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Abstract

A commodity I/O device has no support for virtualiza-

tion. A VMM can assign such a device to a single guest

with direct, fast, but insecure access by the guest’s na-

tive device driver. Alternatively, the VMM can build

virtual devices on top of the physical device, allowing

it to be multiplexed across VMs, but with lower perfor-

mance. We propose a technique that provides an inter-

mediate option. In virtual passthrough I/O (VPIO), the

guest interacts directly with the physical device most of

the time, achieving high performance, as in passthrough

I/O. Additionally, the guest/device interactions drive a

model that in turn identifies (1) when the physical device

can be handed off to another VM, and (2) if the guest

programs the device to behave illegitimately. In this pa-

per, we describe the VPIO model, and present prelimi-

nary results in using it to support a commodity network

card within the Palacios VMM we are building. We be-

lieve that an appropriate model for an I/O device could be

produced by the hardware vendor as part of the design,

implementation, and testing process.

1 Introduction

I/O device virtualization plays a key role in the perfor-

mance of virtualized systems. This paper describes an

approach to provide unmodified guests secure yet high

performance I/O using standard commodity devices. Our

goal is to safely multiplex a physical commodity I/O de-

vice among multiple guests that interact with it using

native device-specific drivers, with near-native perfor-

mance.

Much effort has been, and is being put into achieving

high performance, yet secure I/O for virtual machines.

For example, device emulation (virtual devices) [14]
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implements virtualized hardware devices completely in

software within the VMM. Multiple virtual devices can

then be multiplexed on top of a single physical device.

No guest software changes are required, but there is a sig-

nificant performance overhead. Special guest drivers that

talk more efficiently to the VMM can ameliorate some

of this overhead. Xen I/O [3] extends this concept by re-

quiring guest changes and having the special driver talk

to a special VM that has direct hardware access. Drivers

can also be placed into individualized driver VMs for

better protection [9]. These techniques can often lead

to significantly better I/O performance. However, di-

rect assignment I/O, in which a device is directly con-

trolled by the guest’s native driver with no VMM inter-

vention at all, still has the potential for the highest perfor-

mance. Unfortunately, it fails to guarantee the reliability

and security of the whole system, especially the VMM.

Passthrough I/O [10, 12, 13] exploits specialized hard-

ware, which we call self-virtualized devices, that allows

direct guest access under parameters determined by the

VMM, thus providing both high performance and secu-

rity. However, this technique requires hardware support

that is not present in commodity I/O devices, and makes

other virtualization features such as migration more dif-

ficult.

We propose a novel I/O virtualization technique, vir-

tual passthrough I/O (VPIO). VPIO allows the guest’s

native driver to have direct access to a commodity device

(one that does not have self-virtualization support) most

of the time. The VMM can assure, however, that the

guest does not maliciously or inadvertently program the

device to affect the VMM or the other guests. Further-

more, the VMM can hand-off the physical device from

one guest to another. The VPIO concept is based on two

claims:

• It is possible to build an inexpensive software model

of a device.1

1Potentially, such a model could be provided by the device vendor.
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• That model can be inexpensively driven by

guest/device interactions.2

If these claims hold, then VPIO is possible. We also as-

sume that the device can be context-switched.3

The essential idea in VPIO is that the VMM main-

tains a formal model of the I/O device that is driven by

guest/device interactions. The model can be far simpler

than a driver or virtual device implementation, and must

only be sufficiently detailed so that when faced with an

interaction4, the model can determine:

• Whether the device is serially reusable after the in-

teraction.

• Whether a DMA is about to start, and which host-

physical addresses will be involved.

With such a model, the VMM is able to determine

whether a device interaction should be allowed to con-

tinue down to the physical device, and at what points a

device can be context-switched to a different guest. Thus

the VMM can multiplex a single commodity physical de-

vice across multiple guests, each of which uses a native

driver.

Of course, if every guest/device interaction involves

an exit into the VMM, the performance will be terrible.

The practicality of VPIO hinges on the extent to which

exits can be avoided through modeling and systems tech-

niques, and/or the extend to which the overhead of an exit

can be reduced.

In this paper, we describe the VPIO idea in more de-

tail, and we show preliminary results in using VPIO for

a commodity network card. Our results support the two

claims given above. We demonstrate that we can model

the network card, drive the model with guest/device in-

teractions, and determine when the card can be handed

off. The model itself is quite inexpensive. However, it

remains to be seen whether VM exits can be sufficiently

minimized. We conclude by outlining a technique we are

evaluating for doing so.

