
USENIX Association

Proceedings of the
2nd Workshop on Industrial Experiences

with Systems Software

Boston, Massachusetts, USA
December 8, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using End-User Latency to Manage Internet Infrastructure
J. Bradley Chen and Michael Perkowitz

Appliant, Inc.

Abstract
Performance is a requirement for all interactive
applications. For Internet-based distributed
applications, the need is even more acute – users have a
choice about where they browse, and if a site’s
performance frustrates them they may never return. The
goal of this paper is to demonstrate the power of end-to-
end latency measurements of actual site traffic for
assuring the performance of Internet applications. We
briefly describe a system for collecting true end-to-end
latency measurements from real site traffic and describe
how such measurements can be used to improve user
experience. We give examples to show how to use such
measurements to evaluate site performance, pinpoint
failures, and elucidate capacity issues. We argue that, as
services delivered via the Internet become both more
widespread and more complex, accurate measurement
of site performance is of vital importance for both
maintaining and improving end-user experience.

1. Introduction
Performance is critical to the success of all interactive
applications. Although performance is too often
neglected as an explicit requirement for distributed
applications, performance problems are effectively the
same as availability problems – once the user is gone, it
does not matter if the system was down or simply too
slow. A number of previous publications [1, 3, 5, 10,
13] argue that end-to-end [16] latency as experienced
by application users is a key and often neglected
measure of application performance. Unfortunately,
true end-to-end latency data can be difficult to obtain,
and is often no easier to analyze. This paper discusses a
system that collects and analyzes data from the users of
a Web-based Internet application, for the detection and
diagnosis of a broad range of distributed system service
problems. We have found that end-user response time
information can be collected with no noticeable impact
on end-user experience. Given appropriate analysis
techniques, the resulting information can be used to
detect and diagnose a broad range of problems across
the entire content delivery chain. Such performance
measurements complement usage information
commonly derived from server traffic log file analysis.

Our goal in this paper is build on prior work in the area
of latency analysis of interactive applications. We
demonstrate the broad utility of end-user response time
data in managing a Web-based service. We further
describe the challenges in creating a product to track
site problems and help managers detect and diagnose
end-to-end service problems.

2. Related Work
Approaches to performance monitoring may be divided
into two general categories: robot-based and traffic-
based. Robot-based techniques measure the
performance of artificial robot-generated traffic as an
indicator of overall performance. Because the agent
doing the measurement has control over the interaction,
precise measurement of various components of the
interaction may be made. Additionally, variables such
as client operating system, web browser, and type of
internet connection are known and controlled.
Unfortunately, this advantage is also the weakness of
robot-based measurement: because the client and
interaction are formulaically controlled, they do not
mirror the ever-changing nature of user behavior or the
distribution of different user types. Differences among
users can affect their experience, and robot-based
measurement may miss those differences. A number of
popular commercial services collect performance
information based on robot data, including the Gomez
Performance Network (www.gomeznetworks.com), the
Perspective service from Keynote Systems
(www.keynote.com), and Topaz Active Watch and
Freshwater SiteSeer from Mercury Interactive
(www.mercuryinteractive.com). Product offerings
based on robot data include Agilent FireHunter
(www.agilent.com), BMC SiteAngel (www.bmc.com),
RedAlert from Keynote Systems and Freshwater
SiteScope from Mercury Interactive.

Traffic-based techniques measure the performance of
real user traffic in order to indicate application
performance. In this case, the application must
generally be instrumented to provide performance data.
Traffic-based approaches accurately reflect the wide
variation of end users and their differing experiences of
the application. However, taking measurements from a
wide variety of user types, in real time, without hurting
user experience presents a significant technical

challenge. The greatest hurdle is that of successfully
instrumenting the client side of the interaction in order
to measure true end-to-end latency. Because of the
technical hurdles, traffic-based performance
management services are less common than robot-based
ones. One such service is offered by WebHancer
(www.webhancer.com). WebHancer’s technique for
measuring client-side performance is to provide an
executable program that users must install. This gives
WebHancer the ability to collect precise and accurate
information from the user desktop. The disadvantage of
this approach is that users must be persuaded to install
the monitor before the site can collect performance
information, possibly limiting the breadth of the
system’s coverage.

Though not in the performance management space,
several services provide usage data – information about
how users interact with a web site – by monitoring real
traffic. These include WebTrends from NetIQ
(www.netiq.com) and Hitbox from WebSideStory
(www.websidestory.com). These services typically
analyze web server logs or use lightweight JavaScript
content to record basic user activity. Neither offers end-
to-end latency as a metric.

