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Abstract

The recent emergence of network interface cards (NICs)
with diverse hardware features for I/O virtualization
poses an important challenge for virtual machine envi-
ronments, particularly in the area of system management.
In this paper, we make the case for developing a high-
level network I/O virtualization management system that
can translate user-relevant policy specifications into the
hardware and software-specific configurations that are
needed on each particular hardware platform. As a first
step toward this goal, we describe and classify configura-
tion options that are presented by a wide variety of mech-
anisms for NIC hardware support for virtualization, and
discuss workload and policy considerations that should
be factored into configuration decisions. In addition, we
propose new mechanisms for intra-node guest-to-guest
networking that leverage NIC hardware switching sup-
port, and we present a unified system architecture for
network I/O virtualization that exposes the configuration
options that we identified to high-level management lay-
ers.

1 Introduction

Emerging network interface cards (NICs) provide hard-
ware support for virtualization which enables the NIC
to be shared efficiently and safely by multiple guest do-
mains. Specifically, these NICs provide numerous de-
scriptor queues where each queue can be assigned a dis-
tinct Ethernet MAC identifier and be dedicated to han-
dle the traffic for a particular guest domain. This al-
lows the addresses of guest domain data buffers to be
posted directly to the NIC, avoiding the overheads of
traditional software-based I/O virtualization, particularly
for the packet receive path.

These emerging NICs exhibit considerable variety –
in the software interface they provide to expose the mul-
tiple queues, and in the switching and traffic manage-
ment functionality they may provide to complement the
use of multiple queues. For example, some NICs ap-
pear to the virtualization software (e.g., the hypervisor,

or a device driver domain) as a single PCI device with
multiple contexts, while others present as multiple PCI
devices (one device per context). For data protection be-
tween guest domains, some NICs have built-in memory
address translation while others rely on host IOMMUs
or software isolation mechanisms. Some NICs have ad-
vanced layer-2 (or higher) switching capabilities, possi-
bly including advanced firewalling and/or traffic shaping
capabilities. This diversity is likely to persist as the in-
dustry searches for the ideal feature set to satisfy differ-
ent customer needs. Moreover, as we discuss later, the
right mix of hardware and software features to use will
continue to be workload and system dependent, even if
NIC functionality were to stop evolving.

The growing feature sets and diversity in modern NICs
pose a significant challenge for virtual machine environ-
ments like Xen. To enable Xen to use each new feature
requires large modifications to the network I/O virtual-
ization software architecture and to the system manage-
ment tools. More importantly, the user is burdened with
the task of modifying guest virtual machine configura-
tions and possibly driver domain configurations to actu-
ally make use of the new NIC hardware feature. The
resulting configuration is brittle since it is customized
to the hardware features of the particular physical ma-
chine on which the guest will execute, and is therefore
poorly matched with other valuable functions such as live
migration that are provided through virtualization. We
claim that this friction imposes a barrier to innovation
and adoption of new network I/O virtualization mecha-
nisms, particularly in complex data center environments.

We advocate that an attractive goal which would solve
this problem is to develop a high level network I/O vir-
tualization management system. We envision that this
manager would run as an agent in a privileged manage-
ment domain, for example Domain 0 in Xen. The man-
ager would relieve users of the need to make decisions
and configurations that are customized to the underly-
ing hardware capabilities. Instead, the manager would
allow users to specify policies at a high level and then
determine the appropriate low-level configurations spe-
cific to the particular hardware environment that would
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Figure 1: I/O virtualization with traditional NIC

implement the policies. Thus, the manager would pro-
vide a clean separation between user-relevant policies,
and the hardware and software mechanisms that are used
to implement the policies. For example, the user could
indicate which networks (i.e., which physical networks
or VLANs) each guest should be able to access, instead
of specifying which software bridge to use or whether to
use a particular NIC descriptor queue. For another exam-
ple, the user could specify firewall or traffic shaping rules
to apply to the guest’s traffic, and the manager would au-
tomatically translate the rules to the appropriate settings
in the software or the NIC.

