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Abstract 
Cloud architectures are moving away from a 

traditional data center design with SAN and NAS 

attached storage to a more flexible solution based on 

virtual machines with NAS attached storage.  While 

VM storage based on NAS is ideal to meet the high 

scale, low cost, and manageability requirements of the 

cloud, it significantly alters the I/O profile for which 

NAS storage is designed.  In this paper, we explore the 

storage stack in a virtualized NAS environment and 

highlight corresponding performance implications.    

1. Introduction 
There is a shift in cloud architectures from the 

traditional data center design based on physical 

machines with SAN or NAS attached storage to a more 

flexible and lower cost solution using virtual machines 

and NAS storage.  In these architectures, the virtual 

machine’s associated disks exist as files in a NAS data-

store and are accessed using a file access protocol such 

as NFS.  Storing the disks of a virtual machine as files 

(instead of LUNs) makes VMs easier to manage, 

migrate, clone, and access.  The traditional NAS 

storage stack, however, is altered as the guest block 

layer now resides above a file access protocol.  The 

block layer, which expects a consistent and low-

latency I/O layer beneath it, must now utilize a file 

access protocol with a higher latency and looser close-

to-open consistency semantics.  Moreover, what the 

NAS storage system views as a file and optimizes for 

file operations is actually a disk.  

While some work exists that investigates the 

impact of virtualized environments with traditional 

block-based storage [1, 2], there is no formal 

investigation on the impact of virtual machines with 

NAS storage.  In this paper, we investigate how a 

virtualized stack affects the behavior and workload 

characteristics of the NAS storage system.  Some key 

observations we make in the paper are: 

 The NAS workload consists of only I/O requests 

and no metadata requests, i.e., no create, delete, 

change attribute operations.  Using I/O to perform 

metadata operations can increase performance in 

certain instances. 

 All NAS write requests require a commit to the 

stable storage instead of the weaker semantics of a 

commit-on-close or on an fsync. 

 Sequential I/O at the guest level is highly likely to 

be transformed to random I/O at the NAS level. 

 NAS workload changes from many smaller files to 

a small number of considerably larger files.  

 Small writes generate a read-modify-write update 

from the guest and all writes may generate read-

modify-write update on the server side, 

significantly degrading performance (~20-69%).   

 Small reads in the guest can double the amount of 

data read at the NAS level. 

2. VM and NAS: An Overview 
Virtual machines encapsulate the entire guest file 

system in a virtual disk.  A VM residing over NAS 

increases the number of layers in the virtual software 

stack as shown in Figure 1.  Virtual disks are typically 

stored as files, e.g., VMWare .vmdk, on the NAS store.  

The NAS store in turn consists of an NFS or CIFS 

server with a back-end file system such as ZFS, 

WAFL, or GPFS [3].  Hypervisors provide VMs with 

access to these disk images using a NAS protocol. 

Figure 1 shows the VM with NAS storage stack.  

Application accesses to the guest file system are sent to 

the storage controller emulator in the hypervisor by the 

guest block layer.  The storage controller emulator then 

re-issues requests from the guest block layer as file-

level I/O requests to the disk image via the NAS client.  

The NAS client in turn performs I/O requests to the 

disk image file stored in the server file system. 

 
Figure 1: VM with NAS - Numerous software layers are 

punctuated by a block layer in the guest operating system 

driving the requests to the NAS file layer.  Our system 

traces the stack at 4 points simultaneously to capture the 

I/O behavior at each level. 
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The movement of the I/O request through the 

various layers of the virtualized stack has two adverse 

side effects.  First, the increased number of layers in 

the software stack increases the amount of processing 

each request must experience (and hence increase its 

I/O request latency).  Second, as Figure 2 

demonstrates, files in the guest file system have their 

data block addresses stored relative to the guest block 

layer addresses.  These data blocks are actually offsets 

and extents in the disk image file stored on the server 

file system.  By storing these blocks in a file, the block 

layer’s need to cache entire blocks causes read-modify-

write operations over the NAS protocol, which 

degrades performance.  The server file system then 

rearranges the original guest data blocks once again as 

it is stored in the server block layer.  Guest data blocks 

can be split across multiple server file system blocks 

depending on the start offset of the file system within 

the disk image file, causing even more read-modify-

write operations on the server side. 

