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Abstract 
Performance is a requirement for all interactive 
applications. For Internet-based distributed 
applications, the need is even more acute – users have a 
choice about where they browse, and if a site’s 
performance frustrates them they may never return. The 
goal of this paper is to demonstrate the power of end-to-
end latency measurements of actual site traffic for 
assuring the performance of Internet applications. We 
briefly describe a system for collecting true end-to-end 
latency measurements from real site traffic and describe 
how such measurements can be used to improve user 
experience. We give examples to show how to use such 
measurements to evaluate site performance, pinpoint 
failures, and elucidate capacity issues. We argue that, as 
services delivered via the Internet become both more 
widespread and more complex, accurate measurement 
of site performance is of vital importance for both 
maintaining and improving end-user experience. 

1. Introduction 
Performance is critical to the success of all interactive 
applications. Although performance is too often 
neglected as an explicit requirement for distributed 
applications, performance problems are effectively the 
same as availability problems – once the user is gone, it 
does not matter if the system was down or simply too 
slow. A number of previous publications [1, 3, 5, 10, 
13] argue that end-to-end [16] latency as experienced 
by application users is a key and often neglected 
measure of application performance. Unfortunately, 
true end-to-end latency data can be difficult to obtain, 
and is often no easier to analyze. This paper discusses a 
system that collects and analyzes data from the users of 
a Web-based Internet application, for the detection and 
diagnosis of a broad range of distributed system service 
problems. We have found that end-user response time 
information can be collected with no noticeable impact 
on end-user experience. Given appropriate analysis 
techniques, the resulting information can be used to 
detect and diagnose a broad range of problems across 
the entire content delivery chain. Such performance 
measurements complement usage information 
commonly derived from server traffic log file analysis.  

Our goal in this paper is build on prior work in the area 
of latency analysis of interactive applications. We 
demonstrate the broad utility of end-user response time 
data in managing a Web-based service. We further 
describe the challenges in creating a product to track 
site problems and help managers detect and diagnose 
end-to-end service problems. 

2. Related Work 
Approaches to performance monitoring may be divided 
into two general categories: robot-based and traffic-
based. Robot-based techniques measure the 
performance of artificial robot-generated traffic as an 
indicator of overall performance. Because the agent 
doing the measurement has control over the interaction, 
precise measurement of various components of the 
interaction may be made. Additionally, variables such 
as client operating system, web browser, and type of 
internet connection are known and controlled. 
Unfortunately, this advantage is also the weakness of 
robot-based measurement: because the client and 
interaction are formulaically controlled, they do not 
mirror the ever-changing nature of user behavior or the 
distribution of different user types. Differences among 
users can affect their experience, and robot-based 
measurement may miss those differences. A number of 
popular commercial services collect performance 
information based on robot data, including the Gomez 
Performance Network (www.gomeznetworks.com), the 
Perspective service from Keynote Systems 
(www.keynote.com), and Topaz Active Watch and 
Freshwater SiteSeer from Mercury Interactive 
(www.mercuryinteractive.com). Product offerings 
based on robot data include Agilent FireHunter 
(www.agilent.com), BMC SiteAngel (www.bmc.com), 
RedAlert from Keynote Systems and Freshwater 
SiteScope from Mercury Interactive.  

Traffic-based techniques measure the performance of 
real user traffic in order to indicate application 
performance. In this case, the application must 
generally be instrumented to provide performance data. 
Traffic-based approaches accurately reflect the wide 
variation of end users and their differing experiences of 
the application. However, taking measurements from a 
wide variety of user types, in real time, without hurting 
user experience presents a significant technical 



 

challenge. The greatest hurdle is that of successfully 
instrumenting the client side of the interaction in order 
to measure true end-to-end latency. Because of the 
technical hurdles, traffic-based performance 
management services are less common than robot-based 
ones. One such service is offered by WebHancer 
(www.webhancer.com). WebHancer’s technique for 
measuring client-side performance is to provide an 
executable program that users must install. This gives 
WebHancer the ability to collect precise and accurate 
information from the user desktop. The disadvantage of 
this approach is that users must be persuaded to install 
the monitor before the site can collect performance 
information, possibly limiting the breadth of the 
system’s coverage. 