In this paper, we present some early steps toward this
ambitious goal of providing a high-level network I/O vir-
tualization management system. In particular, we iden-
tify a large configuration space for the network I/O vir-
tualization subsystem, and we illustrate several impor-
tant constraints and trade-offs that must be considered
to determine the best configuration settings. We orga-
nize the configuration space into four basic I/O virtual-
ization functions: NIC virtualization, packet switching,
data transfer, and traffic management. Each function can
be implemented either in hardware or in software, and
by different software components such as guest device
drivers, driver domains, or the hypervisor. We discuss
how factors such as performance, resource availability,
and high-level network management policies influence
or constrain the choice of where each function should
be implemented on a particular hardware platform. For
example, the number of descriptor queues on a NIC lim-
its the number of guest domains that can be assigned to
dedicated queues. As another example, if the system ad-
ministrator policy requires using firewall rules, and the
NIC does not support this capability in hardware, then
packets should be switched in software instead of using

the NIC switching hardware.
In addition to examining the configuration space, we

propose some new mechanisms and a software architec-
ture that would expose the configuration options to the
manager (or a user, until the manager is developed). The
new mechanisms we propose are inspired by the novel
separation of the packet switching and data transfer func-
tions that we listed above. In particular, we proposeen-
velope switching which performs hardware-based intra-
host guest-to-guest packet switching in a NIC but carries
out the associated packet data transfer in software (or by
another DMA engine) to relieve the I/O bus bottleneck.
To support safe software-based packet data transfer be-
tween guests, we propose and discuss trade-offs for three
potential extensions to the Xen grant mechanism that can
be used with hardware-based or software-based packet
switching. Finally, we present an architecture that can
be configured to support all the types of NIC hardware
extensions and software mechanisms that we describe in
this paper.

2 Network I/O Virtualization Functions

A network I/O virtualization subsystem provides four
main functions:

• NIC virtualization: Provide guests with virtual net-
work interfaces (vNICs) enabling then to share a sin-
gle physical network interface card (NIC) which pro-
vides access to the external network.

• Packet switching: Switching of packets between lo-
cal guests for intra-node traffic as well as between
guests and the physical NIC.

• Data transfer: Capability of transferring packet data
between local guests.



Driver Domain

Xen Hypervisor

Physical 
Driver

HardwareNIC

I/O 
Channel

Guest Domain

TX+G2G
switch

channel
driver

Guest Domain

I/O 
Channel

frontend
driver

backend  driver
channel
driver

channel
driver

frontend
driverchannel

driver

kernel kernel

Driver Domain

Xen Hypervisor

Physical 
Driver

Physical 
Driver

Physical 
Driver

HardwareNIC

I/O 
Channel

Guest Domain

TX+G2G
switch

channel
driver

channel
driver

Guest Domain

I/O 
Channel

frontend
driver

backend  driver
channel
driver

channel
driver

channel
driver

channel
driver

frontend
driverchannel

driver
channel
driver

kernel kernel

Figure 2: I/O virtualization with multi-queue NIC

• Traffic management: In contrast with the other func-
tions this is an optional function, but usually strongly
desired by system administrators. Comprises network
security mechanisms such as firewalls, VLAN isola-
tion, etc., and mechanisms to provide I/O bandwidth
scheduling such as traffic rate control, etc.

3 Configuration Choices

All of these four functions have traditionally been pro-
vided by a software virtualization layer either inside the
hypervisor (e.g. VMware, KVM) or in a special vir-
tual machine called driver domain (e.g. Xen, Microsoft
Hyper-V). More recently, NIC hardware has begun to
provide a variety of sophisticated support for I/O virtu-
alization [4, 1, 2]. Ian Pratt classified NICs in four dif-
ferent types based on their level of hardware support for
virtualization[6]: Type 0: traditional NIC without sup-
port for virtualization (Figure 1),Type 1: multi-queue
NIC (figure 2),Type 2: Direct I/O NIC (Figure 3)Type
3: Direct I/O NIC with hardware switch (Figure 4). We
expect that in the future NICs will also provide hardware
support for QoS and security functions such as traffic
shaping and firewalls [5].

The main challenge in exploiting this wide variety of
powerful hardware is to design a software architecture
that, by being highly configurable, facilitates the imple-
mentation of high-level policies and efficient use of the
underlying hardware. The rest of this section examines
the important design and usage trade-offs such an archi-
tecture must take into account.

3.1 Traffic Management

Guests belonging to mutually distrusting customers, with
different performance requirements, can be co-located
on the same physical machine. Such systems often re-
quire rate control to enforce I/O bandwidth scheduling,
security-related network filtering mechanisms (e.g. fire-
wall), and subnet isolation mechanisms such as VLANs;
and these mechanisms must be enforced outside of guest
control. The mechanisms must be co-located with the
switching function as they need to intercept every packet.
Therefore, if atype-3 NIC lacks hardware support suffi-
cient to implement the desired high level policies, the
system must fall back to software switching and the guest
cannot use the direct I/O functionality. Instead, the NIC
would need to be configured as a multi-queue NIC with
all virtual interfaces allocated to the driver domain. The
software bridge in the driver domain would be configured
to enforce the desired traffic management mechanisms.