2 Palacios VMM

This work takes place in the context of the V3VEE

project (v3vee.org), which is constructing a virtual ma-

chine monitor framework for modern architectures. The

It is essentially a much simplified behavioral model that could easily

be produced as side effect of the device design or documentation pro-

cesses, or after the fact.
2This implies that most device programming interactions (such as

IN/OUT instructions) do not engage the VMM.
3This means either that we can copy the device state (e.g., regis-

ters) to/from memory, or that the device is deterministic and so we can

restore device state by playing back a trace of interactions from a reset.
4Think of an OUT instruction on a port associated with the device.

Palacios VMM is the first virtual machine monitor un-

der development within the project. It will be publicly

available by the time this paper reaches print. Palacios is

an operating system independent virtual machine moni-

tor targetting either IA32 or X86-64 architectures (hosts

and guests) and makes extensive, and non-optional use

of the AMD SVM [2] extensions (partial support for In-

tel VT [7] is also implemented). It runs directly on the

hardware and provides a non-paravirtualized interface to

the guest. Palacios uses shadow paging in the virtual

MMU model (nested paging is optional). An extensive

infrastructure for hooking of guest physical memory ad-

dresses (with byte address granularity), guest I/O ports,

and interrupts facilitates experimentation, such as that

described in this paper. At the present time, Palacios

is capable of booting an unmodified Linux distribution

from either a physical hardware CD ROM drive, or a vir-

tual CD ramdisk image.

The core Palacios VMM comprises ∼ 20 KLOC of

C and assembly written from scratch. We have also

wrote an additional ∼ 10 KLOC of C and assembly to

implement necessary basic virtual devices. Compiling

Palacios generates a static library that can be linked to

either 32 or 64 bit executables and operating systems.

Currently Palacios has been fully incorporated into U.

Maryland’s 32 bit GeekOS [6] and Sandia National Lab’s

64 bit Kitten operating system. Debugging support in-

cludes serial port logging and control, and the ability to

do source-level debugging with gdb when Palacios is run

under QEMU [4]. A modified version of the BOCHS [8]

BIOS and VGABIOS is used to bootstrap the guest OS.

Although we generally can avoid using a full instruction

decoder, we can optionally link in the XED component

of Intel’s Pin [11, 5], which provides full x86 instruction

decode/encode functionality.

3 VPIO

We now describe VPIO in more detail, in the context

of Palacios, as shown in Figure 1. The main compo-

nent of VPIO is the Device Modeling Monitor (DMM),

which is deployed within the VMM. It intercepts device

requests from the guest device driver, receives interrupts

from physical devices and delivers them to guests, drives

a internal device state model for each guest, and can de-

termine whether the device can be handed off to another

guest, and what host physical addresses a DMA opera-

tion will involve.

3.1 Device requests and interrupts

The guest’s device driver talks to physical devices by

device requests made by executing IN and OUT in-

structions. We do not yet support memory-mapped de-
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Figure 1: VPIO system.

vices in VPIO, but since Palacios does support mem-

ory read/write interception on a byte address granular-

ity, there is no reason why we could not extend VPIO

to memory-mapped devices. These requests either go to

physical devices directly without VMM intervention, or

are intercepted by the VMM for further processing. The

choice is dependent on the DMM.

The DMM maintains an internal state-machine model

for each guest, which keeps track of the current status

(e.g, reusability, DMA operation started, etc) of the phys-

ical device as seen from the guest. The model state is

updated by guest device requests and physical device in-

terrupts.

The DMM maintains a hooked I/O list, a list of I/O

ports for which guest reads, writes, or both must be in-

tercepted by the DMM. These reads/writes are needed to

update the model. The unhooked I/O list are those ports

which the model does not require; reads and writes to

those ports are not intercepted by the DMM (or VMM).

The hooked I/O list is dynamically updated based on

changes in the model. In Palacios, I/O port intercep-

tion is done using SVM or VT’s hardware support. An

I/O causes a VM exit, which is decoded to vector to the

DMM. If allowed, the DMM can decode and handle the

guest instruction.

Reducing the size of the hooked I/O list, and the over-

all number of I/O port interceptions is critical for per-

formance. The hooked I/O list can be reduced by care-

ful modeling of the device. In a later section, we also

discuss the possibility of using code injection from the

VMM into the guest to push modeling functionality into

the guest context, further reducing the number of device

requests that cause exits.

All of the physical device interrupts are intercepted

and delivered to the DMM by the VMM. The DMM up-

dates the device model and then decides whether to de-

liver the interrupt to a guest, and to which guest.