Though not in the performance management space, 
several services provide usage data – information about 
how users interact with a web site – by monitoring real 
traffic. These include WebTrends from NetIQ 
(www.netiq.com) and Hitbox from WebSideStory 
(www.websidestory.com). These services typically 
analyze web server logs or use lightweight JavaScript 
content to record basic user activity. Neither offers end-
to-end latency as a metric. 

3. Appliant’s Approach 
In designing a performance management solution, 
Appliant was convinced of two basic principles: 

1. End-to-end latency is the most accurate 
indicator of user experience. 

2. User demographics and behavior affect user 
experience. 

Accordingly, we were driven to make the following 
demands of our solution: 

1. It should measure the real experience of real 
users. 

2. It should measure the experience of as many 
users as possible. 

A robot-based solution was ruled out by the necessity 
of correlating user demographics with user experience. 
Similarly, any solution that required users to explicitly 
install software – an activity many were likely to find 
irksome or even threatening – was ruled out.  

Our approach instead was to annotate web pages with 
JavaScript code that would perform the necessary 
measurements. Because the script is loaded with the 
page, it executes on the client and can record when a 
page is first downloaded, when images are loaded, and 
when the page completes. Page annotation requires only 

that the site modify their pages (typically, modifying 
only site-wide templates), with no installation required 
of users. Because JavaScript is a widely adopted 
internet standard, most browsers support it, ensuring 
data from most of a site’s visitors. In this section we 
discuss some of the technical hurdles facing this 
approach and present our methodology in more detail. 

3.1. Data Collection 
Appliant’ s browser monitor uses annotations to HTML 
documents that enable the Web content to monitor itself 
as it is rendered. The annotation consists of an HTML 
SCRIPT tag with an include statement that loads 
Appliant’ s JavaScript subroutines. The use of an 
include file simplifies the Web page annotation by 
shortening the annotation. It also makes it possible for 
the JavaScript to be cached by the browser. Caching 
helps minimize Internet Service Provider (ISP) and 
Content Delivery Network (CDN) fees, and minimizes 
the overhead for loading JavaScript. The annotation and 
JavaScript code is part of the page requested by the end 
user, and is unloaded along with the rest of the page 
when the browser loads a new document.  

The JavaScript code consists of state management 
routines plus a collection of event handlers that capture 
various events provided by the Document Object Model 
(DOM) [6, 18] to recognize and record state transitions 
in the browser. The Appliant routines install event 
handlers for the following JavaScript events: 

• onAbort – loading interrupted  

• onError – an error occurred while loading an 
image 

• onLoad – a document or image has finished 
loading 

• onReadyStateChange – the ready state of a 
document or image has changed 

• onStop – loading of a web page is stopped by 
user 

Care must be taken to insure that Appliant event 
handlers pass events through to any handlers previously 
registered by the page. Yet another problem is handlers 
that fail to pass events through to the Appliant handlers. 
This problem is common enough that we support a 
monitor option that uses a periodic JavaScript timer 
interrupt to confirm that the Appliant event handlers are 
registered within the browser. 

The browser monitor measures fetch time as the time to 
load the HTML document, and render time as the time 
to fully render that document within the browser 



 

environment. We report render time as beginning when 
the last byte of the HTML document is delivered to the 
browser, and ending when the onload event fires 
indicating the page has fully loaded, including the time 
necessary to load and render any included images. 
Although this simplification ignores parallelism in the 
browser it simplifies interpretation of the data and 
effectively reveals cases where render rather than fetch 
is responsible for poor response time. 

