
conference

proceedings

2nd USENIX
Conference on
Web Application
Development
(WebApps ’11)

Portland, OR, USA
June 15–16, 2011

Proceedings of the 2nd U
SEN

IX Conference on W
eb A

pplication Developm
ent

Portland, O
R, USA

June 15–16, 2011
Sponsored by

© 2011 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-931971-86-7

USENIX Association

Proceedings of the

2nd USENIX Conference on

Web Application Development

June 15–16, 2011
Portland, OR, USA

Conference Organizers
Program Chair
Armando Fox, University of California, Berkeley

Program Committee
Adam Barth, Google Inc.
Abdur Chowdhury, Twitter
Jon Howell, Microsoft Research
Collin Jackson, Carnegie Mellon University
Bobby Johnson, Facebook
Emre Kıcıman, Microsoft Research
Michael E. Maximilien, IBM Research
Owen O’Malley, Yahoo! Research
John Ousterhout, Stanford University
Swami Sivasubramanian, Amazon Web Services
Geoffrey M. Voelker, University of California, San Diego
Nickolai Zeldovich, Massachusetts Institute of Technology

The USENIX Association Staff

WebApps ’11: 2nd USENIX Conference on Web Application Development
June 15–16, 2011

Portland, OR, USA
Message from the Program Chair . v

Wednesday, June 15

10:30–Noon
GuardRails: A Data-Centric Web Application Security Framework .1
Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri, and David Evans, University of
Virginia
PHP Aspis: Using Partial Taint Tracking to Protect Against Injection Attacks .13
Ioannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch, Imperial College London
Secure Data Preservers for Web Services .25
Jayanthkumar Kannan, Google Inc.; Petros Maniatis, Intel Labs; Byung-Gon Chun, Yahoo! Research

1:00–2:30
BenchLab: An Open Testbed for Realistic Benchmarking of Web Applications .37
Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy, University of Massachusetts
Amherst
Resource Provisioning of Web Applications in Heterogeneous Clouds .49
Jiang Dejun, VU University Amsterdam and Tsinghua University Beijing; Guillaume Pierre, VU University
Amsterdam; Chi-Hung Chi, Tsinghua University Beijing
C3: An Experimental, Extensible, Reconfigurable Platform for HTML-based Applications 61
Benjamin S. Lerner and Brian Burg, University of Washington; Herman Venter and Wolfram Schulte, Microsoft
Research

3:00–4:30
The Effectiveness of Application Permissions .75
Adrienne Porter Felt, Kate Greenwood, and David Wagner, University of California, Berkeley
Experiences on a Design Approach for Interactive Web Applications .87
Janne Kuuskeri, Tampere University of Technology
Exploring the Relationship Between Web Application Development Tools and Security .99
Matthew Finifter and David Wagner, University of California, Berkeley

Thursday, June 16

1:00–2:30
Integrating Long Polling with an MVC Web Framework . 113
Eric Stratmann, John Ousterhout, and Sameer Madan, Stanford University
Detecting Malicious Web Links and Identifying Their Attack Types . .125
Hyunsang Choi, Korea University; Bin B. Zhu, Microsoft Research Asia; Heejo Lee, Korea University
Maverick: Providing Web Applications with Safe and Flexible Access to Local Devices . 137
David W. Richardson and Steven D. Gribble, University of Washington

Message from the WebApps ’11 Program Chair

Welcome to WebApps ’11, the second annual USENIX Conference on Web Application Development. Our con-
tinuing emphasis is ensuring that attendees are exposed to the most interesting new work from both industry and
academia. To that end, both the program committee and the accepted papers represent a balanced mix of industry
practitioners from the highest-profile Web companies and university researchers working on cutting-edge Web
technologies.

The twelve papers presented (of 28 submissions received) were subjected to the rigorous review standards for
which USENIX’s academically focused conferences are known. All papers received at least three thorough reviews
and some received more; each paper got a fair and complete discussion at the in-person program committee meet-
ing in Berkeley; and each paper was assigned a shepherd to help improve the final presentation. We hope you will
be pleased with the results, which showcase a wide variety of Web applications and technologies.

I’d like to thank the authors for taking the time to submit a paper, whether it was accepted or not. Preparing a paper
is a lot of work, and we are still exploring ways to engage industrial authors and get the best industrial work along
with the best academic work. I personally welcome any suggestions from authors or prospective authors in this
regard.

