Stub-Code Performance is Becoming Important

Andreas Haeberlen Jochen Liedtke Yoonho Park Lars Reuther Volkmar Uhlig

University of Karlsruhe IBM T.J.Watson Dresden University of Technology
System Architecture Group Hawthorne, NY 10532 Department of Computer Science
76128 Karlsruhe, Germany yoonho@us.ibm.com 01062 Dresden, Germany
{haeberlen,liedtke,uhlig}@ira.uka.de reuther@os.inf.tu-dresden.de
Abstract niently usable from an application programmer’s per-

spective. This requirement led to the development
As IPC mechanisms become faster, stub-code efficiencyf interface-definition languages (IDLs), e.g. Corba
becomes a performance issue for local client/server IDL [7], DCOM [3] and their corresponding IDL com-
RPCs and inter-component communication. Inefficient pilers. From interface procedure/method definitions,
and unnecessary complex marshalling code can almostsuch compilers generate stub code that marshals param-
double communication costs. We have developed aneters on the client side, communicates through IPC or
experimental new IDL compiler that produces near- RPC kernel primitives with the server, unmarshals the
optimal stub code fogccand the L4 microkernel. The parameters on the server side, invokes the corresponding
current experimentdDL* compiler cooperates with the server procedure/method, etc. As a result, a programmer
gcc compiler and its x86 code generator. Other com- can specify and use remote interfaces as easily as inter-
pilers or target machines would require different opti- nal ones.
mizations. In most cases, the generated stub code is ap- So far, IDL-compiler research has focused more on
proximately 3 times faster (and shorter) than the code generating code in a portable and adaptable way than
generated by a commonly used portable IDL compiler. on producing efficient stubs. In fact, stub-code per-
Benchmarks have shown that efficient stubs can increasgormance was insignificant for early microkernels that
application performance by more than 10 percent. The required multiple thousands of cycles per IPC. How-
results are applied within IBM'sSawMill project that ever, with high-performance IPC, stub-code efficiency
aims at technology for constructing multi-server operat- pecomes an issue.

Ing systems. For example, when using the Flick IDL compiler [4]
for the SawMill Linux file system [5], we found that the
generated user-level stub code consumed about 260 in-
structions per read request. When reading a 4K block
from the file system, the stub code adds an overhead of
Multi-server and component-based systems are promis-220ut 17% due to stub instructions. (The stub code may
ing architectural approaches for handling the ever- also generates further indirect costs through side effects

increasing complexity of operating and application sys- such as cache pollution.) Fo_r an industrial system, such
tems. Components or servers (and clients) communi-Overheads can no longer be ignored.
cate with each other through cross-domain method in- Hand coding of the aforementioned stub resulted
vocations. Such interface method invocations, if cross-in 80 instead of 260 instructions. Although this
ing protection boundaries, are typically implemented was a singular experiment, it gave us some evidence
through the inter-process communication (IPC) mech- that improving stub-code generation might be worth-
anisms offered by a microkernel. while. The potentially achievable reductions justified
Firstly, component interaction in such systems has @ compiler-construction experiment to explore whether
to be highly efficient. Therefore, for over a decade, near-optimal stub code can be generated at reasonable
performance-oriented research focused on microker-COsts.

1 Motivation

nel construction, in particular IPC performance, fi- This paper describes the resulting fDdompiler that
nally resulting in acceptable IPC overheads (10200 generates code fgccon x86 and the L4 microkernel.
cycles)[6, 2]. The current IDE is a prototype that purely focuses on

Secondly, component interaction has to be conve- generating efficient code. Portability and adaptability

are ignored and remain a topic for future work.