3.2 DMA

DMA is essential for high performance I/O. In VPIO,

we allow the guest to directly initiate DMA operations to

guest physical memory. Notice that before DMA starts,

the guest device driver must set it up, using device re-

quests (I/O port reads/writes, currently) that convey the

starting memory address, length of the data, etc. By

hooking the relevant I/O ports, we acquire these param-

eters and maintain them as part of the device model. For

some devices, the device model may also be able to sim-

ply read these parameters directly from the physical de-

vice. The device model alerts the DMM when a DMA is

about to be started, and what the source/target physical

addresses (which are guest-physical addresses) are. This

allows the DMM to (1) change the addresses to appro-

priate host-physical addresses, and (2) validate the ad-

dresses against the guest’s memory map.5

3.3 Device multiplexing

VPIO multiplexes a physical device among multiple

guests by essentially context switching the device from

guest to guest. The device model determines when a

device is in a reusable state, and can be switched. If a

guest attempts to perform an operation on a device it does

not currently hold, it is blocked until the device becomes

available.

The DMM keeps a device context for each guest that

includes the current state of the device model, values of

all relative physical device registers, and other device-

specific flags related to that guest. When the DMM hands

off a physical device to another guest, it performs the de-

vice context switch. The context switch saves all values

of physical device’s registers and other flags to the cur-

rent guest’s device context, and then restores these phys-

ical registers with values from the device context of the

guest that is the next owner of the device.

3.4 Performance

In Figure 2, we consider the performance of different

elements of the DMM in Palacios. Here, we report

CPU cycle timing on the QEMU x86 64 SVM-equipped

emulated processor environment, using an the default

NE2000 emulated network card, as well as for a hard-

ware environment, an HP Proliant ML115 with an AMD

Opteron 1210 processor. Unhooked I/Os, of course, op-

erate at the speed of the hardware. Hooked I/Os are dom-

inated by the cost of a VM exit and its handling. The

5A special case exists for a VMM running a single guest, as ap-

pears likely be common for high-end computing environments such as

the forthcoming Petascale machines: The VMM can be loaded high

in physical memory, the guest can be loaded at the start of physical

memory, and DMA address translation can be ignored.
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Figure 2: Costs of VPIO operations in cycles.

device context switch depends, of course, on the device,

but at about 34K cycles to switch an NE2000, the card

could be comfortably switched many times per second

on a modern processor.

3.5 Device model

Unlike a behavioral model, or hardware model intended

for verification purposes, the aim of the device model in

the DMM is only to determine (1) whether the device is

reusable, (2) whether a DMA is about to be initiated, and

to where, and (3) what device requests (e.g., I/O ports)

that the model needs to see to update itself.

The device model is conceptually a state machine

with additional scratchpad information (e.g., DMA ad-

dresses). The edges are annotated with the device re-

quests (e.g., I/O port reads/writes, interrupts) that trigger

them, as well as with checking functions. A checking

function is called before a state transition occurs, and

must approve the state transition. If state transition is

denied, the device request fails, and no state transition

occurs. Optionally, a notification of failure can be deliv-

ered to the guest. The checking functions reflect VMM

policy. As side effects, they also can change the hooked

I/O list.

The number of states is as small as possible to still

answer the questions given above. One or more states

must be marked as being reusable.

3.6 Dealing with failure

A natural question that arises is what the DMM should

do if the device model shows that the guest is about to

put the device into an improper state. For example, sup-

pose the guest attempts to initiate a DMA into memory

the guest does not own by using a guest physical address

for which there is no legitmate allocated memory. The

DMM cannot translate the guest physical address and

cannot allow the DMA to be initiated.

If the DMA is to read memory, the operation could be

completed, but using zero-filled pages allocated by the

DMM. If the DMA is to write memory, the operation

could be silently ignored. After all, a DMA to physical

memory addresses where memory does not exist would

amount to a discard of the data. However, although the

DMA is not completed, the guest now expects the de-

vice to be in some state valid with respect to the DMA it

thinks it has initiated.

A simple approach to both DMA reads and writes to

invalide guest physical addresses is simply to inject a ma-

chine check exception, or otherwise halt the guest. While

probably the best solution, this does make the physical

device exposed via the VMM act slightly differently than

they would were the VMM not there.

3.7 Dealing with device handoff on inter-

rupt

When a device interrupt occurs, we would ideally vector

the interrupt to the appropriate guest. However, for many

devices, the appropriate guest is not known at interrupt

time. For example, an incoming packet on a network

card may not have its destination MAC address known

until after it has been DMAed to memory. If we simply

let the current guest DMA it, we will need, minimally, to

be prepared to copy or page-remap to move the received

data to the appropriate guest (and this assumes we can

also make the current guest ignore it).

At the present time, we have not yet found a general

purporse solution for this problem. A general purpose

solution would either allow for efficiently handing off a

device to the appopriate guest on interrupt, or for effi-

ciently moving data received in the wrong guest to the

appropriate guest.

4 Example device model

We have developed a device model for NE2000-

compatible network cards (specifically the Realtek RTL

8029A chipset) to test the claim that efficient VPIO de-

vice models can be built. The NE2000 is a simple net-

work card, but not too simple. It supports DMA for sends

and receives, including ring buffering. The NE2000

model is not yet incorporated into Palacios, but we have

been able to evaluate its stand-alone performance and

overheads.