By storing the VM’s disk as a file, the virtualized 

stack changes the workload profile of the server file 

system from millions of small files to a much smaller 

number of very large disk images.  In addition, our 

preliminary results indicate that access to these disk 

images will most likely consist of small and random 

I/O requests with very few metadata requests, such as 

create, delete, and change attributes.  Supporting small 

and random I/O requests to large files runs contrary to 

the current focus on optimizing the backend NAS store 

for create operations per second and supporting billions 

of files in a single directory [4]. 

3. Block over File: A Good Idea? 
This section investigates how the I/O workload 

changes, and the resultant performance impact, when 

virtual machines are introduced into the NAS 

environment.  We ran several benchmarks in standard 

NAS (NFS) and virtualized NAS (VM-NFS) 

environments and compared the generated I/O 

workloads and subsequent performance.  Both 

environments used GPFS as a server file system 

running on an IBM System x3550 equipped with a five 

disk RAID-5.  In the standard NAS environment, 

benchmarks ran directly on an NFS client, and in the 

virtualized NAS environment, benchmarks ran in a 

virtual machine.  The virtual machine ran on VMware 

ESX 4.1 with a Fedora 14 guest operating system 

stored locally on the ESX server.  The experiments 

were executed on an Ext2 file system, whose disk 

image was stored on the NFS data store.  Both VM-

NFS and standard NFS client were configured with 

512MB of memory and connected to the NAS server 

with a GigE network.  NFS data transfer buffer sizes 

were set to 64KB (“rsize”) and 512KB (“wsize”). 

Filebench was used to generate all workloads.  We 

used a multi-layer, correlated tracing framework to 

collect traces at four trace points in the VM with NAS 

stack (as shown in Figure 1).  Through these traces, we 

could decipher how the guest block layer interacts with 

the NAS client file layer and changes the generated I/O 

workload at the server file system. 

In this paper, we characterize and compare 

workloads seen by the NAS storage server in both 

standard NAS and virtualized NAS environments by 

observing types and number of operations, amount of 

I/O, and I/O patterns.  We first investigate metadata 

transformations in Section 3.1 using create and stat 

experiments and then investigate data transformations 

in Section 3.2. 

3.1 Metadata Workloads 
In this section, we show the impact of guest file 

system metadata requests as they are transformed into 

read and write accesses to a disk image file.  The 

optimizations made by many file systems for metadata 

operations such as creates become irrelevant in 

virtualized NAS environments since metadata is 

always transformed to data I/O.  It is important to note 

that the exact type of transformation of metadata to 

data and its subsequent performance impact depends 

on the guest file system and server file system.  We 

used a bare-bones guest file system (“Ext2”) in this 

paper, but plan to use more advanced file systems such 

as Ext4 or btrfs in the future.  We chose GPFS for the 

server file system due to both our familiarity as well as 

its prevalence in real-world data centers. 

 

File creation.  To evaluate file creates, we 

created a directory and filled it with 100,000 zero-

length files.  Each create file operation was followed 

by a close file operation.  We record the number of 

ops/sec, the number of NFS create, getattr and mkdir 

operations, and the amount of data read and written by 

the server file system. 

 
Figure 2: Data through the layers - File data in the guest 

file system are organized as blocks in the guest block layer.  

Block boundaries are lost when represented in the disk 

image file.  Guest data blocks are re-arranged in the server 

block layer, possibly straddling server block boundaries. 