Ideally, a language and syntax would be developed
that would enable users to submit high-level specifica-
tions of traffic management requirements to the I/O vir-
tualization management subsystem. Additionally, there
must be a way to specify or probe device capabilities
and to test whether the capabilities on a particular sys-
tem can satisfy the specified requirements. Finally, the
manager needs to be able to configure the hardware and
software to exploit the matching capabilities in the ap-
propriate way. All of these operations are challenging
open areas for investigation.

Admission control mechanisms and policies are often
used to prevent new workloads from being deployed on
a system that would cause violations of service level ob-
jectives. Often, the mechanisms used to enforce traffic
management policies impose a reduction in the achiev-
able performance. For example, a mechanism that re-
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Figure 3: Direct I/O

quires each packet to be examined in software will likely
reduce the maximum packet rate that can be sustained.
Therefore, the performance impact of traffic manage-
ment mechanisms must be factored into admission con-
trol decisions. This is another open area of investigation.

Apart from the QoS and security requirements that are
applicable to all the traffic, the I/O subsystem configu-
ration involves the following important factors that are
specific to guest to guest (intra-machine) traffic.

3.2 Switching

We define switching as the process of identifying the re-
ceiving guest. Switching can be performed in the NIC, in
the virtualization software, or in the source guest itself.
These options are not mutually exclusive – some pairs
of guests can communicate through the NIC, while oth-
ers communicate through the virtualization software, and
still others communicate via direct guest-to-guest soft-
ware channels. We next describe the trade-offs involved
in choosing these options.

• Switching in the NIC. Local guest to guest packet
switching can be done by atype-3 NIC unless, as de-
scribed above, the traffic management policies cannot
be enforced by the hardware. Offloading the switch-
ing to hardware reduces the amount of CPU resources
consumed by the I/O virtualization subsystem, but it
increases the load on the I/O bus/fabric (e.g., PCI Ex-
press). As we describe later, the severity of this trade-
off can be reduced, though not eliminated, by decou-
pling the switching mechanism from the data transfer
mechanism.

• Switching in the virtualization software. It may be
preferable to do packet switching in software (e.g. in

the hypervisor or driver domain) if the I/O subsystem
is overloaded and becomes a scarce resource. This op-
tion may become more attractive in the future as the
number of available CPU cores increases making CPU
cycles a cheap resource when compared to a shared
I/O subsystem. Software switching is also required in
cases where the number of guests exceeds the number
of virtual interfaces supported in hardware.

• Switching in the source guest.Packet switching can
also be done in the guest[3]. A guest can have di-
rect shared memory channels with other guests and
forward packets directly to the appropriate destination
guest, avoiding the cost of executing code in a third
party privileged entity such as the hypervisor. This
may be even more beneficial when using the driver do-
main model which usually has higher cost than when
using the hypervisor. Even when using atype-3 di-
rect I/O NIC it may be beneficial to bypass the hard-
ware switch and route packets to other guests directly
in the guest virtual device driver, to reduce load on the
I/O bus/fabric and avoid the latency of the NIC switch.
Direct guest to guest channels can provide good per-
formance but are not appropriate if traffic management
rules such as firewalls have to be enforced by the vir-
tualization layer. Using direct guest to guest chan-
nels exclusively may not be the best choice for sys-
tems with large numbers of guests, since each guest
would pay a cost to process events across a large num-
ber of channels. Also, the required number of channels
scales as the square of the number of guests. There-
fore, an attractive configuration for a large number of
guests is a combination of direct guest channels for
guest pairs with high traffic intensity and switching
outside the guest for the remaining guest pairs.



Driver Domain

Xen Hypervisor

Physical 
Driver

Hardware

Guest Domain Guest Domain

control

kernel

VF PF VF

Physical 
Driver

Physical 
Driver

HW
switch

kernel

Driver Domain

Xen Hypervisor

Physical 
Driver

Physical 
Driver

Physical 
Driver

Hardware

Guest Domain Guest Domain

controlcontrol

kernel

VF PF VF

Physical 
Driver

Physical 
Driver

Physical 
Driver

Physical 
Driver

Physical 
Driver

Physical 
Driver

HW
switch

kernel

Figure 4: Direct I/O with HW switch

3.3 Data Transfer

Although physical switches transfer data while switching
packets, it is useful to separate data movement from the
switch function in a virtual machine environment. For
local guest to guest communication, the packet data and
the destination data buffer are both located in the mem-
ory subsystem. Therefore, the data transfer can be per-
formed using a direct memory copy that avoids transfer-
ring packet data through switching intermediaries. The
switching mechanism only needs to forward metadata
containing handles that point to the packet data. We call
this approach envelope switching.