3. Appliant’s Approach
In designing a performance management solution,
Appliant was convinced of two basic principles:

1. End-to-end latency is the most accurate
indicator of user experience.

2. User demographics and behavior affect user
experience.

Accordingly, we were driven to make the following
demands of our solution:

1. It should measure the real experience of real
users.

2. It should measure the experience of as many
users as possible.

A robot-based solution was ruled out by the necessity
of correlating user demographics with user experience.
Similarly, any solution that required users to explicitly
install software – an activity many were likely to find
irksome or even threatening – was ruled out.

Our approach instead was to annotate web pages with
JavaScript code that would perform the necessary
measurements. Because the script is loaded with the
page, it executes on the client and can record when a
page is first downloaded, when images are loaded, and
when the page completes. Page annotation requires only

that the site modify their pages (typically, modifying
only site-wide templates), with no installation required
of users. Because JavaScript is a widely adopted
internet standard, most browsers support it, ensuring
data from most of a site’s visitors. In this section we
discuss some of the technical hurdles facing this
approach and present our methodology in more detail.

3.1. Data Collection
Appliant’ s browser monitor uses annotations to HTML
documents that enable the Web content to monitor itself
as it is rendered. The annotation consists of an HTML
SCRIPT tag with an include statement that loads
Appliant’ s JavaScript subroutines. The use of an
include file simplifies the Web page annotation by
shortening the annotation. It also makes it possible for
the JavaScript to be cached by the browser. Caching
helps minimize Internet Service Provider (ISP) and
Content Delivery Network (CDN) fees, and minimizes
the overhead for loading JavaScript. The annotation and
JavaScript code is part of the page requested by the end
user, and is unloaded along with the rest of the page
when the browser loads a new document.

The JavaScript code consists of state management
routines plus a collection of event handlers that capture
various events provided by the Document Object Model
(DOM) [6, 18] to recognize and record state transitions
in the browser. The Appliant routines install event
handlers for the following JavaScript events:

• onAbort – loading interrupted

• onError – an error occurred while loading an
image

• onLoad – a document or image has finished
loading

• onReadyStateChange – the ready state of a
document or image has changed

• onStop – loading of a web page is stopped by
user

Care must be taken to insure that Appliant event
handlers pass events through to any handlers previously
registered by the page. Yet another problem is handlers
that fail to pass events through to the Appliant handlers.
This problem is common enough that we support a
monitor option that uses a periodic JavaScript timer
interrupt to confirm that the Appliant event handlers are
registered within the browser.

The browser monitor measures fetch time as the time to
load the HTML document, and render time as the time
to fully render that document within the browser

environment. We report render time as beginning when
the last byte of the HTML document is delivered to the
browser, and ending when the onload event fires
indicating the page has fully loaded, including the time
necessary to load and render any included images.
Although this simplification ignores parallelism in the
browser it simplifies interpretation of the data and
effectively reveals cases where render rather than fetch
is responsible for poor response time.

Conceptually, fetch time begins when a hyperlink is
selected to be loaded in the browser. In practice, it is
not always possible to begin measurement at that
instant. In a worst-case scenario, since our browser
monitor is not resident in the web browser, the first
chance it has to record a time stamp for the beginning
of the fetch time is when the top of the HTML
document arrives in the browser. In our preferred
deployment technique, a cookie is used to retain a
timestamp from the unload event of the previous page,
which occurs when the user clicks on a link. In this way
our monitor can provide very accurate fetch time
measurements for consecutive requests from the same
managed web site.

Even without using cookies, the fetch time
measurement can be very effective. Dynamic web sites
typically send a block of static HTML first, allowing
the browser to get started while other dynamic
components are being computed. If the entire page
arrives quickly, the fetch time measurement will be
inaccurate in a relative sense, although in an absolute
sense the page was very fast and performance is a non-
issue. If the page is delayed by slow content generation,
the fetch time measurement captures that slowness, and
the relative error is small. If the page is slowed due to
network delays, our fetch time measurement will reflect
that slowness unless the slowness is isolated to
connection setup. Overall, we have found that our slight
handicap in measuring connection setup time is more
than offset by the benefits of complete data, and rarely
interferes with our ability to identify problems with
end-to-end performance.

There are many opportunities for enhancing browsers to
be better sources of performance management data.
Currently we are able to capture response time for each
image request, but the browser does not expose whether
the image was loaded from the browser cache or
retrieved via the network. Another handicap is that the
precise size of an HTML document is difficult to
determine reliably. Such additional data from the
browser could substantially improve the quality of
performance data we collect.

Once monitoring of a page is complete, a data record is
transferred to the data manager using a standard HTTP
request. Complete data records are received by the data
manager, which generally resides in the same facility as
the servers for the managed web site. The data is
processed either daily or in real time, depending on the
Appliant product. The analysis subsystem generates
summaries that support multiple reporting systems.
This enables customers to access the information in
various forms, including canned reports via email, an
interactive Excel workbook, and a Web front-end to a
database.