3 

 

As shown in Table 1, create, getattr and mkdir 

metadata operations observed by the NAS storage in 

the standard setup (NFS) become read and write 

operations in the virtualized NAS (VM-NFS).  100,000 

create/close calls from the guest became 21.5MB 

worth of reads and 21MB of writes.  Figure 3 shows 

that all reads are 4KB, while write sizes are larger, 

with 49% of writes being 256KB.  In addition, 98% of 

reads and 52% of writes are sequential.  High 

sequentiality is attributed to the Ext2 file system 

attempting to co-locate created inodes. 

In this experiment, the transformation of metadata 

to data degraded VM-NFS performance to half of 

standard NFS performance (Table 1).  However, Figure 

4 shows that VM-NFS performance greatly depends on 

the directory tree structure.  Each experiment in Figure 

4 creates files in a different directory structure defined 

by a mean number of entries in each directory, mean 

dirwidth, starting from 20 (5105 directories, tree depth 

4) to 1,000,000 (all files in one directory). 

The larger and deeper directory tree results in the 

better VM-NFS performance.  While the total amount 

of data transferred remains similar (Table 1), creating 

files in a deeper directory tree results in larger write 

sizes (not shown), which translates into higher write 

throughput.  Standard NFS performance remained 

independent of the directory structure and was worse in 

most cases than VM-NFS.  This can be attributed to 

the directory locking and lock contentions in the server 

file system that does not exist when VM-NFS performs 

I/O instead of file creates. 

 

File stat.  To confirm our observations, we 

investigate “get file status” transformations.  This 

experiment performs stat() calls for 2 minutes on 

random files in a single directory of 100,000 files.  

Table 2 shows that the lookup and getattr 

operations observed by the server file system with 

standard NFS became 4K read operations with VM-

NFS.  About a million stat() calls are transformed into 

6743 4K read requests (total 26.3 MB).  

Virtual stat performance also depends on the 

directory tree structure: stat() files from one directory 

resulted in 8622 stat/sec, but using 5105 

directories/tree depth 4 (same total number of files) 

resulted in 12167 stat/sec.  Figure 5 shows that using 

larger directory trees causes stat() operations to 

transform into read requests with smaller seek distance 

between reads, thus improving the stat performance. 

Virtual stat performance was better than standard 

NFS in our experiments (Table 2).  This was a 

surprising result, and can be attributed to several 

factors: NFS attribute caching timeouts; possible server 

file system lock contentions; and most significantly the 

ability for Ext2 to co-locate inodes and therefore have 

each read request prefetch several inodes at a time.  

3.2 Read and Write Workloads 
Read and write intensive workloads are also 

transformed when introducing VMs into the NAS 

environment due to the several layers, including a 

block layer, which data must pass through before 

arriving at the NAS client in the hypervisor.  This 

section shows that workloads with smaller than 4KB 

reads and writes suffer the most from these additional 

layers due to full page read issues and read-modify-

write at the guest.  In addition, guest data blocks that 

are misaligned with respect to the server block layer 

decrease performance by causing additional server disk 

 
Figure 3: Virtual file create I/O workload.  Read and write 

sizes at server file system layer in the VM-NFS environment 

when 100,000 files were created in a single directory.  

 Single Directory Mean Dir. Width 20 

VM-NFS NFS VM-NFS NFS 

ops/sec 1408 2270 7406 2125 

creates 0 100000 0 100000 

getattrs 0 500216 0 500640 

mkdirs 0 1 0 5105 

reads 21.5MB 0MB 25.8MB 0MB 

writes 21MB 0MB 15.5MB 0MB 

Table 1: File create operations.  Operations at server file 

system layer file creation in a single directory and in a 

directory tree with average 20 items in each directory. 

 
Figure 4: File create performance.  Performance of file 

create experiment as mean dirwidth increases (decreasing 

the total number of directories from 5105 to 1). 
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accesses.  Writes are further impacted because data 

flushed from the guest page cache must be 

immediately committed to disk and cannot be buffered 

in server file system cache before being written to disk. 