I also thank the program committee for their efforts in reviewing and shepherding, especially some of the indus-
trial participants, whose schedules can be particularly hectic.

Lastly, as always, USENIX’s professional organization makes the logistical aspects of running a program commit-
tee a breeze, especially Ellie Young, Anne Dickison, Casey Henderson, and Jane-Ellen Long, along with the rest of
the USENIX staff.

I hope that what you see and hear at WebApps ’11 inspires you to submit your own best work to future WebApps
conferences.

Armando Fox, University of California, Berkeley

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 1

GuardRails: A Data-Centric Web Application Security Framework

Jonathan Burket Patrick Mutchler Michael Weaver Muzzammil Zaveri David Evans
http://guardrails.cs.virginia.edu

University of Virginia

Abstract

Modern web application frameworks have made it easy
to create powerful web applications. Developing a se-
cure web application, however, still requires a developer
to posses a deep understanding of security vulnerabili-
ties and attacks. Even for experienced developers it is
tedious, if not impossible, to find and eliminate all vul-
nerabilities. This paper presents GuardRails, a source-to-
source tool for Ruby on Rails that helps developers build
secure web applications. GuardRails works by attach-
ing security policies defined using annotations to the data
model itself. GuardRails produces a version of the input
application that automatically enforces the specified poli-
cies. GuardRails helps developers prevent a myriad of
security problems including cross-site scripting attacks
and access control violations while providing a large de-
gree of flexibility to support a range of policies and de-
velopment styles.

1 Introduction

Web application frameworks have streamlined develop-
ment of web applications in ways that relieve program-
mers from managing many details like how data is stored
in the database and how output pages are generated. Web
application frameworks do not, however, provide enough
assistance to enable developers to produce secure web
applications without a great deal of tedious effort. The
goal of this work is to demonstrate that incorporating
data-centric policies and automatic enforcement into a
web application framework can greatly aid developers in
producing secure web applications.

When developing web applications, developers typi-
cally have an idea of what security policies they want
to enforce. Ranging from which users should have ac-
cess to which data to how certain pieces of user input
should be sanitized, these policies are rarely documented
in any formal way. Code for enforcing security poli-

cies is scattered throughout the application, making ac-
cess checks at a variety of locations or sanitizing strings
where they might be potentially harmful. This decentral-
ized approach to security makes it difficult, if not impos-
sible, to be certain that all access points and data flow
paths are correctly mediated. Further, security policies
are rarely completely known from the start; rather they
evolve along with the development of the application or
in response to new threats. Changing an existing policy
can be very difficult, as changes must be made across the
entire application.

To alleviate these problems, we developed Guard-
Rails, a source-to-source tool for Ruby on Rails appli-
cations that centralizes the implementation of security
policies. GuardRails works by attaching security policies
directly to data, and automatically enforcing these poli-
cies throughout the application. Developers define their
policies using annotations added to their data model.
GuardRails automatically generates the code necessary
to enforce the specified policies. The policy decisions
are centralized and documented as part of the data model
where they are most relevant, and developers do not need
to worry about missing security checks or inconsistent
enforcement.

Like most web application frameworks, Ruby on Rails
provides an object interface to data stored in database ta-
bles. This enables GuardRails to attach policies to ob-
jects and make those policies persist as data moves be-
tween the application and database. The abstract data
model provided by Ruby on Rails is one key advantage
over systems like DBTaint [4, 18], which have no knowl-
edge of what the relevant data actually represents within
the context of the application. While our implementation
of GuardRails is specific to Ruby on Rails, we expect
most of our approach could also be applied to similar
frameworks for other languages.

Contributions. Our major contribution is a new ap-
proach for managing web application security focused on
attaching policies directly to the data objects they con-

2 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

trol. We present a tool that demonstrates the effective-
ness of this approach using a source-to-source transfor-
mation for Ruby on Rails applications. Although our ap-
proach applies to many security vulnerabilities, we focus
on two of the most common and problematic security is-
sues for web applications:

- To address access control violations, we provide an
annotation language for specifying access control
policies as part of a data model and develop mecha-
nisms to automatically enforce those policies in the
resulting application (Section 3).