Structure of the paper Indirect Parts

Indirect Parts
This paper reports on progress that has been made with

IDL%, an experimental IDL compiler for the L4 mi-
crokernel. Section 2 sketches prerequisites for under-
standing the subsequent discussion such as IDL syn-
tax, L4-IPC mechanisms, and our experiences using thg Heaer Message Part Dopes Header Message Part Dopes
Flick IDL compiler in the SawMill project. Section 3
describes the stub-code model that was designed for Sender Receiver
the IDL* compiler, and Section 4 illustrates the code- (Address Space A) (Address Space B)
generation principles. Finally, Section 5 reports on the
achieved stub-code quality, Section 6 discusses the costs
of adapting the system to other processor architectures
and compilers, and Section 7 concludes.

—_—

Figure 1. Complex memory message in-
cluding indirect strings.

2 Prerequisites management on top of the microkernel. Special commu-

nication mechanisms based on shared regions can also

2.1 LA4/x86 IPC be constructed.

L4's [6] basic communication paradigm is synchronous
IPC. Typice_xl operations a_maend, rec_eive_, callatomic 22 SawMill
send&receive), and atomieply&wait. Rich message
types help to improve end-to-end IPC performance: IBM’s SawMill project aims at addressing the complex-
Register messagesnsist of a small number of 32-bit ity of developing and maintaining a variety of custom
words that are sent and received in general purpose regoperating systems. With the emergence of embedded
isters. On the x86 platform, up to 3 words (plus sender and personal systems, the need to create operating sys-
id and message descriptor) can be transferred as a regiems customized to device and application requirements
ister message. As there is no need for copy operationshas increased significantly. The development and main-
across address space boundaries, register messages haemance of these operating systems is quite unwieldy. As
the lowest IPC costs, e.g. 180 cycles on a Pentium Il a first step, theéSawMill project is developing an ap-
450 MHz. proach and tools to decompose existing operating sys-
Memory messagezan be used to copy longer mes- tems into flexibly reusable components. The next step is
sages from the sender's address space to the receiveto define an architecture upon which efficient and robust
Message size can be up to 2MB; however, this mech-operating systems can be composed. This framework is
anism is slower than a register message because it inbeing applied to Linux to creat®awMill Linux which
volves copying from/to memory, and the kernel might consists of Linux-based components running on top of
have to establish a temporary mapping to make both ad-the L4 microkernel. It provides typical system services
dress spaces available at the same time. through multiple user-level servers, such as file systems,
Indirect stringsavoid unnecessary copy operations device drivers and network systems. Further general
to/from the message buffer. Up to 31 strings can be components such as memory servers, task servers, and
included in a memory message. On the receiver side,access control managers enable the composition of a co-
buffers for such strings can be specified so that the IPCherent Linux system.
can copy directly from server object to client object or
vice versa. Scatter/gather permits strings to be gath-2_3 Flick
ered on the sender side and/or scattered on the receiver
side. Thus multiple blocks can be directly transferred to IDL Compilers such as Flick [4] are relatively easy to
a single receive buffer; a single send buffer can be split port to a new OS or middleware kernel, and they are ex-
into multiple blocks. Figure 1 illustrates how a complex tensible through new data types. The output of an IDL
memory message is transferred. compiler is typically used as input for a general-purpose
Map messagesnap pages or larger parts of the compiler, e.ggcg that a programmer uses for code de-
sender’s address space into the receiver’s space. Thivelopment. Easy adaptation of the IDL compiler to new
feature enables user-level pagers and main-memorygeneral-purpose compilers is a further relevant property.

Flick tries to generate efficient stub code by using in-

The IDL compiler generates a central code pattern

line functions and macros for the generated stubs when-that handles communication, decoding, marshalling, and
ever possible. Nevertheless, at least when combinedunmarshalling of parameters. This central server code

with gcg this results in huge amounts of data transfer
operations that are logically superfluous. In theory, a
compiler should be able to remove all of them. In prac-
tice, the required data flow analysis is too complicated,;
consequently, inefficient code is generated.