Conceptually, fetch time begins when a hyperlink is 
selected to be loaded in the browser. In practice, it is 
not always possible to begin measurement at that 
instant. In a worst-case scenario, since our browser 
monitor is not resident in the web browser, the first 
chance it has to record a time stamp for the beginning 
of the fetch time is when the top of the HTML 
document arrives in the browser. In our preferred 
deployment technique, a cookie is used to retain a 
timestamp from the unload event of the previous page, 
which occurs when the user clicks on a link. In this way 
our monitor can provide very accurate fetch time 
measurements for consecutive requests from the same 
managed web site.  

Even without using cookies, the fetch time 
measurement can be very effective. Dynamic web sites 
typically send a block of static HTML first, allowing 
the browser to get started while other dynamic 
components are being computed. If the entire page 
arrives quickly, the fetch time measurement will be 
inaccurate in a relative sense, although in an absolute 
sense the page was very fast and performance is a non-
issue. If the page is delayed by slow content generation, 
the fetch time measurement captures that slowness, and 
the relative error is small. If the page is slowed due to 
network delays, our fetch time measurement will reflect 
that slowness unless the slowness is isolated to 
connection setup. Overall, we have found that our slight 
handicap in measuring connection setup time is more 
than offset by the benefits of complete data, and rarely 
interferes with our ability to identify problems with 
end-to-end performance. 

There are many opportunities for enhancing browsers to 
be better sources of performance management data. 
Currently we are able to capture response time for each 
image request, but the browser does not expose whether 
the image was loaded from the browser cache or 
retrieved via the network. Another handicap is that the 
precise size of an HTML document is difficult to 
determine reliably. Such additional data from the 
browser could substantially improve the quality of 
performance data we collect. 

Once monitoring of a page is complete, a data record is 
transferred to the data manager using a standard HTTP 
request. Complete data records are received by the data 
manager, which generally resides in the same facility as 
the servers for the managed web site. The data is 
processed either daily or in real time, depending on the 
Appliant product. The analysis subsystem generates 
summaries that support multiple reporting systems. 
This enables customers to access the information in 
various forms, including canned reports via email, an 
interactive Excel workbook, and a Web front-end to a 
database. 

Browser-side filtering of data is available, based on 
response time thresholds, connection type or other 
properties of the performance event. The browser 
monitor also supports statistical sampling. This permits 
our customers to manage the capacity of their data 
management system, and greatly simplifies deployment 
on high-traffic sites. 

3.2. Data Analysis 
Given the potentially large volume of performance data 
resulting from end-user monitoring, the next challenge 
is data collection. Realities such as firewalls oblige us 
to stick with the well-established standards for Web 
data transport to the desktop: HTTP/TCP/IP over port 
80. Appliant systems use a centralized data collection 
scheme layered over a simple Web server. Though 
there are no theoretical problems to solve, there are 
many practical challenges in delivering a product that 
reliably handles hundreds or thousands of megabytes of 
response time data on a daily basis. More specifically, 
familiar challenges arise in terms of making the system 
scalable and reliably available. Similar challenges 
related to high data volume occur in data analysis, but 
nothing unique to our system. Web log collation and 
analysis provides a relevant example of strategies for 
processing similar volumes of data. We apply standard 
approaches such as cluster-based parallelism and 
statistical sampling to address these system-level 
challenges. 

An interesting problem that arises in the analysis 
process is treatment of 'noise' and outliers in the data 
stream. A small amount of erroneous data is not 
impossible in distributed systems that handle millions 
of records per day over WAN TCP/IP connections [17]. 
Data inaccuracies can also occur due to phenomena 
such as defects in browser implementations, local clock 
adjustments that occur during a measurement, and 
connections that operate at effective speeds of tens of 
bytes per second. A more fundamental problem is that 
wide-area network response time data commonly 