Browser-side filtering of data is available, based on
response time thresholds, connection type or other
properties of the performance event. The browser
monitor also supports statistical sampling. This permits
our customers to manage the capacity of their data
management system, and greatly simplifies deployment
on high-traffic sites.

3.2. Data Analysis
Given the potentially large volume of performance data
resulting from end-user monitoring, the next challenge
is data collection. Realities such as firewalls oblige us
to stick with the well-established standards for Web
data transport to the desktop: HTTP/TCP/IP over port
80. Appliant systems use a centralized data collection
scheme layered over a simple Web server. Though
there are no theoretical problems to solve, there are
many practical challenges in delivering a product that
reliably handles hundreds or thousands of megabytes of
response time data on a daily basis. More specifically,
familiar challenges arise in terms of making the system
scalable and reliably available. Similar challenges
related to high data volume occur in data analysis, but
nothing unique to our system. Web log collation and
analysis provides a relevant example of strategies for
processing similar volumes of data. We apply standard
approaches such as cluster-based parallelism and
statistical sampling to address these system-level
challenges.

An interesting problem that arises in the analysis
process is treatment of 'noise' and outliers in the data
stream. A small amount of erroneous data is not
impossible in distributed systems that handle millions
of records per day over WAN TCP/IP connections [17].
Data inaccuracies can also occur due to phenomena
such as defects in browser implementations, local clock
adjustments that occur during a measurement, and
connections that operate at effective speeds of tens of
bytes per second. A more fundamental problem is that
wide-area network response time data commonly

exhibits an asymmetric heavy-tailed distribution [14],
for which the mean is not a robust statistic. For such
non-normal distributions, a trimmed-mean is a common
alternative measure that provides a more robust
measure of central tendency than the mean. [8, 12] A
trimmed mean is computed by excluding the extreme
n% of data points, where a common value for n is 5%.
Although this would provide a robust mean, identifying
the 5th percentile is computationally equivalent to a
median computation, which requires O(n) space, too
expensive for the large data sets handled by our system.
Instead we simply exclude values that exceed a
predefined "trim" threshold, and then confirm that the
amount of data trimmed was less than 5%. By default
the system trims data points with response time
exceeding 180 seconds. To date, simple strategies such
as these have been adequate to cope with the noise
inherent in end-user data.

Clock skew between the web server, browser client, and
data collector is a potential problem that was avoided
through the Appliant system design. A reality of the
Internet and the diversity of servers it hosts is that clock
skew is a common phenomenon – we routinely
encounter clocks skewed by hours or days even on
high-traffic, professionally managed sites. In
recognition of this reality we were deliberate in creating
a design that tolerates skewed clocks. The basic
strategy is that timestamps are assigned only on a small

number of dedicated servers within the host data-center.
Desktop machines do generate latency measurements,
but they do not assign time stamps. Clock skew is not
an issue for latency measurements since both the start
and stop time are measured relative to the same clock.

4. Analysis Examples

4.1. ISP and CDN Performance
Profiling
Performance is central to the value proposition for ISP
and CDN services. Without good performance data, it
can be difficult for CDNs to justify the value of their
services and for customers to know that they are getting
what they paid for. The collection and analysis of end-
user latency data makes it possible to obtain ISP and
CDN performance information of exceptional detail.
Figure 1 gives an example for an Internet community
site, showing performance improvements during the
first two weeks of CDN service for an example Web
site. In this case, the potential CDN customer was
skeptical about the CDN’s ability to improve
performance for dialup customers. The CDN used this
information to demonstrate that performance
improvements of 32-41% were achieved for the
customer’s site across all classes of end-users.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

6/
26

/0
1

6/
27

/0
1

6/
28

/0
1

6/
29

/0
1

6/
30

/0
1

7/
1/

01

7/
2/

01

7/
3/

01

7/
4/

01

7/
5/

01

7/
6/

01

7/
7/

01

7/
8/

01

7/
9/

01

7/
10

/0
1

7/
11

/0
1

7/
12

/0
1

7/
13

/0
1

7/
14

/0
1

7/
15

/0
1

7/
16

/0
1

Date

R
en

d
er

 T
im

e

high-speed

mid-speed

low-speed

Figure 1. Documenting CDN Performance Improvements. CDN
service began on 28 June 2001.