3 Designing a Stub Model
3.1 A Simple Stub Model

We first describe a simple stub model to illustrate the

tasks performed by stub code on the client side and on

typically includes a main loop that receives requests
from clients and distributes them to the correspond-
ing server procedure8/serer FOr eachMgenes the
IDL compiler generates a server stub that examines
the request packet and retrieves the input datem@r-
shalling. The stub then invokes the routine itself and
finally creates a reply for the client.

An IDL compiler should generate both the main loop
and the stubs automatically. Users should be able to eas-
ily modify the loop code, because they might want to
implement additional features, e.g. load balancing.

In detail, a thread that waits for client requests —

the server side. For this simple model, we assume that

a client invokes a procedure or methdfl that is sup-
plied by the server. Synchronization and concurrency
are ignored in this simple modeM hasin parameters
(values passed from the client to the serveu}param-

eters (result values passed from the server back to the

client), andinout parameters that are first passed to the
server and then overwritten by results coming back from
the server.

The IDL compiler generates a client stub procedure
Mjient for each functionM in the interface definition.
The client stub is called locally by the client application.

The fact remains hidden that the service function does
not run locally, but rather in another address space or
even on another computer thousands of miles away. The
client stub assembles a message with all the information
the server requires to complete the task, including all the

parametersriarshalling.

receives the request message and uses the
received key to determine which proce-
dure/methodVf should be invoked and which
parameters are expected and will be returned
by M;

extracts in and inout parameters from the re-
ceived request messagmnarshalling;

H
N

calls the server procedur®/server With the
extracted parameter values;

constructs aeply message and stores the re-
sult values of all inout and output parameters
of procedureMserver in that messagentar-
shalling);

sends the reply message back to the client.

Steps C2, SO, and S4 are basically determined by the un-

The message is then sent to the server, and the cliengjerlying IPC system, in our case by the L4 microkernel.
waits for the server’s reply. The reply message containssteps C4 and S2 are determined by the general-purpose

all out and inout result values. The client stub unpacks

compiler used, in our caggec. Marshalling and unmar-

these values from the message and stores them in th@na)ling, steps C1+S1 and S3+C3, are less restricted and

appropriate client parametersimarshalling. In detail,
the client stubV/cjient —

constructs aequesimessage that contains all
input and inout parameters, andkay that
identifies the procedure/method/ (mar-
shalling);

sends the request message to the server that
implementsi/ and waits for a reply message
from the server;

fills the inout and out parameters with data
received through the reply messagen-
marhalling); and

returns to the invoking client.

The server programmer implements a proceddtgrer
on the server side for each methafl of the interface
definition.

more crucial. As our experience with Flick shows, a less
optimal model can easily result in significant copy over-
head for marshalling and unmarshalling.

3.2 Marshalling Through Direct Stack Trans-
fer

To get an idea of how parameters can be communi-
cated most efficiently betweeM jient and Mserves WeE

first look at a local procedure calzccand many other

C compilers push input-parameter values on the stack
prior to procedure invocation. Figure 2 shows the stack
layout for a procedure called with 3 input parameters.
Now look at the remote case. Three parameter val-
ues have just been pushed on to the client stack (left,
Mgjieny). On the server side (right)/server would ide-

ally expect a stack of exactly the same content since

M vokes Mserver As a normal C function, it works on its
client Mserver input parameters (PTR, IN and the caller ID).

3. After returning fromMserver the stub removes pointer
and in parameters from the stack, pushes the return value
and an appropriate message header, and sends the result-
ing reply message to the client.

g i An immediate consequence of the stack and message
g i layouts is that the IDL compiler must sort parameters
P2 to enforce the sequence in, inout, dut.
3.3 Complex Data Types
At this time, the only data types IBlhandles are 32-
Figure 2. Procedure with 3 input parame- bit words and strings (up to 2 MB). It will be extended
ters. by pages to also handle mapping through IDL functions.