 

exhibits an asymmetric heavy-tailed distribution [14], 
for which the mean is not a robust statistic. For such 
non-normal distributions, a trimmed-mean is a common 
alternative measure that provides a more robust 
measure of central tendency than the mean. [8, 12] A 
trimmed mean is computed by excluding the extreme 
n% of data points, where a common value for n is 5%. 
Although this would provide a robust mean, identifying 
the 5th percentile is computationally equivalent to a 
median computation, which requires O(n) space, too 
expensive for the large data sets handled by our system. 
Instead we simply exclude values that exceed a 
predefined "trim" threshold, and then confirm that the 
amount of data trimmed was less than 5%. By default 
the system trims data points with response time 
exceeding 180 seconds. To date, simple strategies such 
as these have been adequate to cope with the noise 
inherent in end-user data. 

Clock skew between the web server, browser client, and 
data collector is a potential problem that was avoided 
through the Appliant system design. A reality of the 
Internet and the diversity of servers it hosts is that clock 
skew is a common phenomenon – we routinely 
encounter clocks skewed by hours or days even on 
high-traffic, professionally managed sites. In 
recognition of this reality we were deliberate in creating 
a design that tolerates skewed clocks. The basic 
strategy is that timestamps are assigned only on a small 

number of dedicated servers within the host data-center. 
Desktop machines do generate latency measurements, 
but they do not assign time stamps. Clock skew is not 
an issue for latency measurements since both the start 
and stop time are measured relative to the same clock. 

4. Analysis Examples 

4.1. ISP and CDN Performance 
Profiling 
Performance is central to the value proposition for ISP 
and CDN services. Without good performance data, it 
can be difficult for CDNs to justify the value of their 
services and for customers to know that they are getting 
what they paid for. The collection and analysis of end-
user latency data makes it possible to obtain ISP and 
CDN performance information of exceptional detail. 
Figure 1 gives an example for an Internet community 
site, showing performance improvements during the 
first two weeks of CDN service for an example Web 
site. In this case, the potential CDN customer was 
skeptical about the CDN’s ability to improve 
performance for dialup customers. The CDN used this 
information to demonstrate that performance 
improvements of 32-41% were achieved for the 
customer’s site across all classes of end-users. 
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Figure 1. Documenting CDN Performance Improvements. CDN 
service began on 28 June 2001. 



 

Even when ISPs and CDNs deliver good performance, 
they do not provide equal benefit to all Internet users. 
Performance data from end-users can be used to 
quantify site performance all the way to the desktop, 
thereby identifying network subnets that get the best 
and the worst service. Figure 2 shows response time in 
terms of fetch time and render time for an Internet 
sports site, for the busiest IP address ranges as defined 
by ARIN whois data1. Figure 2 shows US LAN-traffic 

                                                           
1 See ftp.arin.net and www.arin.net for more 
information. 

only2, as desktop connection type has a significant 
impact on end-to-end response time. The figure shows 
below-average performance for netblocks maintained 
by the West Virginia K-12 system (WVK-12), 
Kentucky Department of Information Systems, and Bell 
Atlantic (now administered by Verizon). Together with 
Figure 3, showing traffic levels for the same address 
                                                           
2 Connection type is obtained using the “clientCaps”  
facility in Microsoft Internet Explorer. For more 
information see 
http://msdn.microsoft.com/workshop/author/behaviors/r
eference/behaviors/clientcaps.asp. 
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Figure 2. Response Time for Busiest ARIN Netblocks, US LAN 
traffic only. 
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Figure 3. Traffic for Busiest ARIN Netblocks. US LAN traffic only. 



 

ranges, this information enables a web site to identify 
the Internet subnets that are most important in terms of 
traffic volume, and compare their performance to the 
site average (given by the ALL category). This 
information can indicate situations where poor ISP 
peering relationships or poorly performing CDN caches 
are causing performance problems for specific end-
users.  