Even when ISPs and CDNs deliver good performance,
they do not provide equal benefit to all Internet users.
Performance data from end-users can be used to
quantify site performance all the way to the desktop,
thereby identifying network subnets that get the best
and the worst service. Figure 2 shows response time in
terms of fetch time and render time for an Internet
sports site, for the busiest IP address ranges as defined
by ARIN whois data1. Figure 2 shows US LAN-traffic

1 See ftp.arin.net and www.arin.net for more
information.

only2, as desktop connection type has a significant
impact on end-to-end response time. The figure shows
below-average performance for netblocks maintained
by the West Virginia K-12 system (WVK-12),
Kentucky Department of Information Systems, and Bell
Atlantic (now administered by Verizon). Together with
Figure 3, showing traffic levels for the same address

2 Connection type is obtained using the “clientCaps”
facility in Microsoft Internet Explorer. For more
information see
http://msdn.microsoft.com/workshop/author/behaviors/r
eference/behaviors/clientcaps.asp.

0

1

2

3

4

5

6

7

8

9

ALL

ATT

CO
X-A

TLANTA

RO
AD-R

UNNER-5

NETBLK-D
LA-C

UUNET63

STATE-O
HIO

W
VK-1

2

RO
AD-R

UNNER-1
GNTY-4

-0

NETBLK-O
O

L-4
BLK

ATTB-A
TL-3

CHARTER-M
I

KIH
NW

RESD-1
UUNET65

NETBLK-B
AIS

-P
UB-1

SPRIN
TLIN

K-B
LKS

DIG
ILIN

K

NETBLK-O
ARNET-C

BLK

USM
ANET-D

DN

S
ec

o
n

d
s

Response Time

Render Time

Fetch Time

Figure 2. Response Time for Busiest ARIN Netblocks, US LAN
traffic only.

0

100

200

300

400

500

600

700

ATT

COX-A
TLA

NTA

ROAD-R
UNNER-5

NETBLK
-D

LA-C
UUNET63

STATE-O
HIO

W
VK-1

2

ROAD-R
UNNER-1

G
NTY

-4-0

NETBLK
-O

OL-
4BLK

ATTB-A
TL-3

CHARTER-M
I

KIH
NW

RESD-1
UUNET65

NETBLK
-B

AIS
-P

UB-1

SPRIN
TL

IN
K-B

LK
S

DIG
ILIN

K

NETBLK
-O

ARNET-
CBLK

USM
ANET-D

DN

R
eq

u
es

ts

Figure 3. Traffic for Busiest ARIN Netblocks. US LAN traffic only.

ranges, this information enables a web site to identify
the Internet subnets that are most important in terms of
traffic volume, and compare their performance to the
site average (given by the ALL category). This
information can indicate situations where poor ISP
peering relationships or poorly performing CDN caches
are causing performance problems for specific end-
users.

Although these figures are useful for a high-level
analysis, additional detail is generally required to
validate problems and identify a cause. A key
observation is that the blocks of IP addresses defined by
whois data vary in size, and some are quite large. For a
finer-grain analysis, we commonly use a mapping based
on 24-bit prefixes. Table 1 shows WVK-12 subnets,
ordered by their contribution to the overall WVK-12
mean response time. These subnets include the slowest
WVK-12 subnet (168.216.124), and the fastest
(168.216.107). Assuming that the WVK-12 subnets
share the same path(s) to the Internet, the variance in
performance across these subnets implies that
performance problems are internal to WVK-12, as their
fastest subnets (and, by implication, all external Internet
factors) have satisfactory behavior.

Independent Requests Subnet
RT

delta
Mean

168.216.51 33 6.45 1.84
168.216.161 3 28.83 0.75
168.216.141 7 11.48 0.69
168.216.123 2 33.65 0.58
168.216.67 4 13.90 0.48
168.216.107 17 3.14 0.46
168.216.94 10 5.30 0.46
168.216.56 6 8.07 0.42
168.216.48 2 20.90 0.36
168.216.124 1 38.12 0.33

Table 1. WVK-12 Subnets with largest
contribution to Mean.

As a final example of finer-grained data, Table 2 shows
response time for the slowest 24-bit subnets with at
least 0.1% of total site traffic. We note that “whois”
data can often identify these subnets with surprising
precision. In this table, 216.236.222 is a satellite
services provider, and 134.134.248 is an Intel facility in
Santa Clara, CA. Making effective use of this level of
detail remains a challenge. Specific challenges include:

• Achieving a classification of appropriate
granularity

• Isolating ISPs such as AOL and NewSkies that
skew results due to atypical network properties

• Distinguishing “ last-mile” problems from
“middle-mile” problems

Regrettably, due to these challenges, solving network
problems remains in the domain of “networking
experts.” The goal of our continuing work is to further
automate the process of recognizing performance
incidents and identifying them to their authentic source.