4.1 Model

The NE2000 model is an augmented finite state machine

as described in Section 3.5, and is illustrated in Figure 3.
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Figure 3: Device model for NE2000 NIC.

In the figure, the arrows between states represent state

transitions, and their annotations are the events that drive

these transitions. “Cmd: xxx” means a write of a register

on the card by the guest, and “INT: xxx” means an inter-

rupt from the device. The actual port numbers and masks

are not shown in the figure.

Checking functions are associated with some edges.

For example, whenever entering the DmaRD (DMA read

is running) or DmaWr (DMA write is running) states, the

checking functions validate the destination/source phys-

ical memory address and the transfer length. In the case

of the NE2000, the model can directly read this informa-

tion from card registers, avoiding the need to hook the

relevant ports to capture writes of those registers. If a

DMA were to violate VMM policy, the DMA-initiating

I/O port write can either be ignored, or, in the case of

the NE2000, a “remote DMA failed” interrupt can be de-

livered to the guest. More generally, a machine check

exception could be injected.

In the NE2000 model, the only reusable state is the

“Idle” state. When the model is in this state, the physical

network card is idle. The DMM could thus switch the

network card to other guest.

The model’s implementation consists of approxi-

mately 900 lines of C code.

4.2 Performance

We carried out a preliminary experiment to test the per-

formance and overheads of our NE2000 model. As noted

before, the model is not yet incorporated into Palacios.

The overheads of hooked and unhooked I/O, sans model,

in Palacios are given in Section 3.4. Here, we integrated

Scenario Total I/O I/O hooked Ratio (%)

Linux: ssh 1865055 257324 13.80

Linux: small dl 2602002 69700 2.68

Linux: large dl 294508810 9429917 3.20

Windows: ssh 3769071 286671 7.61

Windows: small dl 1081738 39089 3.61

Windows: large dl 132898230 988535 0.74

Figure 4: Hooked I/O port reads/writes for various

benchmarks.

the NE2000 model into QEMU’s NE2000 emulator in

order to drive it with I/Os from different guest OSes.

Figure 4 illustrates the number of device requests (I/O

port reads/writes) issued in three scenarios run on Linux

and Windows: an interactive ssh session, downloading

several small files, and downloading several large files.

The figure shows the total number of device requests

made by the guest, the number that needed to be hooked

to drive the NE2000 model, and the ratio. Notice that

typically only about 1 in 30 I/O port reads/writes need to

be hooked to drive the model. The average per-request

cost of updating the model is 1360 cycles.

5 Conclusions

We proposed a new technique for I/O virtualization, vir-

tual passthrough I/O (VPIO), for commodity I/O devices,

and presented an initial evaluation of its prospects. We

are now working to incorporate the VPIO framework and

the NE2000 model into Palacios to do complete evalua-

tion of the VPIO concept.

It is clear that while we can reduce the number of

hooked I/Os through modeling, the high cost of I/O inter-

ception in the VMM is the most problematic issue with

the VPIO model. We are exploring how to reduce this

cost by pushing as much of the model as possible into

the guest OS through code injection. The model would

then only cause exits from the guest under unusual con-

ditions. Of course, this means the VMM must be able to

dynamically insert binary code into the guest, transform

guest code it finds (e.g., the guest’s device driver needs

to have its I/O operations changed to calls to the model),

and guarantee that I/O operations cannot occur outside

of those in the injected code.

While our analysis of the feasibility of VPIO focuses

on I/O operations, the mechanisms exist to extend the

approach to memory mapped devices. In addition to in-

tercepting I/O instructions VMMs are also fully capable

of intercepting memory reads and writes through shadow

or nested page tables. We believe that adding this func-

tionality is a straightforward exercise.

What we have not addressed in this paper is how to
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safely handle device input that is being multiplexed to

different VMs. Specifically in the case of a network

card where network traffic can arrive anytime. We can

only say that it is currently unclear exactly how to ex-

tend VPIO to allow guests to securely receive data des-

tined for another guest. However, it should be noted that

while that is a very real issue for a device such as a net-

work card, other devices don’t necessarily follow that

I/O model. We should also acknowledge that it is in-

creasingly becoming apparent that device manufacturers

are beginning to look at designing self-virtualizing de-

vices. While self-virtualization is a powerful abstraction,

we note that hardware virtualization techniques have yet

to fully prove that they can offer better peformance than

software based approaches [1].

Finally, we conclude by noting that device models for

VPIO functionality could readily be provided by hard-

ware manufacturers. A model such as that of Figure 3 is

essentially a behavioral model that is already produced as

part of the design and verification process. For this rea-

son, models for past, present, and future devices could be

readily created.
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