Although these figures are useful for a high-level 
analysis, additional detail is generally required to 
validate problems and identify a cause. A key 
observation is that the blocks of IP addresses defined by 
whois data vary in size, and some are quite large. For a 
finer-grain analysis, we commonly use a mapping based 
on 24-bit prefixes. Table 1 shows WVK-12 subnets, 
ordered by their contribution to the overall WVK-12 
mean response time.  These subnets include the slowest 
WVK-12 subnet (168.216.124), and the fastest 
(168.216.107). Assuming that the WVK-12 subnets 
share the same path(s) to the Internet, the variance in 
performance across these subnets implies that 
performance problems are internal to WVK-12, as their 
fastest subnets (and, by implication, all external Internet 
factors) have satisfactory behavior. 

Independent Requests Subnet 
RT 

delta 
Mean 

168.216.51 33 6.45 1.84 
168.216.161 3 28.83 0.75 
168.216.141 7 11.48 0.69 
168.216.123 2 33.65 0.58 
168.216.67 4 13.90 0.48 
168.216.107 17 3.14 0.46 
168.216.94 10 5.30 0.46 
168.216.56 6 8.07 0.42 
168.216.48 2 20.90 0.36 
168.216.124 1 38.12 0.33 

Table 1. WVK-12 Subnets with largest 
contribution to Mean. 

As a final example of finer-grained data, Table 2 shows 
response time for the slowest 24-bit subnets with at 
least 0.1% of total site traffic. We note that “whois”  
data can often identify these subnets with surprising 
precision. In this table, 216.236.222 is a satellite 
services provider, and 134.134.248 is an Intel facility in 
Santa Clara, CA. Making effective use of this level of 
detail remains a challenge. Specific challenges include: 

• Achieving a classification of appropriate 
granularity  

• Isolating ISPs such as AOL and NewSkies that 
skew results due to atypical network properties 

• Distinguishing “ last-mile”  problems from 
“middle-mile”  problems 

Regrettably, due to these challenges, solving network 
problems remains in the domain of “networking 
experts.”  The goal of our continuing work is to further 
automate the process of recognizing performance 
incidents and identifying them to their authentic source. 

Subnet n RT 

216.236.222 
NEW SKIES 
SATELLITES N.V. 

15 47.0 

207.108.252 
U S WEST 
INTERNET 
SERVICES 

17 23.5 

134.134.248 
INTEL 
CORPORATION 

20 21.2 

206.129.0 N2H2 12 14.3 

209.133.187 
STATE OF SOUTH 
CAROLINA 

14 10.2 

170.158.130 ONONDAGA BOCES 16 9.7 

12.96.122 
SHASTA COUNTY 
OFFICE OF EDU. 

21 9.7 

204.171.48 VERIO 14 9.6 

198.110.59 
REGIONAL EDU. 
MEDIA CENTER  4 
(MI) 

16 9.3 

24.187.188 
OPTIMUM ONLINE 
(CABLEVISION) 

14 9.1 

216.81.96 ALMA TELEPHONE 12 8.6 

209.124.103 AMNET US 23 8.5 

205.154.229 
GROSSMONT 
UNION H.S. 
DISTRICT 

23 7.7 

207.70.63 
MICRON INTERNET 
SERVICES 

18 7.5 

206.78.5 VISALIA UNIFIED 14 7.1 

150.176.63 
FLORIDA INFO. 
RESOURCES NET 

26 6.8 

65.204.164 
BBG 
COMMUNICATIONS 

32 6.6 

209.205.203 PACNET 26 6.6 

216.229.196 
MISSISSIPPI DEPT. 
OF EDUCATION 

19 6.5 

168.216.51 
WV DEPARTMENT 
OF EDUCATION 

33 6.5 

Table 2. Performance Detail by Class-C 
subnet. US LAN traffic only, for 

subnets with at least 0.1% site traffic. 



 

4.2. Capacity Planning 
To effectively plan site capacity, a site administrator 
must be able to answer a number of questions: 

• What is the capacity of the system? 

• What is the offered load on the system? 

• What resource or resources are the 
bottlenecks? 