Any other data type can be implemented through those
basic types. Large objects like arrays or structs can be

Meenerhas exactly the same parameters fgen. Basi- transferred as strings, while small objects (characters,

cally, the stub code had to copy the stack frame one- shortintegers) may safely be extended to 32-bit words.

to-one from the client to the server stack. No addi- EXtending smaller objects to words has no additional

tional operations would be required for parameter mar- COStS sincegcc maps such objects to words anyhow

shalling/unmarshalling. when generating local function calls. Implementing
Since out parameters in C are typically implemented Iarg_e data types as ir_1direct strings is beneficial since it

through pointers (which are passed as in parameters), weavoids copying them into the message buffer.

have to extend the parameter set by pointers that point to

those variables that are later sent back to the client as out

parameters. Figure 3 illustrates the three basic layouts: 4 Generated Code — An Example

Function ID To further illustrate details, we analyze the output that
Header m the compiler generates for the functipfs_writeof the
@ ‘ 1/O ‘ ‘STR‘ physical file system (pfs):
int pfs_write([in] int handle,
Stack top [in, out] int *pos,
[in] intlen,

@ q PTRIN] 110 JouT|sTR| |STR [in] int data_size,

[in, size_is(data_size)] int *data);

Caller ID
° IDL* generates three files which contain the client stubs,

the server stubs and the main server loop. Client and
server stubs are generatedhas functions forgcc. The
server loop is in C so that it can easily be modified by an
application programmer. It is common to all functions
and decodes incoming requests, i.e. selects the appro-

Figure 3. Message layouts. (1): sent by the priate server function and invokes it through the server
client to the server; (2): received message, extended to

@]

Header
Return value

, /0 |oUT|STR|

server stack; (3): message sent back by the server to the stub:
client. setupNewBuffer();
ipcReceive();
do {
unpackQuery();
1. The client constructs a message that contains all in and callStub();
inout values (plus optional strings). The message buffer paCkReSPOHSG():_
has enough space to receive the reply message from the fg;‘;ﬁg"\‘/’\z‘f&fﬁro'
server. }while (1);

2. The server extends the received message by pointers that
make the inout and out parameters (and optional strings) 1A similar sorting mechanism is used to collect string parameters
accessible for the server proceduvBerver Then it in- and pages to be mapped.

Client stub

Table 1 shows the output IDBlcreates for the pfs_write()

call on the client side. Assuming it hands over two pa-
rameters in registers, this stub consists of 17 instruc-
tions. In detail, the code sections (referring to the num-

__inline___ extern sdword pfs_write(
sm_service_t __service, sdword handl,
sdword *pos, sdword len,
sdword data_size, sdword *data)

bers in the code) work as follows:

1. Create descriptors for indirect stringspfs_write() has
one input string*data , so a descriptor has to be cre-
ated.

2. Marshal parameters The input and inout parameters

are pushed on the stack; inout parameters go first. Note

that the last two parameterleff andhandl) are not
pushed, but loaded into tliEBXandEDI registers.

3. Generate message head&he header specifies the num-

ber of dwords to be transferred for both directions, as
well as one dword for the mapping function, which is not

used here.
4. Load registers for IPC and supply function keyDL*

needs to specify the send and receive buffer addresseg
and a timeout. The function key is transferred via regis-

ters and loaded here as well.
5. Invoke IPC call

6. Unmarshal server outputin the case of pfs_write(), a
return value and th&pos parameter must be handled.

These can be transferred via registers, so the memory|

buffer is entirely discarded.

Server stub

The stub (see Table 2) is called from the server loop. It
converts the request message from the client into a stacl

frame for the server function:

1. Move the stack pointeio the message buffer. The mes-

sage header and the function ID (which is the first dword

in the payload) can be overwritten, so the rie8Ppoints
to the fifth dword in the buffer.

2. Add pointers to strings and output valuésrst, a pointer
to *pos is pushed, then one to the input string buffer.
Finally, the ID of the source thread is supplied.