Envelope switching can improve the efficiency of the
I/O virtualization subsystem. For example, in the cur-
rent version of Xen (3.3), packets are switched using the
software bridge in the driver domain, and packet data is
copied from the sender guest memory to the destination
memory in the backend driver (which is also located in
the driver domain). Recent work[7] has shown that it is
more efficient to do the data copy in the destination guest
than in the driver domain. This is because in a SMP sys-
tem the guest and the driver domain are likely to be exe-
cuted in different CPUs and doing the copy in the receiv-
ing guest has the advantage of bringing the data to the
guest CPU cache. The guest CPU that is likely to access
the data later and thus can benefit from a cache hit. En-
abling the data transfer to be done later after the packet
is routed and delivered to its destination thus allows the
use of more efficient mechanisms.

Envelope switching can also be used with a hardware
switch in the NIC. The switch just needs to forward the
metadata to the destination virtual interface and soft-
ware can do the copy after the “envelope” is received
at the destination guest. The advantage of using enve-
lope switching instead of regular hardware switching is

that it avoids the cost of transferring the data through the
I/O bus (or PCIe fabric) from the source memory to the
NIC and then back to the destination memory. Enve-
lope switching should enable higher data rates for intra
node traffic as the I/O bandwidth is usually lower than
the memory system bandwidth.

We observe that hardware envelope switching does not
require special support in the NIC, except for the already
existing switching capability between virtual interfaces.
The guest can transfer the metadata with data pointers as
a small regular ethernet packet with a special type used to
distinguish envelopes from regular packets. The receiver
could then detect that the packet contains metadata and
use a safe data copy mechanism that transfers the data
from the source buffer at the sender to the local receiver
buffer. The receiver should also send a small packet back
to the sender after the data copy is complete to notify that
the buffer can be freed.

Data transfers need to be protected and constrained to
memory that belongs to the guest for which the I/O is
performed to provide safe isolation between virtual ma-
chines. If using atype-3 NIC with traditional switching
in hardware, an IOMMU is required to ensure DMA op-
erations are safe. If however envelope switching is used,
a safe data copy mechanism provided by the hypervisor
is required instead. In Xen, thegrant mechanism enables
safe data copies in software.

In general, the choice of usingenvelope or traditional
can also be a configuration choice and depend on which
resource is higher demand, the I/O bus or CPU. This
choice can even be dynamic based on workload con-
ditions. In this case, it is important to have a mem-
ory protection mechanism that is unified across hard-
ware and software. In Xen, this can be accomplished
by having both grant table entries and IOMMU table en-
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Figure 5: Flexible Network I/O Virtualization Architecture

tries represent the same address space and have the same
translation in both tables. Therefore the guest could use
the same pseudo-physical address regardless if the data
transfer is done by hardware or by software.

We note however that the current Xen grant mech-
anism needs to be extended to be used with envelope
switching. The grant mechanism requires that the source
domain specify which domain is granted access to its
page. Although this works fine with regular switching
where the data copy is performed by the driver domain, it
creates difficulties for envelope switching since the desti-
nation domain is not known until the switching function
is performed.

To enable safe data copy at the destination guest with
envelope switching we proposeguest destination map-
ping. In this approach, the transmitting guest device
driver performs a switching function to map the packet
destination to the domain id of the destination guest if it
is local. The guest domain is provided with a read-only
hash table that maps each destination MAC address to
the corresponding destination guest domain id. This al-
lows the transmitting guest to issue a grant to the correct
destination guest domain. This approach requires mini-
mal hypervisor changes and can be used with hardware
envelope switching. Although it requires additional sup-
port in the guests, these changes can be contained in the
virtual device driver.

We considered and rejected two alternatives to our
guest destination mapping approach. As discussed in [7]
the grant mechanism can be extended to enable grant
transitivity. With this mechanism a domain with spe-
cial privilege such as the driver domain could transfer the
right to access a granted page from one guest to another

guest. This could be accomplished by creating a special
grant which instead of specifying a physical page owned
by the domain specifies a grant provided by another do-
main. The hypervisor would then check if both the orig-
inal and the indirect grant are valid when the destination
domain requests a data copy using the grant. The main
advantages of this approach is that it requires no sup-
port in the guest and the extension to the hypervisor grant
mechanism is relatively simple. However, this approach
cannot be used with envelope switching in hardware.