Examples of potential bottlenecks include CPU cycles, 
physical memory, memory bandwidth, IO bandwidth, 

and LAN bandwidth. Bottlenecks can occur anywhere 
in the system: Web servers, application servers, 
database servers, or the network. When peak demand 
exceeds system capacity, the result is performance 
problems, system failures, or both. 

End-user performance data is a very effective way to 
answer these questions. Figure 4 shows a chart of page 
requests by hour over a day for an example web site. It 
shows a common pattern of traffic, with a peak in 
traffic in the daytime and a corresponding trough at 
night. The response time chart (Figure 5) and page 
request charts have different shapes, indicating that 
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Figure 4. Page Requests vs. Time over 24 Hours 
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Figure 5. Site Load vs. Performance over 24 Hours 



 

there is not a direct relationship between response time 
and load. In this case the response time curve shows a 
common pattern, with a faster average response time 
when many users access the site from their fast work 
connections, and slower traffic when more people use 
dialups at home. If response time tracked page requests, 
it would indicate a direct relationship between 
performance and load, evidence that an internal 
performance bottleneck was being stressed. The 
independence of response time and load in these charts 
indicates that the site has excess capacity, even at peak 
hours. If it were the case that response time tracked 
page requests, we could identify the bottleneck by 
examining additional resource charts to discover where 
resource utilization is correlated with performance 
problems. 

4.3. A Partial Server Failure 
Availability management tools and robot-based 
performance monitors can be very effective at 
identifying complete site failures. They simply test the 
site periodically and report as appropriate when a server 
or the whole site appears to be offline. The problem 
becomes more difficult, however, when a large and 
complex content system needs to be tested, or when 
server clusters are hidden behind a single IP address. 
When a site becomes sufficiently mature to have 
performance expectations as well as availability, end-
user data can identify a much broader class of site 
problems. 

As an example, Figure 6 illustrates response time by 
server for a cluster of servers over a 24-hour period for 
a web-based news site. At 6:00 AM, for example, most 
servers are delivering similar performance of about 6 
seconds average response time, but one server (server 
5) has response time of about two seconds slower. 
Across the 24-hour day, the same server was 
consistently about two seconds slower. Such problems 
can be extremely difficult to detect with robot-based 
data sources. 

Considering request rates for the same time period, 
Figure 7 shows two kinds of servers. The bottom server 
(server 1) is a four-way multiprocessor. It receives 
about half as much traffic as the eight-way machines 
along the higher curve. The surprise is that the top 
server is the same eight-way system (server 5) that had 
response time problems in Figure 6. The load balancer 
is actually directing about 20% more traffic to the 
slowest server in the cluster. Load balancers generally 
use server-side metric such as CPU utilization to make 
decisions about distribution of load. In this case those 
decisions were wrong. Ultimately the explanation for 
these behaviors was that the deviant server was using 
beta software. Such behavior could be caused by 
throughput optimizations, for example, delaying 
requests for a brief period so-as to apply a scheduling 
optimization to a group or requests. 
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5. Discussion 
The direct presentation of our technical results obscures 
many of the challenges behind the development of the 
software we describe in this paper. Indeed this system 
had its share of challenges. In this section we document 
some of the technically relevant ones.  

Although the results in this paper relied exclusively on 
data collected via JavaScript content annotations, 
considerable effort went into alternative approaches to 
data collection that we ultimately determined were not 
suitable for our company or products. We briefly 
considered building a network packet sniffer, such as 
that used by Wolman et al. [19]. Although this 
approach has many nice properties in terms of 
completeness and accuracy, a number of practical 
considerations caused us to exclude it early on, in 
particular: 

• Business requirement of a software (not 
hardware) product 

• Lack of in-house expertise  

• Inability of sniffers to manage 3rd party content 
and desktop errors 

• Anticipated performance and scalability issues 

These factors led us to exclude a packet monitor early 
in our design process. 

