

Figure 3: Virtual file create I/O workload. Read and write

sizes at server file system layer in the VM-NFS environment

when 100,000 files were created in a single directory.

 Single Directory Mean Dir. Width 20

VM-NFS NFS VM-NFS NFS

ops/sec 1408 2270 7406 2125

creates 0 100000 0 100000

getattrs 0 500216 0 500640

mkdirs 0 1 0 5105

reads 21.5MB 0MB 25.8MB 0MB

writes 21MB 0MB 15.5MB 0MB

Table 1: File create operations. Operations at server file

system layer file creation in a single directory and in a

directory tree with average 20 items in each directory.

Figure 4: File create performance. Performance of file

create experiment as mean dirwidth increases (decreasing

the total number of directories from 5105 to 1).

4

accesses. Writes are further impacted because data

flushed from the guest page cache must be

immediately committed to disk and cannot be buffered

in server file system cache before being written to disk.

Write workloads. To generate a sequential

write workload, Filebench used a single thread to write

a 4GB file, varying the write sizes from 2KB to 4MB.

Figure 6 shows sequential write throughput with

virtualized NAS (VM-NFS) is approximately half that

of standard NFS performance, with an even larger

difference with 2KB writes. In both setups, the

performance increased as write size increased since

disk-based systems can generally handle larger

requests more efficiently.

Figure 7 shows that 2KB writes in VM-NFS cause

read-modify-write in the guest (“file-read”)—in order

to write 4GB of data, the guest must also read 4GB of

data. Making matters worse, reads are performed as

synchronous 4KB requests without any read-ahead

from the guest (not shown). In contrast, NFS does not

perform file reads when writing in 2KB chunks. The

“block-read” and “block-write” parts of Figure 7 also

show that 4GB of reads from the guest results in even

larger amount of data read at the server file system

block layer due to block misalignment.

VM-NFS performance also degrades with larger

write requests. As shown in Figure 7 for 128KB write,

VM-NFS demonstrates more server file system block

layer reads and writes. This is a result of read-modify-

write operations on the server side, as guest data blocks

can be split across multiple server blocks.

Read workloads. Read throughput is mostly

affected in the case of the small request sizes. In this

experiment, we compare performing random 2KB and

128KB reads from a 4GB file using 20 read threads,

where total amount of data read in each case is 2GB.

Table 3 shows that 2KB reads in VM-NFS setup suffer

4 times lower performance than NFS, while 128KB

read performance is very similar to NFS.

The main reason for VM-NFS 2KB performance

degradation is the full page read in the guest OS.

Table 3 shows that in order to read 2GB, the guest

must read 4GB from the server file system.

4. Eliminating Client-Side Block on File
As this paper states, the layering of the guest block

layer on top of the NFS file layer can reduce

performance, stress client networks, and reduce the

server file system’s ability to perform standard

optimizations. Applications that were once running

successfully in a SAN or NAS environment may now

see unacceptable storage performance with the same

storage hardware. One possible solution is for

applications to use the NAS client in the guest OS

(instead of a disk image), but this technique no longer

virtualizes the I/O and places data centers at the mercy

of features and bugs in the guest OS.

Techniques are required to allow virtual machines

to continue virtualizing I/O and using disk images

while giving the server file system more information of

the original guest operations. One possibility is to use

Figure 5: stat() randomness. Seek distance between reads at

server file system with stat() on files in a single directory

versus a directory tree with avg. 20 entries in each directory.

 stat/sec lookup/getattr data read

VM-NFS 8622 0 26.3MB

NFS 2656 610721 0MB

Table 2: File stat() operations. Operations at server file

system when performing stat() on random files. VM-NFS

executed 6743 4KB read requests.

 2KB reads 128KB reads

VM-NFS NFS VM-NFS NFS

MB/s 0.6MB/s 2.5MB/s 46.5MB/s 50MB/s

app reads 2048M 2048M 2048M 2048M

file reads 4710M 1140M 2187M 2804M

block reads 6758M 5853M 3280M 3769M

Table 3: Random 2KB reads. Performance and amount of

data transferred at server file system and block layer for

random read (20 threads) from 4GB file.