3. Perform function call
4. Create reply messageThe input values and pointers

dword __return;
int dummyO,dummy1,dummy2,dummy3;
asm volatile (sub

asm volatile (pushl
asm volatile (pushl

$8, %esp);
%0 ::"g" ((int)data)); // (1) push in string
%0 ::"g" (data_size)); // descriptor

asm volatile (pushl
asm volatile (pushl

%0 ::"g" (*pos)); 11 (2) push 2 in
%0 ::"g" (data_size)); // parameters

asm volatile (

sub $12, %%esp

pushl $0xA100 /I (3) msg header,

pushl $0x8000 /I bits describe msg struct
pushl $0

mov %%esp, %%eax // (4) ipc register setup

pushl %%ebp /I save frame prt reg

xor %%ebp, %%ebp /I reply msg type = short
mov func_id, %%edx // function key

xor %%ecx, %%ecx /I timeouts = infinity

int $0x30 // (5)

%%ebp I (6) (restore frame ptr reg)
$48, %%esp /I release stack space

popl
add

:"=S" (dummy0), "=d" (__return),

1 "S" (__service), "D" (len),
"b" (handl)
: "%eax", "%ecx"

);

return __return;

}

Table 1. Client stub forpfs_write

5 Performance

5.1 Measurement Environment — SawMill
Linux

IDL* is used in thesawMill project for component com-
munications.SawMill Linux is a Linux-derived multi-
server OS where physical file systems (PFS), file and

are discarded, then the return value and a new messagq, iffer cache. device drivers. network stack. VM sub-

header are added.

5. Restore the stack pointelts original value was saved in
EBPduring the function call, as it is the only register that
is automatically saved bgcc

systems such as anonymous memory, etc. are all imple-
mented as user-level servers that communicate through
L4 IPC and IDE stubs.

For SawMill, we analyze the stubs that are required
to let a normal Linux process execute file-system op-
erations such aspen, read,and write. The physical
file system we used in the experiments is compatible to

__inline___ extern void *call_pfs_write(void *buf,
int com_source, int *strlist)

{

int __return,dummyO,dummy1;

asm volatile (
pushl %%ebp
mov %%esp, %%ebp
mov %%eax, %%esp

Il (1)

mov %%eax, %%edi
add $12, %%edi
pushl %%edi

pushl 4(%%esi)

pushl %%ebx

I (2)

call _pfs_write 11 (3)
add $24, %%esp
pushl %%eax
pushl $0x2000
pushl $0x2000

pushl $0

11 (4)

mov %%esp, %%eax
mov %%ebp, %%esp
popl %%ebp

1 (5)

:"=a" (__return), "=b" (dummy0),

:"a" (buf), "b" (com_source),
"S" ((int)strlist)
: "%ecx", "%edx", "%edi"

);

return (void*)__return;

Table 2. Server stub fopfs_write

Linux’ ext2. In fact, theext2 code was extracted from
Linux and then combined with IDkgenerated server
templates. The resulting ext2-compliant PFS runs as

a user-level server in its own address space. Libraries

have been modified such that now fdtubs and L4 IPC
communicate wittSawMill servers. Aropenrequest is
always sent first to the virtual file system (VFS) which

propagates it to the corresponding PFS server. Subse

quentread/writerequests, however, are handled through
direct communication between the user application and
that PFS server, i.e., need only one RPC (two IPCs).

The normalSawMillLinux has all stubs generated by
the IDL* compiler. In addition, we generated a second
version of SawMill Linux whose stubs were all gener-
ated by the Flick compiler. For both versions, we mea-
sured stub instructions and application performance.

For our measurements, we used a Pentium Il running
at 500 MHz with 64 MB of main memory and a 540 MB
IDE disk drive (IBM DALA-3540).

5.2 Effects On I0zone Throughput

The 10zone benchmark [1] begins by writing a file of
64kB, then it reads the contents twice. In the second
read phase, all requests can be backed by the page cache.
The performance of the second phase is completely de-
termined by processor operations, basically for commu-
nication and for copying data into the user program’s
buffer, and not by disk accesses.