Subnet n RT

216.236.222
NEW SKIES
SATELLITES N.V.

15 47.0

207.108.252
U S WEST
INTERNET
SERVICES

17 23.5

134.134.248
INTEL
CORPORATION

20 21.2

206.129.0 N2H2 12 14.3

209.133.187
STATE OF SOUTH
CAROLINA

14 10.2

170.158.130 ONONDAGA BOCES 16 9.7

12.96.122
SHASTA COUNTY
OFFICE OF EDU.

21 9.7

204.171.48 VERIO 14 9.6

198.110.59
REGIONAL EDU.
MEDIA CENTER 4
(MI)

16 9.3

24.187.188
OPTIMUM ONLINE
(CABLEVISION)

14 9.1

216.81.96 ALMA TELEPHONE 12 8.6

209.124.103 AMNET US 23 8.5

205.154.229
GROSSMONT
UNION H.S.
DISTRICT

23 7.7

207.70.63
MICRON INTERNET
SERVICES

18 7.5

206.78.5 VISALIA UNIFIED 14 7.1

150.176.63
FLORIDA INFO.
RESOURCES NET

26 6.8

65.204.164
BBG
COMMUNICATIONS

32 6.6

209.205.203 PACNET 26 6.6

216.229.196
MISSISSIPPI DEPT.
OF EDUCATION

19 6.5

168.216.51
WV DEPARTMENT
OF EDUCATION

33 6.5

Table 2. Performance Detail by Class-C
subnet. US LAN traffic only, for

subnets with at least 0.1% site traffic.

4.2. Capacity Planning
To effectively plan site capacity, a site administrator
must be able to answer a number of questions:

• What is the capacity of the system?

• What is the offered load on the system?

• What resource or resources are the
bottlenecks?

Examples of potential bottlenecks include CPU cycles,
physical memory, memory bandwidth, IO bandwidth,

and LAN bandwidth. Bottlenecks can occur anywhere
in the system: Web servers, application servers,
database servers, or the network. When peak demand
exceeds system capacity, the result is performance
problems, system failures, or both.

End-user performance data is a very effective way to
answer these questions. Figure 4 shows a chart of page
requests by hour over a day for an example web site. It
shows a common pattern of traffic, with a peak in
traffic in the daytime and a corresponding trough at
night. The response time chart (Figure 5) and page
request charts have different shapes, indicating that

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
01

:0
0

T
im

e
02

:0
0

T
im

e
03

:0
0

T
im

e
04

:0
0

T
im

e
05

:0
0

T
im

e
06

:0
0

T
im

e
07

:0
0

T
im

e
08

:0
0

T
im

e
09

:0
0

T
im

e
10

:0
0

T
im

e
11

:0
0

T
im

e
12

:0
0

T
im

e
13

:0
0

T
im

e
14

:0
0

T
im

e
15

:0
0

T
im

e
16

:0
0

T
im

e
17

:0
0

T
im

e
18

:0
0

T
im

e
19

:0
0

T
im

e
20

:0
0

T
im

e
21

:0
0

T
im

e
22

:0
0

T
im

e
23

:0
0

T
im

e
24

:0
0

P
ag

e
R

eq
u

es
ts

Figure 4. Page Requests vs. Time over 24 Hours

0

2

4

6

8

10

12

14

16

18

T
im

e
01

:0
0

T
im

e
02

:0
0

T
im

e
03

:0
0

T
im

e
04

:0
0

T
im

e
05

:0
0

T
im

e
06

:0
0

T
im

e
07

:0
0

T
im

e
08

:0
0

T
im

e
09

:0
0

T
im

e
10

:0
0

T
im

e
11

:0
0

T
im

e
12

:0
0

T
im

e
13

:0
0

T
im

e
14

:0
0

T
im

e
15

:0
0

T
im

e
16

:0
0

T
im

e
17

:0
0

T
im

e
18

:0
0

T
im

e
19

:0
0

T
im

e
20

:0
0

T
im

e
21

:0
0

T
im

e
22

:0
0

T
im

e
23

:0
0

T
im

e
24

:0
0

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Figure 5. Site Load vs. Performance over 24 Hours

there is not a direct relationship between response time
and load. In this case the response time curve shows a
common pattern, with a faster average response time
when many users access the site from their fast work
connections, and slower traffic when more people use
dialups at home. If response time tracked page requests,
it would indicate a direct relationship between
performance and load, evidence that an internal
performance bottleneck was being stressed. The
independence of response time and load in these charts
indicates that the site has excess capacity, even at peak
hours. If it were the case that response time tracked
page requests, we could identify the bottleneck by
examining additional resource charts to discover where
resource utilization is correlated with performance
problems.

4.3. A Partial Server Failure
Availability management tools and robot-based
performance monitors can be very effective at
identifying complete site failures. They simply test the
site periodically and report as appropriate when a server
or the whole site appears to be offline. The problem
becomes more difficult, however, when a large and
complex content system needs to be tested, or when
server clusters are hidden behind a single IP address.
When a site becomes sufficiently mature to have
performance expectations as well as availability, end-
user data can identify a much broader class of site
problems.