- To address injection attacks, we implement a con-
text-sensitive, fine-grained taint-tracking system
and develop a method for automatically applying
context and data-specific transformers. The trans-
formers ensure the resulting strings satisfy the se-
curity requirements of the use context (Section 4).

To evaluate our approach, we use GuardRails on a set
of Ruby on Rails applications and show that it mitigates
several known access control and injection bugs with
minimal effort (Section 5).

2 Overview

GuardRails takes as input a Ruby on Rails application
with annotations added to define security policies on
data. It produces as output a new Ruby on Rails appli-
cation that behaves similarly to the input application, but
includes code for enforcing the specified security poli-
cies throughout the application.

Design Goals. The primary design goal of GuardRails is
to allow developers to specify and automatically enforce
data policies in a way that minimizes opportunity for de-
veloper error. Hence, our design focuses on allowing
developers to write simple, readable annotations and be
certain that the intended policies are enforced throughout
the application. We assume the developer is a benevo-
lent partner in this goal—since the annotations are pro-
vided by the developer we cannot provide any hope of
defending against malicious developers. Our focus is on
external threats stemming from malicious users sending
inputs to the application designed to exploit implementa-
tion flaws. This perspective drives our design decisions.

Another overarching design goal is ensuring that no
functionality is broken by the GuardRails transforma-
tions and that there is no need to modify an applica-
tion to use GuardRails. This allows developers to add
GuardRails annotations to an application slowly or se-
lectively use parts of GuardRails’ functionality.

Ruby on Rails. We chose to target Ruby on Rails be-
cause it is a popular platform for novice developers.

Rails abstracts many details of a web application includ-
ing database interactions but does not provide robust se-
curity support. There is a need for a tool that abstracts
data policy enforcement. Rails uses the ActiveRecord de-
sign pattern, which abstracts database columns into ordi-
nary object instances. This makes it very easy to attach
policies to data objects. In addition, all field access is
through getter and setter methods that can be overridden,
which provides a convenient way to impose policies.

Source-to-source. Implementing GuardRails as a
source-to-source tool rather than using Ruby’s metapro-
gramming features offers several advantages. Some
features of GuardRails, like annotation target infer-
ence, could not be implemented using metaprogram-
ming. Location-aware annotations are important be-
cause they encourage developers to write policy annota-
tions next to object definitions, which further establishes
the connection between data and policies. A source-to-
source tool also reduces the runtime overhead incurred.
Instead of editing many methods and classes during each
execution the changes are made once at compile time.
Finally, a source-to-source approach can be more effec-
tively applied to frameworks other than Ruby on Rails.
We do use some of Ruby’s metaprogramming features
as an implementation convenience but we believe that
all key aspects of GuardRails could implemented for any
modern web framework.

3 Access Control Policies

Access control policies are security policies that dictate
whether or not a particular principal has the right to per-
form a given action on some object. For example, a photo
gallery application might have a policy to only allow a
photo to be deleted by the user who uploaded it. Poorly
implemented access control policies are a major security
threat to web applications. Unlike content spoofing and
cross-site request forgery, however, access control can-
not be handled generically since access control policies
are necessarily application-specific and data-dependent.

Traditionally, access control policies are implemented
in web applications by identifying each function (or
worse, each SQL query) that could violate a policy and
adding code around the function to check the policy.
This approach rarely produces secure web applications
since even meticulous developers are likely to miss some
needed checks. As applications evolve, it is easy to miss
access control checks needed in new functions. Further,
this approach leads to duplicated code and functional
code cluttered with policy logic. It is difficult to tell what
policies have been implemented just by looking at the
code, and to tell if the desired properties are enforced
throughout the application.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 3

Policy Annotation
Only admins can delete User objects @delete, User, :admin, :to login
Only admins can delete the inferred object @delete, :admin, :to login
Users can only change their own password @edit, pswrd, self.id == user.id, :to login
Log creation of new User objects @create, User, log function; true, :nothing

Table 1: Access policies and corresponding annotations

To address this problem, we propose a major change in
the way access control policies are implemented in web
applications. Instead of applying data policies to func-
tions, developers define access control policies as part of
the data objects they protect. These data-centric poli-
cies are specified using annotations added to data model
declarations. The code needed to enforce the policies is
generated automatically throughout the application. By
putting policies close to data and automating enforce-
ment, we reduce the burden on the developer and limit
the opportunity for implementation error.