 

Write workloads.  To generate a sequential 

write workload, Filebench used a single thread to write 

a 4GB file, varying the write sizes from 2KB to 4MB.   

Figure 6 shows sequential write throughput with 

virtualized NAS (VM-NFS) is approximately half that 

of standard NFS performance, with an even larger 

difference with 2KB writes.  In both setups, the 

performance increased as write size increased since 

disk-based systems can generally handle larger 

requests more efficiently. 

Figure 7 shows that 2KB writes in VM-NFS cause 

read-modify-write in the guest (“file-read”)—in order 

to write 4GB of data, the guest must also read 4GB of 

data.  Making matters worse, reads are performed as 

synchronous 4KB requests without any read-ahead 

from the guest (not shown).  In contrast, NFS does not 

perform file reads when writing in 2KB chunks.  The 

“block-read” and “block-write” parts of Figure 7 also 

show that 4GB of reads from the guest results in even 

larger amount of data read at the server file system 

block layer due to block misalignment.   

VM-NFS performance also degrades with larger 

write requests.  As shown in Figure 7 for 128KB write, 

VM-NFS demonstrates more server file system block 

layer reads and writes.  This is a result of read-modify-

write operations on the server side, as guest data blocks 

can be split across multiple server blocks.   

 

Read workloads.  Read throughput is mostly 

affected in the case of the small request sizes.  In this 

experiment, we compare performing random 2KB and 

128KB reads from a 4GB file using 20 read threads, 

where total amount of data read in each case is 2GB.  

Table 3 shows that 2KB reads in VM-NFS setup suffer 

4 times lower performance than NFS, while 128KB 

read performance is very similar to NFS. 

The main reason for VM-NFS 2KB performance 

degradation is the full page read in the guest OS.  

Table 3 shows that in order to read 2GB, the guest 

must read 4GB from the server file system. 

4. Eliminating Client-Side Block on File 
As this paper states, the layering of the guest block 

layer on top of the NFS file layer can reduce 

performance, stress client networks, and reduce the 

server file system’s ability to perform standard 

optimizations.  Applications that were once running 

successfully in a SAN or NAS environment may now 

see unacceptable storage performance with the same 

storage hardware.  One possible solution is for 

applications to use the NAS client in the guest OS 

(instead of a disk image), but this technique no longer 

virtualizes the I/O and places data centers at the mercy 

of features and bugs in the guest OS. 

Techniques are required to allow virtual machines 

to continue virtualizing I/O and using disk images 

while giving the server file system more information of 

the original guest operations.  One possibility is to use 

 
Figure 5: stat() randomness.  Seek distance between reads at 

server file system with stat() on files in a single directory 

versus a directory tree with avg. 20 entries in each directory.  

 stat/sec lookup/getattr data read 

VM-NFS 8622 0 26.3MB 

NFS 2656 610721 0MB 

Table 2: File stat() operations.  Operations at server file 

system when performing stat() on random files.  VM-NFS 

executed 6743 4KB read requests. 

 2KB reads 128KB reads 

VM-NFS NFS VM-NFS NFS 

MB/s 0.6MB/s 2.5MB/s 46.5MB/s 50MB/s 

app reads 2048M 2048M 2048M 2048M 

file reads 4710M 1140M 2187M 2804M 

block reads 6758M 5853M 3280M 3769M 

Table 3: Random 2KB reads.  Performance and amount of 

data transferred at server file system and block layer for 

random read (20 threads) from 4GB file. 

 
Figure 6: NFS and VM-NFS sequential write 

performance.  Throughput when writing a 4GB file with 

write sizes ranging from 2KB to 4MB.  
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a para-virtualized NAS client driver in the guest OS.  

In this model, applications running in the guest would 

not use a local file system such as Ext2 but rather a 

NFS device that passes its operations to the hypervisor 

and then to a disk image in the server file system. 