As an example, Figure 6 illustrates response time by
server for a cluster of servers over a 24-hour period for
a web-based news site. At 6:00 AM, for example, most
servers are delivering similar performance of about 6
seconds average response time, but one server (server
5) has response time of about two seconds slower.
Across the 24-hour day, the same server was
consistently about two seconds slower. Such problems
can be extremely difficult to detect with robot-based
data sources.

Considering request rates for the same time period,
Figure 7 shows two kinds of servers. The bottom server
(server 1) is a four-way multiprocessor. It receives
about half as much traffic as the eight-way machines
along the higher curve. The surprise is that the top
server is the same eight-way system (server 5) that had
response time problems in Figure 6. The load balancer
is actually directing about 20% more traffic to the
slowest server in the cluster. Load balancers generally
use server-side metric such as CPU utilization to make
decisions about distribution of load. In this case those
decisions were wrong. Ultimately the explanation for
these behaviors was that the deviant server was using
beta software. Such behavior could be caused by
throughput optimizations, for example, delaying
requests for a brief period so-as to apply a scheduling
optimization to a group or requests.

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20 22

Hour

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

server 1
server 2
server 3
server 4
server 5

Figure 6. Response Time by Server over 24 Hours

5. Discussion
The direct presentation of our technical results obscures
many of the challenges behind the development of the
software we describe in this paper. Indeed this system
had its share of challenges. In this section we document
some of the technically relevant ones.

Although the results in this paper relied exclusively on
data collected via JavaScript content annotations,
considerable effort went into alternative approaches to
data collection that we ultimately determined were not
suitable for our company or products. We briefly
considered building a network packet sniffer, such as
that used by Wolman et al. [19]. Although this
approach has many nice properties in terms of
completeness and accuracy, a number of practical
considerations caused us to exclude it early on, in
particular:

• Business requirement of a software (not
hardware) product

• Lack of in-house expertise

• Inability of sniffers to manage 3rd party content
and desktop errors

• Anticipated performance and scalability issues

These factors led us to exclude a packet monitor early
in our design process.

In addition to the JavaScript-based browser monitor,
early Appliant web-management systems also used a
server-side software component to measure application-

level response time plus system-level performance
metrics (such as CPU and memory statistics) from the
server perspective. The anticipated benefits included a
more precise measurement of server-side latency for
content generation, plus additional information for
diagnosing problems within a server. Initially we found
this component a challenge to support, although the
support burden became easily manageable after the
bumps of early releases. Ultimately we decided to
remove this monitor as a feature for the following
reasons:

• Considerable cost for developing and testing a
software component on a large matrix of
OS/Web Server platforms

• Customer resistance against installing an
executable software component on their
production systems

• Marginal data value, as response time is
available from desktop, and system-level
metrics are provided by management
frameworks.

As we describe in Section 4.3, powerful server
diagnosis is possible without a server-side software
install.

Another option we considered and then dismissed is a
client-side installation of executable code. The potential
benefits of such a configuration are significant. The
stability and richness of the OS APIs could provide
more precise measurements, a richer set of metrics, and
more complete measurements as well. Many of these

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

Hour

R
eq

u
es

ts
 (

x1
00

0)
server 1

server 2

server 3

server 4

server 5

Figure 7. Page Requests by Server over 24 hours

benefits derive from the fact that an executable
component avoids the security and privacy restrictions
of the browser environment. Ultimately we made little
use of this approach for the following reasons:

• Considerable cost for developing and testing a
software component on an exceptionally large
matrix of OS/Web browser platforms

• Customer resistance against installing
executable software components on desktops

• Additional metrics are of marginal incremental
value over data already available from
JavaScript monitor

• Use of a desktop executable raises many new
security and privacy issues

As compelling as the results we have achieved may be,
it can fairly be said that the hardest problems have not
been solved. Some of the key challenges we are
considering in our ongoing work include:

• Reliably recognize abnormal behavior

• Reliably ignoring non-problems

• Classifying problems by impact and
significance

• Combine multiple performance measurements
into a single indication of the root cause

5.1. Combining Performance and
Other Data
Application performance has a direct impact on user
satisfaction, but performance data alone is not sufficient
to show this relationship. By correlating performance
data with other information illustrative of customer
satisfaction or bottom-line success, we can determine
how tolerant users are and how important performance
improvements will be. Useful additional data can
include user behavior or sales figures. For example, we
may wish to find the correlation between average
performance and user session length; do users who
experience poor performance spend less time on the
site? Another option would be to examine user behavior
immediately following a slow page-load; do users give
up and depart when a page takes a long time to load? A
third possibility would be to look at the correlation
between performance and conversion rate – the
probability that a user will make a purchase.

Such analysis is, of course, useful in justifying the
importance of good application performance, but it can
also be used to prioritize infrastructure improvements.