Figure 6: NFS and VM-NFS sequential write

performance. Throughput when writing a 4GB file with

write sizes ranging from 2KB to 4MB.

5

a para-virtualized NAS client driver in the guest OS.

In this model, applications running in the guest would

not use a local file system such as Ext2 but rather a

NFS device that passes its operations to the hypervisor

and then to a disk image in the server file system.

To simulate such an environment, we mounted the

disk image in the server file system (using the

loopback driver), exported it via NFS, and then

mounted it from the guest using the Linux NFS client.

As shown in Table 4, Guest-NFS more than doubles

write throughput as compared with the standard

method of translating requests from a SCSI emulator to

the NFS (VM-NFS). Guest-NFS sends I/O requests

directly to the server, avoiding the need for read-

modify-write from the hypervisor. Guest-NFS does

not match the performance of standard NFS (Linux-

NFS) since the loopback mounted disk image on the

server reduces all write requests to 4KB.

5. Future Work
We plan to extend this work in several ways.

First, more information is needed regarding the impact

of virtualizing NAS applications on I/O workloads and

the server file system. For instance, how does the

elimination of large number of file creates and the

existence of many large and sparse disk images change

NAS protocols and the server file system design. In

addition, we would like to work with specialized

benchmarks such as VMMark [13] as well as find and

replay traces from real virtual data centers.

Second, virtual disk image fragmentation can have

a great impact on the randomness of read and write

requests sent to the server file system. We plan to use

a tool like Impressions [14] to generate fragmented

disk images and study their effect on I/O workloads.

Finally, as discussed, when layering the guest

block layer over the NAS file layer, the original file

system operations are lost, as all requests are

transformed into read and write requests to the disk

image file. Hence, the server file system cannot cache

or prefetch data based on whether it was a metadata or

data request. This is very common, for example, to

ensure large data reads do not evict all directory

information from the cache. We are investigating

methods of restoring the original file system

operations, including client side hints and possible

server side reverse engineering of the I/O requests.

6. Related Work
Several NAS storage systems are available today

that target virtual data centers [5-8]. While each

vendor provides a different solution, we expect that all

have an architecture similar to Figure 1 and are equally

subject to the issues raised in this paper.

Several papers have shown that I/O performance

degradation can be incurred by the use of legacy device

drivers and even para-virtualized I/O drivers in the

guest [9, 10]. Solutions for these device issues include

direct access (pass-through) and self-virtualizing

devices [11]. Since the NAS client is in the

hypervisor, improvements in these I/O virtualization

techniques are unlikely to significantly alter the I/O

workload generated in VM with NAS architectures.

Workload characterization using traces is a

popular research topic [15-19]. A few virtual machine

I/O workload studies exist that show the resultant I/O

workload in the hypervisor when applications are

executed in the guest [1, 2, 12]. Corresponding traces

and other publically available traces are usually from

only a single layer of the I/O stack [20]. As far as we

are aware, there are no public traces that encapsulate

multiple layers of a virtualized I/O stack. We

introduce a novel approach of not only focusing on

virtualized NAS environments, but also showing the

I/O workload at the several different levels in the stack.

7. Conclusion
While the combined use of virtual machines and

NAS has the potential to reduce costs and simplify

management, VMs may notice a substantial drop in I/O

performance due to the introduction of several new

software layers, including the introduction of a guest

block layer over the NAS file layer. In this paper, we

identified and demonstrated several application

workloads in a virtual NAS environment that both

change the I/O workload and impact performance. In

addition, we demonstrate how it is possible to avoid

the block on file architecture and send the original

application file requests to the NAS server.

Figure 7: Sequential write data transfer. Amount of data

transferred at server file system and server block layer

during sequential write of 4GB file.