We measured reread throughput where 10zone read
4 KB? of file data per read request. Table 3 presents the
overall performance results reported by I0zone (ten con-
secutive iterations). IDLimproves the I0zone through-
put by approximately 13%. The time for a 4-KB read re-
quest decreases from 8.8 to 7.0us. Since reread costs
are dominated by the data copy costs this result can only
be explained by significant improvements in stub code.

I0zone reread throughput on SawMill Linux
using
IDL? stubs

569 KB/s+18kB/s (+13%)

Flick stubs

503 kB/s+17 kB/s

Table 3. Overall throughput £ standard devia-
tion) in the 10zone benchmark.

5.3 Stub-Code Instructions

To analyze the stub-code performance, we counted
the executed instructions for the Flick-generated and
the IDL%-generated stubs. Table 4 compares the re-
sults for threeSawMill file-system functionspfs_open,
pfs_write,andpfs_get_direntriesThe numbers include

all instructions that are executed in stubs and in the cen-
tral server loop. For comparison, the number of instruc-
tions the L4 microkernel executes for the corresponding
IPCs is also included. (Note that complex operations
such as block transfer operations are counted per itera-
tion.) The effective communication costs are then given
by adding the stub costs —either Flick or Bk to the

IPC costs.

2Longer read requests effectively decrease application per-
formance, independently of whether pure monolithic Linux or
SawMillFlick or SawMillIDL* is used: The Pentium L1 cache has
a size of 16 KB. If, e.g., 8 KB of data are copied from the page cache
to the user buffer, this operation already floods the entire cache. So ev-
ery other application or file system data access leads at first to a cache
miss. Furthermore, since some further cache lines are also used for the
data copy, the first part of the user buffer will be flushed from L1 at the
end of the copy operation. Effectively, most application accesses to
the data read will thus also lead to L1 cache miss except if a clever ap-
plication would read its data or if the OS would copy its data in reverse
direction.

int pfs_open (fin] int client, fobj, flags, mode, [out] int *handle) experience, we can give some raw estimates about the
costs to adapt IDLto other architectures:

IPC (kernel) Flick stub IDL? stub
client — server 163 116 65 (—44%) New register link conditions: Low adaptation costs,
client < server 95 105 37 (-61%) comparable to those that are required to modify the
total 258 221 102 (-54%) C bindings for all 7 microkernel system calls.
eff. comm. instructions, IPCs+stubs 479 360 (-25%) |

Different Processor: Low adaptation costs as long as
the stack layout is similar. Basically, the stub tem-

int pfs_write ([in] int handle, [in,out] *pos, [in] int len, data_size, pIates used by the IDLcode generator have to
i i is dat i int *dat; . .
[in, size_ls data_size] int *data) be translated into the new machine/assembler lan-
IPC (kernel) Flick stub IDL4 stub guage.
client — server 248 150 73 (-51%) . . .
. Different stack layout: Depending on how different
client « server 95 105 38 (-64%) . . .
the stack layout is, adaptation costs might be lower
total 343 255 111 (-56%)
or higher. Different orderings or distances on the
eff. comm. instructions, IPCs+stubs 598 454 (-24%) |

stack are easy; a runtime model without a stack
might require designing a new data model for

int pfs_get direntries ([in] int handle, [in,out] *pos, [in] int count, cross-address space parameter transfer.
[out] int data_size, [out, size_is data_size] int **data)

Different C compiler: Easy if the C compiler offeris-

IPC (kernel) | Flickstub | DL stub line asmprocedures exactly likgcc. Medium-high
client — server 157 145 79 (-46%) costs if the compiler offers basically the same fea-
client « server 248 140 42 (70%) tures but uses different syntax. Impossible or inef-
total 405 285 121 (-58%) fective if the compiler offers no such features.