Users tend to be more tolerant of some problems than
others, and limited infrastructure dollars can be
channeled to the most irksome problems. For example,
poor performance on catalog pages may discourage
browsers from ever becoming buyers, but once a
customer has committed to the checkout process, he is
less likely to abandon his session because of poor
performance. In this case, catalog infrastructure should
receive priority attention.

5.2. Social/Economic Challenges
There are many practical problems that have substantial
impact on our ability to deploy our solution and on the
feature set we are able to support. A few of the most
common problems are noted here.

Our solutions give strong Internet businesses an
opportunity to tune and focus the effectiveness of their
site. Just as high-end retailers use customer experience
to differentiate themselves from discounters, we believe
high-end web sites will use customer experience to
improve the experience for their users, and thereby
improve their bottom line. Unfortunately, many Web
sites are not ready for this level of service delivery.
They are overwhelmed with the struggle to keep
systems running, manage content updates, while coping
with tight and shrinking budgets. These problems are
exacerbated by software churn, which tends to prevent
systems from reaching maturity. As a result, many
online services are unwilling to monitor or assure end-
to-end service levels.

Another social challenge relates to privacy issues. At a
technical level we believe our position on privacy is
very strong. We assume that the managed Web system
generates or is able to generate log files for site usage
analysis. Given this assumption Appliant systems do
not change the balance of privacy for end users,
because they collect no additional information on
behavior. They do augment existing data with
performance and error information for diagnostic
purposes. All data is co-located with the managed web
site and under the control of the site administrator.
Since the site administrator already has access to
complete usage data for their site, the privacy balance
remains unchanged. The product does not require
cookies, although it can make use of cookies that are
already used by the site. The product does not support
or require the collection of zip codes, address
information or account numbers of any kind.

Although our position is quite defensible at a technical
level, prospective customers are frequently unable or
unwilling to consider the technical details. Frequently

they are obliged to take a very conservative position on
privacy: that any additional data collection is
unacceptable, regardless of the fact that additional data
is of diagnostic value only and does not reveal
information about individual users. For these sites, an
opt-out program can be used to achieve an acceptable
solution.

5.3. Prior Research in Latency
In the research community, the argument for use of
latency as a measure of system performance emerged
from prior concerns about the effectiveness of micro-
benchmarks and throughput benchmarks for measuring
system performance [1, 10, 11, 13]. Endo et al. made a
direct argument advocating such techniques [5].
Whereas the Endo study was limited to interactive
applications on a standalone desktop, our interest is in
interactive distributed applications on the Internet.
Since that publication, relatively little work has been
done on the subject, with the bulk of the work occurring
in the context of real-time but non-interactive
applications such as streaming media. Flautner et al. [7]
included latency-based analyses to show that real-time
apps benefit less from threading on a multiprocessor
than on a uniprocessor (15% vs. 4%). Jones and Regehr
[9] used latency measurements to analyze thread-
scheduling issues in support of real-time applications.

We note two prior publications that study latency in the
context of the Web. Wolman et al. [19] studied Web
end-user latency in the context of cooperative Web
proxy cache performance. Ramakrishnan and Elnozahy
[15] describe a system for collecting response time on
end-user browsers that has some similarities to ours,
particularly in the raw data that is collected. Although
this paper clearly predates the present work, we believe
that our systems were developed and released as
products prior to theirs. The Ramakrishnan paper
includes an ample discussion of the data collection
methodology on the client, along with one example of
analysis for a small Internet Web site. The present
paper builds on the Ramakrishnan publication by
documenting challenges in working with large
production Web sites, in contrast to the relatively small
site used by Ramakrishnan. Further, our experience in
working with response time data allows us to explore in
more detail the exceptional diagnostic power of end-
user information.

6. Conclusions
The performance of web sites and Internet applications
varies widely and is often the main factor in
determining the quality of the end-user experience.
End-to-end response time is a key measure of
performance, and we believe it to be a vital
differentiator for end users. Response time
measurements, moreover, are an important potential
resource for site development and operations. In this
paper we have demonstrated how such information,
derived from real traffic, can be used to systematically
analyze situations that are very difficult to detect or
diagnose without such measurements.

The systems described in this paper anticipate a day
when Web browsers and other end-points for Internet
applications expose detailed, accurate service quality
metrics through stable APIs. Ideally such measurements
would include end-to-end application-level
performance measurements, error detection, and failure
reporting. Although Appliant systems can provide this
information for the current Web infrastructure, the lack
of stable, consistent management APIs complicates the
implementation. We believe that the importance of
service level monitoring systems will increase as Web
services mature. In this context, outsourced
infrastructure and integration with third-party services
becomes more common, and their performance
becomes a requirement and a success factor. This is in
contrast to the status quo, where distributed application
performance is often considered only after deployment.