The second alternative that we considered was to mod-
ify the grant mechanism to allow grants with keys. These
special grants would be associated with keys instead of
using domain ids. The key would be transferred with the
grant reference to the destination domain. The hypervi-
sor would then allow the grant to be used by any domain
which had a valid key, but the grant would be automat-
ically revoked after its first use to prevent unauthorized
use. The main advantage of this mechanism is that it can
be used with hardware envelope switching, but has the
disadvantage that significant modifications to the grant
mechanism would be required in both the hypervisor and
guests.

4 A Flexible Network I/O Virtualization
Architecture

The right choice of all the configuration options we de-
scribed must be determined based on high level poli-
cies, hardware capabilities, resource availability, work-
load conditions, etc. To enable this vision, we need a
flexible network I/O virtualization architecture that al-



lows all possible configurations that could be chosen by a
network I/O virtualization manager as illustrated in Fig-
ure 5.

The architecture shown in Figure 5 has the flexibility
to do packet switching in any of the modes described in
3.2. When a guest is created or migrated to a different
machine, a network I/O virtualization manager running
in a privileged domain (e.g Xen domain 0) configures
the I/O virtualization mechanisms based on system poli-
cies and resource constraints of the current machine us-
ing a control plane such as the xenstore/xenbus mecha-
nism in Xen. The manager can also change the configu-
ration while the guest is running depending on workload
condition changes. The manager creates I/O channels be-
tween guests and a driver domain and/or between guest
pairs depending on the selected configuration. If a di-
rect I/O option is selected and a virtual function (VF) is
assigned to the guest, the manager configures the NIC
virtual function through a control agent running in the
driver domain. In addition the manager informs the fron-
tend driver which network interface should be used for
the direct I/O path. In this case the frontend driver con-
figures itself as a bonding device integrating the physical
device driver interface and one or more I/O channels as
a single virtual network interface that is exposed to the
guest kernel. The manager also configures the software
switch in the driver domain and the hardware switch in
the NIC (if used) with the desired traffic management
policies. The manager also exports a shared memory for-
warding table to each frontend driver, which implements
a hash table that maps destination MAC address to output
channel and destination guest domain id. This table lists
virtual interfaces that are co-located in the same physi-
cal machine which are allowed to communicate, i.e. that
belong to the same logical network or VLAN. This table
serves two purposes. First it is used by a guest switch
to select the route to reach a particular virtual interface
given its MAC address. For example if the NIC has a
hardware switch, the forwarding table could indicate if
a packet to a co-located guest should use a particular
I/O channel or the physical interface depending if both
source and destination guests have a direct I/O path to
the NIC or not. If the destination MAC address is not
local then it will not be present in the forwarding table
and the frontend will choose a default route for external
traffic which could be an I/O channel to a driver domain
or a physical interface depending on the configuration.
In addition, the forwarding table also exports the domain
ids associated with the local virtual interfaces which is
necessary to support envelope switching. Using the do-
main id the sending guest can selectively grant I/O buffer
access to the receiving guest, which then can access the
transmitted data after the packet is delivered, regardless
if the packet is transmitted over an I/O channel or over a
physical interface.

By changing the default route to external traffic and
relevant forwarding table entries it is possible to dynam-

ically switch a guest from using direct I/O mode to us-
ing driver domain mode, or vice-versa. This flexibility
can be used to dynamically change which guests are as-
signed to a direct I/O NIC context based on workload
changes, when the number of guests exceeds the number
of hardware contexts. More importantly, this flexibility
enables live migration of guests to machines with het-
erogeneous hardware capabilities, similarly to the tech-
niques described in [4] and [8]. For example, if the
source machine has a NIC with direct I/O capability but
the destination machine does not, the frontend driver can
switch to driver domain operating mode after migration.
On migration the manager can map the same high level
policy requirements to the new resource constraints of
the destination machine and appropriately configure the
I/O virtualization mechanisms transparently to the guest
operating systems (except for the mechanisms supported
in the frontend driver).

5 Conclusion

In this paper we elaborated the challenges posed to users
and developers of virtual machine environments by the
emergence of diverse hardware support for network vir-
tualization in modern NICs. We believe that our work is
a promising first step toward providing a high-level man-
agement layer that would shield users from this complex-
ity, but much future work remains to achieve this goal.
While our system architecture exposes several configura-
tion options to higher level management, it may need fur-
ther extensions as new hardware or software techniques
for I/O virtualization are invented. In addition, big open
questions include how policies should be specified, and
what techniques can be developed to automatically map
policies onto mechanism configurations. We hope that
our work can stimulate further investigations in this im-
portant problem area.
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