To simulate such an environment, we mounted the 

disk image in the server file system (using the 

loopback driver), exported it via NFS, and then 

mounted it from the guest using the Linux NFS client.  

As shown in Table 4, Guest-NFS more than doubles 

write throughput as compared with the standard 

method of translating requests from a SCSI emulator to 

the NFS (VM-NFS).  Guest-NFS sends I/O requests 

directly to the server, avoiding the need for read-

modify-write from the hypervisor.  Guest-NFS does 

not match the performance of standard NFS (Linux-

NFS) since the loopback mounted disk image on the 

server reduces all write requests to 4KB. 

5. Future Work 
We plan to extend this work in several ways.  

First, more information is needed regarding the impact 

of virtualizing NAS applications on I/O workloads and 

the server file system.  For instance, how does the 

elimination of large number of file creates and the 

existence of many large and sparse disk images change 

NAS protocols and the server file system design.  In 

addition, we would like to work with specialized 

benchmarks such as VMMark [13] as well as find and 

replay traces from real virtual data centers. 

Second, virtual disk image fragmentation can have 

a great impact on the randomness of read and write 

requests sent to the server file system.  We plan to use 

a tool like Impressions [14] to generate fragmented 

disk images and study their effect on I/O workloads. 

Finally, as discussed, when layering the guest 

block layer over the NAS file layer, the original file 

system operations are lost, as all requests are 

transformed into read and write requests to the disk 

image file.  Hence, the server file system cannot cache 

or prefetch data based on whether it was a metadata or 

data request.  This is very common, for example, to 

ensure large data reads do not evict all directory 

information from the cache.  We are investigating 

methods of restoring the original file system 

operations, including client side hints and possible 

server side reverse engineering of the I/O requests. 

6. Related Work 
Several NAS storage systems are available today 

that target virtual data centers [5-8].  While each 

vendor provides a different solution, we expect that all 

have an architecture similar to Figure 1 and are equally 

subject to the issues raised in this paper. 

Several papers have shown that I/O performance 

degradation can be incurred by the use of legacy device 

drivers and even para-virtualized I/O drivers in the 

guest [9, 10].  Solutions for these device issues include 

direct access (pass-through) and self-virtualizing 

devices [11].  Since the NAS client is in the 

hypervisor, improvements in these I/O virtualization 

techniques are unlikely to significantly alter the I/O 

workload generated in VM with NAS architectures. 

Workload characterization using traces is a 

popular research topic [15-19].  A few virtual machine 

I/O workload studies exist that show the resultant I/O 

workload in the hypervisor when applications are 

executed in the guest [1, 2, 12].  Corresponding traces 

and other publically available traces are usually from 

only a single layer of the I/O stack [20].  As far as we 

are aware, there are no public traces that encapsulate 

multiple layers of a virtualized I/O stack.  We 

introduce a novel approach of not only focusing on 

virtualized NAS environments, but also showing the 

I/O workload at the several different levels in the stack. 

7. Conclusion 
While the combined use of virtual machines and 

NAS has the potential to reduce costs and simplify 

management, VMs may notice a substantial drop in I/O 

performance due to the introduction of several new 

software layers, including the introduction of a guest 

block layer over the NAS file layer.  In this paper, we 

identified and demonstrated several application 

workloads in a virtual NAS environment that both 

change the I/O workload and impact performance.  In 

addition, we demonstrate how it is possible to avoid 

the block on file architecture and send the original 

application file requests to the NAS server. 

 
Figure 7: Sequential write data transfer.  Amount of data 

transferred at server file system and server block layer 

during sequential write of 4GB file. 

 Unalloc (MB/s) Alloc (MB/s) 

VM-NFS 36.3 11.1 

Linux-NFS 98.3 92.2 

Guest-NFS 66.2 50.0 

Table 4: Small sequential write performance.  Guest-

NFS improves performance by avoiding client side read-

modify-write as seen by ESX-NFS. 