In addition to the JavaScript-based browser monitor, 
early Appliant web-management systems also used a 
server-side software component to measure application-

level response time plus system-level performance 
metrics (such as CPU and memory statistics) from the 
server perspective. The anticipated benefits included a 
more precise measurement of server-side latency for 
content generation, plus additional information for 
diagnosing problems within a server. Initially we found 
this component a challenge to support, although the 
support burden became easily manageable after the 
bumps of early releases. Ultimately we decided to 
remove this monitor as a feature for the following 
reasons: 

• Considerable cost for developing and testing a 
software component on a large matrix of 
OS/Web Server platforms 

• Customer resistance against installing an 
executable software component on their 
production systems 

• Marginal data value, as response time is 
available from desktop, and system-level 
metrics are provided by management 
frameworks. 

As we describe in Section 4.3, powerful server 
diagnosis is possible without a server-side software 
install. 

Another option we considered and then dismissed is a 
client-side installation of executable code. The potential 
benefits of such a configuration are significant. The 
stability and richness of the OS APIs could provide 
more precise measurements, a richer set of metrics, and 
more complete measurements as well. Many of these 
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benefits derive from the fact that an executable 
component avoids the security and privacy restrictions 
of the browser environment. Ultimately we made little 
use of this approach for the following reasons: 

• Considerable cost for developing and testing a 
software component on an exceptionally large 
matrix of OS/Web browser platforms 

• Customer resistance against installing 
executable software components on desktops 

• Additional metrics are of marginal incremental 
value over data already available from 
JavaScript monitor  

• Use of a desktop executable raises many new 
security and privacy issues 

As compelling as the results we have achieved may be, 
it can fairly be said that the hardest problems have not 
been solved. Some of the key challenges we are 
considering in our ongoing work include: 

• Reliably recognize abnormal behavior 

• Reliably ignoring non-problems 

• Classifying problems by impact and 
significance 

• Combine multiple performance measurements 
into a single indication of the root cause 

5.1. Combining Performance and 
Other Data 
Application performance has a direct impact on user 
satisfaction, but performance data alone is not sufficient 
to show this relationship. By correlating performance 
data with other information illustrative of customer 
satisfaction or bottom-line success, we can determine 
how tolerant users are and how important performance 
improvements will be. Useful additional data can 
include user behavior or sales figures. For example, we 
may wish to find the correlation between average 
performance and user session length; do users who 
experience poor performance spend less time on the 
site? Another option would be to examine user behavior 
immediately following a slow page-load; do users give 
up and depart when a page takes a long time to load? A 
third possibility would be to look at the correlation 
between performance and conversion rate – the 
probability that a user will make a purchase.  

Such analysis is, of course, useful in justifying the 
importance of good application performance, but it can 
also be used to prioritize infrastructure improvements. 

Users tend to be more tolerant of some problems than 
others, and limited infrastructure dollars can be 
channeled to the most irksome problems. For example, 
poor performance on catalog pages may discourage 
browsers from ever becoming buyers, but once a 
customer has committed to the checkout process, he is 
less likely to abandon his session because of poor 
performance. In this case, catalog infrastructure should 
receive priority attention. 

5.2. Social/Economic Challenges 
There are many practical problems that have substantial 
impact on our ability to deploy our solution and on the 
feature set we are able to support. A few of the most 
common problems are noted here. 

Our solutions give strong Internet businesses an 
opportunity to tune and focus the effectiveness of their 
site. Just as high-end retailers use customer experience 
to differentiate themselves from discounters, we believe 
high-end web sites will use customer experience to 
improve the experience for their users, and thereby 
improve their bottom line. Unfortunately, many Web 
sites are not ready for this level of service delivery. 
They are overwhelmed with the struggle to keep 
systems running, manage content updates, while coping 
with tight and shrinking budgets. These problems are 
exacerbated by software churn, which tends to prevent 
systems from reaching maturity. As a result, many 
online services are unwilling to monitor or assure end-
to-end service levels. 