| eff. comm. instructions,IPCs+stubs| 690 | 526 (-24%) | o » .
The last point is probably the most critical one. Opti-
mization is hard or even impossible if the C compiler

Table 4. Instructions executed for Flick anBL* does not offer access to its code generation process.
stubs (client+server). ThE#°C column shows the However, this seems to be an inherent problem of sep-
instructions executed by the microkernel per IPC arating the IDL and the programming language. In all
(this depends on message type and size). €fhe other cases, the adaptation costs are similar if not lower
fective communication instructionsare the sum than porting a normal compiler.

of the requiredPC (kernel) instructionglus the

user) instructions of the stubs. .
(user) 7 Conclusions

IDL* shows that efficient stub code can be generated
Flick stubs take almost as many instructions as the with reasonable effort. With the availability of fast IPC,
microkernel needs for the IPC system call (including the gains achievable through optimized stub code are be-
the message copy). Current IDktubs use only half ~ coming relevant for component-based systems. Multi-
as many instructions. server operating systems can probably not be built effi-
ciently without such optimized stubs.
We have shown that significant performance im-
6 Portability Versus Specialization provements are possible. Nevertheless, it is still open,
how far the current IDt-generated stubs are from the
The IDL* experiment gave us some evidence that spe-optimum.
cialization in stub-code generation pays and is perhaps The optimized stub-code generation requires special-
even necessary for industrial acceptance of componentization of the IDL compiler’s code generator in two di-
based system construction. However, the obvious ques-mensions, firstly, toward the target programming lan-
tions are (1) how portable can an optimizing IDL code guage and compiler, secondly, toward the target ma-
generator be made, and (2) what efforts are required tochine. In this area, two questions are still open: (1) How
port a specific code generator to a different compiler or specialized (with respect to acceptable efficiency) must
machine architecture? an optimizing IDL compiler be? (2) Can we find a small
Currently, the IDE code generation is specialized for set of templates and/or methods that permit easy and
the gcccompiler and x86 processors. From our current low-cost specialization of an optimizing IDL compiler

for most existing programming-language compilers and
hardware architectures?

An obvious next step therefore is to determine

whether and how the current results can be generalized.
An ideal solution would permit extension of the portable
Flick compiler with the presented code-generation tech-
nigues.

References

(1]

(2]

(3]

(4]

(5]

(el

(7]

The 10Zone filesystem benchmaAgpril 2000. Available from
http://www.iozone.org/.

J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz, and C. Small.
Pebble: A component-based operating system for embedded ap-
plications.Proc. USENIX Workshop on Embedded Syst@ages
55-65, 1999.

G. Eddon and H. Eddon.Inside Distributed COM Microsoft
Press, 1998.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
storm. Flick: A flexible, optimizing idl compilerProceedings of
the ACM SIGPLAN '97 Conference on Programming Language
Design and Implementation (PLDPages 44-56, June 1997.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin
Elphinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller,
and Lars Reuther. The SawMill multi-server approach. In
9th ACM SIGOPS European Workshdfoldingfjord, Denmark,
September 2000.

H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter.
The performance ofi-kernel-based systems. 1§th ACM Sym-
posium on Operating System Principles (SQ®Byes 66—77, St.
Malo, oct 1997.

The Object Management Group (OMG)The Complete COR-
BAServices Bookhttp://www.omg.org/library/csindx.html.

	Abstract
	1 Motivation
	2 Prerequisites
	2.1 L4/x86 IPC
	2.2 SawMill
	2.3 Flick

	3 Designing a Stub Model
	3.1 A Simple Stub Model
	3.2 Marshalling Through Direct Stack Transfer
	3.3 Complex Data Types

	4 Generated Code - An Example
	5 Performance
	5.1 Measurement Environment - SawMill Linux
	5.2 Effects On IOzone Throughput
	5.3 Stub-Code Instructions

	6 Portability Versus Specialization
	7 Conclusions
	References