Acknowledgements

We would like to acknowledge the hard work and
dedication of the Appliant product and development
team. The results described in this paper are a direct
result of their commitment to fidelity in distributed
application performance management. We would also
like to thank Craig Partridge and the WIESS Program
Committee for their comments on preliminary drafts of
this paper.

Author Contact Information

Please note preferred email addresses for the authors as
follows:

J. Bradley Chen: brad.chen@acm.org

Mike Perkowitz: mike@perkowitz.net

7. References
1. Brian N. Bershad, Richard P. Draves, and

Alessandro Forin, “Using Microbenchmarks to
Evaluate System Performance.” Proceedings of the
Third Workshop on Workstation Operating
Systems, IEEE Computer Society, Los Alamitos
CA, April 1992.

2. J. Bradley Chen, “SLA Promises,” Appliant
Technical Note, June 2002. Available from
http://www.appliant.com/techresource/techresource
.php.

3. Erik Cota-Robles and James P. Held, “A
Performance of Windows Driver Model Latency
Performance on Windows NT and Windows 98,”
Third Symposium on Operating System Design and
Implementation, USENIX Association, Berkeley
CA, February 1999.

4. Kenneth Duda and David Cheriton, “Borrowed-
Virtual-Time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose
schedule.” Seventeenth ACM Symposium on
Operating System Principles, ACM, New York
NY, December 1999.

5. Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and
Margo Seltzer, “Using Latency to Evaluate
Interactive System Performance.” Second
Symposium on Operating System Design and
Implementation, USENIX Association, Berkeley,
CA, October 1996.

6. David Flanagan, “JavaScript, The Definitive
Guide, Third Edition.” O’Reilly and Associates,
Sebastopol, CA, 1998.

7. Kriztian Flautner, Rich Uhlig, Steve Reinhardt, and
Trevor Mudge, “Thread-Level Parallelism and
Interactive Performance of Desktop Applications,”
Ninth International Conference on Architectural
Support for Programming Languages and
Operating Systems. ACM, New York NY,
November 2000.

8. David C. Hoaglin, Frederick Mosteller, John W.
Tukey, Understanding Robust and Exploratory
Data Analysis. John Wiley and Sons, Hoboken NJ,
2000.

9. Mike Jones and John Regehr, “The Problems
You’ re Having May Not Be the Problems You
Think You’ re Having.” The Seventh Symposium on
Hot Topics in Operating Systems, IEEE Computer
Society, Los Alamitos, CA, March 1999.

10. Jeffrey C. Mogul, “SPECmarks are leading us
astray.” Proceedings of the Third Workshop on
Workstation Operating Systems, IEEE Computer
Society, Los Alamitos CA, April 1992.

11. Jeffrey C. Mogul, “Brittle metrics in operating
systems research.” The Seventh Symposium on Hot
Topics in Operating Systems, IEEE Computer
Society, Los Alamitos, CA, March 1999.

12. NIST/SEMATECH e-Handbook of Statistical
Methods,
http://www.itl.nist.gov/div898/handbook/,
September 2002.

13. John Ousterhaut, “Why Operating Systems Aren’ t
Getting Faster As Fast As Hardware.” Proceedings
of the Summer 1991 USENIX Conference,
USENIX Association, Berkeley CA, June 1991.

14. Vern Paxson and Sally Floyd, “Wide Area Traffic:
The Failure of Poisson Modeling.” IEEE/ACM
Transactions on Networking, Volume 3, Number 3,
1995, pg 226-244.

15. Ramakrishnan Rajamony and Mootaz Elnozahy,
”Measuring Client-Perceived Response Times on
the WWW.” USENIX Symposium on Internet
Technology and Systems, USENIX Association,
Berkeley, CA, March 2001.

16. Jerome H. Saltzer, David P. Reed, and David D.
Clark, “End-to-End Arguments in System Design,”
ACM Transactions in Computer Systems, Volume
2, Number 4. ACM, New York NY, November
1984

17. Jonathan Stone, Michael Greenwald, Craig
Partridge, and James Hughes, "Performance of
Checksums and CRCs over Real Data." IEEE/ACM
Transactions on Networking, Volume 6, Number 5,
ACM, New York NY, Oct 1998.

18. World Wide Web Consortium, “Document Object
Model (DOM) Level 2 HTML Specification,
Version 1.0.” Candidate Recommendation, June
2002. Available from
http://www.w3.org/TR/2002/CR-DOM-Level-2-
HTML-20020605

19. Alec Wolman, Geoff Voelker, Nitin Sharma, Neal
Cardwell, Anna Karlin, and Henry M. Levy, “On
the Scale and Performance of Cooperative Web
Proxy Caching.” Seventeenth ACM Symposium on
Operating System Principles, ACM, New York
NY, December 1999.