 Unalloc (MB/s) Alloc (MB/s)

VM-NFS 36.3 11.1

Linux-NFS 98.3 92.2

Guest-NFS 66.2 50.0

Table 4: Small sequential write performance. Guest-

NFS improves performance by avoiding client side read-

modify-write as seen by ESX-NFS.

6

8. References
[1] I. Ahmad, "Easy and Efficient Disk I/O

Workload Characterization in VMware ESX

Server," in Proceedings of IISWC07, Boston,

MA, 2007.

[2] I. Ahmad, J.M. Anderson, A.M. Holler, R.

Kambo, and V. Makhija, "An analysis of disk

performance in VMware ESX server virtual

machines," in Proceedings of the IEEE

International Workshop on Workload

Characterization, 2003.

[3] F. Schmuck and R. Haskin, "GPFS: A Shared-

Disk File System for Large Computing Clusters,"

in Proceedings of the USENIX Conference on

File and Storage Technologies, San Francisco,

CA, 2002.

[4] SpecSFS, www.spec.org/sfs93.

[5] "NetApp Storage Solutions for Server

Virtualization," www.netapp.com/us/

solutions/infrastructure/virtualization/server.

[6] "IBM Scale Out Network Attached Storage,"

www-03.ibm.com/systems/storage/network/sonas

[7] "Gluster," www.gluster.com/2011/02/08/gluster-

introduces-first-scale-out-nas-virtual-appliances-

for-vmware-and-amazon-web-services/.

[8] "EMC," www.emc.com/solutions/business-

need/virtualizing-information-infrastructure/file-

virtualizations.htm.

[9] J. Santos, Y. Turner, J. Janakiraman, and I. Pratt,

"Bridging the gap between software and

hardware techniques for i/o virtualization," in

Proceedings of the USENIX Annual Technical

Conference, 2008.

[10] J. Sugerman, G. Venkitachalam, and B. Lim,

"Virtualizing I/O Devices on VMware

Workstation's Hosted Virtual Machine Monitor,"

in Proceedings of the USENIX Annual Technical

Conference, 2001.

[11] H. Raj and K. Schwan, "High performance and

scalable I/O virtualization via self-virtualized

devices," in Proceedings of the 16th international

symposium on High performance distributed

computing, 2007.

[12] C. Kumar A. Gulanti, I. Ahmad, "Storage

Workload Characterization and Consolidation in

Virtualized Environments," in Proceedings of the

Workshop on Virtualization Performance:

Analysis, Characterization, and Tools, 2009.

 [13] "VMMark 2.0," www.vmware.com/products/

vmmark/overview.html.

[14] N. Agrawal, A.C. Arpaci-Dusseau, and R.H.

Arpaci-Dusseau, "Generating Realistic

Impressions for File-System Benchmarking," in

Proceedings of the 7th Conference on File and

Storage Technologies, San Francisco, CA, 2009.

 [15] D. Roselli. Characteristics of File System

Workloads. Technical Report UCB/CSD-98-

1029, University of California at Berkeley, 1998.

[16] M. Zhou and A. Smith, “Analysis of Personal

Computer Workloads,” in Proceedings of the

International Symposium on Modeling, Analysis

and Simulation of Computer and

Telecommunication Systems, 1999

[17] D. Roselli, J. Lorch, and T. Anderson, “A

Comparison of File System Workloads,” in

Proceedings of USENIX Technical Conference,

2000.

[18] S. Kavalanekar, B. Worthington, Q. Zhang, and

V. Sharda, “Characterization of Storage

Workload Traces from Production Windows

Servers,” in Proceedings of IEEE International

Symposium on Workload Characterization, 2008.

[19] N. Yadwadkar, C. Bhattacharyya, and K.

Gopinath, “Discovery of Application Workloads

from Network File Traces,” in Proceedings of

USENIX Conference on File and Storage

Technologies, 2010.

[20] SNIA I/O Traces, Tools and Analysis Technical

Working Group Trace Repository, iotta.snia.org