6 

 

8. References 
[1] I. Ahmad, "Easy and Efficient Disk I/O 

Workload Characterization in VMware ESX 

Server," in Proceedings of IISWC07, Boston, 

MA, 2007. 

[2] I. Ahmad, J.M. Anderson, A.M. Holler, R. 

Kambo, and V. Makhija, "An analysis of disk 

performance in VMware ESX server virtual 

machines," in Proceedings of the IEEE 

International Workshop on Workload 

Characterization, 2003. 

[3] F. Schmuck and R. Haskin, "GPFS: A Shared-

Disk File System for Large Computing Clusters," 

in Proceedings of the USENIX Conference on 

File and Storage Technologies, San Francisco, 

CA, 2002. 

[4] SpecSFS, www.spec.org/sfs93. 

[5] "NetApp Storage Solutions for Server 

Virtualization," www.netapp.com/us/ 

solutions/infrastructure/virtualization/server. 

[6] "IBM Scale Out Network Attached Storage," 

www-03.ibm.com/systems/storage/network/sonas 

[7] "Gluster," www.gluster.com/2011/02/08/gluster-

introduces-first-scale-out-nas-virtual-appliances-

for-vmware-and-amazon-web-services/. 

[8] "EMC," www.emc.com/solutions/business-

need/virtualizing-information-infrastructure/file-

virtualizations.htm. 

[9] J. Santos, Y. Turner, J. Janakiraman, and I. Pratt, 

"Bridging the gap between software and 

hardware techniques for i/o virtualization," in 

Proceedings of the USENIX Annual Technical 

Conference, 2008. 

[10] J. Sugerman, G. Venkitachalam, and B. Lim, 

"Virtualizing I/O Devices on VMware 

Workstation's Hosted Virtual Machine Monitor," 

in Proceedings of the USENIX Annual Technical 

Conference, 2001. 

[11] H. Raj and K. Schwan, "High performance and 

scalable I/O virtualization via self-virtualized 

devices," in Proceedings of the 16th international 

symposium on High performance distributed 

computing, 2007. 

[12] C. Kumar A. Gulanti, I. Ahmad, "Storage 

Workload Characterization and Consolidation in 

Virtualized Environments," in Proceedings of the 

Workshop on Virtualization Performance: 

Analysis, Characterization, and Tools, 2009. 

 [13] "VMMark 2.0," www.vmware.com/products/ 

vmmark/overview.html. 

[14] N. Agrawal, A.C. Arpaci-Dusseau, and R.H. 

Arpaci-Dusseau, "Generating Realistic 

Impressions for File-System Benchmarking," in 

Proceedings of the 7th Conference on File and 

Storage Technologies, San Francisco, CA, 2009. 

 [15] D. Roselli. Characteristics of File System 

Workloads. Technical Report UCB/CSD-98-

1029, University of California at Berkeley, 1998. 

[16] M. Zhou and A. Smith, “Analysis of Personal 

Computer Workloads,” in Proceedings of the 

International Symposium on Modeling, Analysis 

and Simulation of Computer and 

Telecommunication Systems, 1999 

[17]   D. Roselli, J. Lorch, and T. Anderson, “A 

Comparison of File System Workloads,” in 

Proceedings of USENIX Technical Conference, 

2000. 

[18]  S. Kavalanekar, B. Worthington, Q. Zhang, and 

V. Sharda, “Characterization of Storage 

Workload Traces from Production Windows 

Servers,” in Proceedings of IEEE International 

Symposium on Workload Characterization, 2008. 

[19]  N. Yadwadkar, C. Bhattacharyya, and K. 

Gopinath, “Discovery of Application Workloads 

from Network File Traces,” in Proceedings of 

USENIX Conference on File and Storage 

Technologies, 2010. 

[20] SNIA I/O Traces, Tools and Analysis Technical 

Working Group Trace Repository, iotta.snia.org 

 

 

 

 

 

 