Another social challenge relates to privacy issues. At a 
technical level we believe our position on privacy is 
very strong. We assume that the managed Web system 
generates or is able to generate log files for site usage 
analysis. Given this assumption Appliant systems do 
not change the balance of privacy for end users, 
because they collect no additional information on 
behavior. They do augment existing data with 
performance and error information for diagnostic 
purposes. All data is co-located with the managed web 
site and under the control of the site administrator. 
Since the site administrator already has access to 
complete usage data for their site, the privacy balance 
remains unchanged. The product does not require 
cookies, although it can make use of cookies that are 
already used by the site. The product does not support 
or require the collection of zip codes, address 
information or account numbers of any kind.  

Although our position is quite defensible at a technical 
level, prospective customers are frequently unable or 
unwilling to consider the technical details. Frequently 



 

they are obliged to take a very conservative position on 
privacy: that any additional data collection is 
unacceptable, regardless of the fact that additional data 
is of diagnostic value only and does not reveal 
information about individual users. For these sites, an 
opt-out program can be used to achieve an acceptable 
solution.  

5.3. Prior Research in Latency 
In the research community, the argument for use of 
latency as a measure of system performance emerged 
from prior concerns about the effectiveness of micro-
benchmarks and throughput benchmarks for measuring 
system performance [1, 10, 11, 13]. Endo et al. made a 
direct argument advocating such techniques [5]. 
Whereas the Endo study was limited to interactive 
applications on a standalone desktop, our interest is in 
interactive distributed applications on the Internet. 
Since that publication, relatively little work has been 
done on the subject, with the bulk of the work occurring 
in the context of real-time but non-interactive 
applications such as streaming media. Flautner et al. [7] 
included latency-based analyses to show that real-time 
apps benefit less from threading on a multiprocessor 
than on a uniprocessor (15% vs. 4%). Jones and Regehr 
[9] used latency measurements to analyze thread-
scheduling issues in support of real-time applications.  

We note two prior publications that study latency in the 
context of the Web. Wolman et al. [19] studied Web 
end-user latency in the context of cooperative Web 
proxy cache performance. Ramakrishnan and Elnozahy 
[15] describe a system for collecting response time on 
end-user browsers that has some similarities to ours, 
particularly in the raw data that is collected. Although 
this paper clearly predates the present work, we believe 
that our systems were developed and released as 
products prior to theirs. The Ramakrishnan paper 
includes an ample discussion of the data collection 
methodology on the client, along with one example of 
analysis for a small Internet Web site. The present 
paper builds on the Ramakrishnan publication by 
documenting challenges in working with large 
production Web sites, in contrast to the relatively small 
site used by Ramakrishnan. Further, our experience in 
working with response time data allows us to explore in 
more detail the exceptional diagnostic power of end-
user information. 

6. Conclusions 
The performance of web sites and Internet applications 
varies widely and is often the main factor in 
determining the quality of the end-user experience. 
End-to-end response time is a key measure of 
performance, and we believe it to be a vital 
differentiator for end users. Response time 
measurements, moreover, are an important potential 
resource for site development and operations. In this 
paper we have demonstrated how such information, 
derived from real traffic, can be used to systematically 
analyze situations that are very difficult to detect or 
diagnose without such measurements. 

The systems described in this paper anticipate a day 
when Web browsers and other end-points for Internet 
applications expose detailed, accurate service quality 
metrics through stable APIs. Ideally such measurements 
would include end-to-end application-level 
performance measurements, error detection, and failure 
reporting. Although Appliant systems can provide this 
information for the current Web infrastructure, the lack 
of stable, consistent management APIs complicates the 
implementation. We believe that the importance of 
service level monitoring systems will increase as Web 
services mature. In this context, outsourced 
infrastructure and integration with third-party services 
becomes more common, and their performance 
becomes a requirement and a success factor. This is in 
contrast to the status quo, where distributed application 
performance is often considered only after deployment. 
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