3.1 Annotations
To specify access control policies, developers add access
control annotations of the form:

@<policytype>, <target>, <mediator>, <handler>

to ActiveRecord class definitions.
The four parameters define: (1) which one of the five

data access operations the policy concerns (read, edit,
append, create, destroy); (2) the object this annotation
concerns (either instances of the annotated class or indi-
vidual variables within the class); (3) the mediator func-
tion that checks if the protected action is allowed; and
(4) the handler function that is invoked when an unau-
thorized action is attempted. If the target field is omit-
ted, GuardRails infers the annotation’s target from the
location of the annotation (see the second annotation in
Table 1).

Keywords are defined for mediators and handlers to
define common policies. For example, the :admin key-
word indicates a mediator policy that checks whether the
requesting user has administrator privileges (Section 3.2
explains how developers configure GuardRails to iden-
tify the current user object and determine if that user is an
administrator). In addition to making it easy to translate
policies from a design document into annotations, using
keywords makes it easy to define and recognize common
policies.

Some policies are application and data-specific. To de-
fine these more specific policies, developers use a Ruby
expression instead of a keyword. The expression is eval-
uated in the context of the object being accessed so it
can access that object (as self) as well as any global ap-

plication state. The expressions also have access to the
current user object, which is made visible to the entire
application at the beginning of each execution.

Some examples of data policies are shown in Figure 1.
Each annotation would be included as a comment in a
data model file above the class definition.

Privileged Functions. Our annotation system is flexi-
ble enough to support nearly all policies found in web
applications. Policies that depend on the execution path
to the protected action, however, cannot be specified be-
cause the policy functions do not have access to the call
stack. We argue that such policies should be avoided
whenever possible—they provide less clear restrictions
than policies tied solely to the data and global state (e.g.,
the logged in user) that can be defined using annotations.

One exception is the common “forgot my password”
feature that allows an unauthenticated user to reset their
password. To a stateless data policy, however, there is
no observable difference between a safe password mod-
ification using the “forgot my password” routine and an
unsafe password modification.

To handle cases like this, we allow developers to mark
functions as privileged against certain policies. To cre-
ate this password edit policy, the developer annotates the
password local variable in the User class with the gen-
eral policy that a users cannot change a password other
their own (see Table 1 for the actual annotation) and adds
an annotation to the declaration of the “forgot my pass-
word” function to indicate that it is privileged. Since we
are assuming developers are not malicious, this simple
solution seems preferable to the more complex alterna-
tive of providing access to the execution stack in data
policy annotations.

3.2 Policy Enforcement

GuardRails enforces access policies by transforming the
application. It creates policy mappings, objects that map
data access operations to mediator and handler functions,
for each class or variable. All objects in the generated
web application contain policy mappings. By default,
policy objects map all accesses to True.

To enforce policies correctly, policies must propagate
to local variables. For example, if an ActiveRecord ob-

4 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

ject has a serialized object as a local variable, then ed-
its to the local variable should be considered edits to the
ActiveRecord object for policy purposes. To address this
we compose the container object’s policy with the con-
tained object’s policy and assign this new policy to the
contained object. Most propagation can be done at com-
pile time but some must be done at runtime since we do
not know the complete shape of the data structures.

Once the policy objects have been built, GuardRails
modifies the data access methods (generally getters and
setters) for each class and adds code to call the appropri-
ate policy function. Because all data access in Ruby is
done through getter or setter methods, this is sufficient to
enforce data access policies. The code below illustrates
how this is done for an example variable:

alias old var= var=
def var=(val)

if eval policy(:edit) and
var.eval policy(:edit)

old var=(val)
end

end

Database Access. No database object should be ac-
cessed by the application without first checking its read
policy. However, it is not possible to determine in ad-
vance which objects will be returned by a given query.
This means that we cannot check the read policy before a
database access. Instead, GuardRails performs the check
after the object is retrieved but before it is accessible to
the application. Since we only want to modify the spe-
cific application, not the entire Ruby on Rails framework,
we cannot modify the database access functions directly.
Instead, we take advantage of the fact that all database
accesses are done through static methods defined in the
ActiveRecord class.

To enforce access policies on database methods, we
replace all static references to ActiveRecord classes with
proxy objects. These objects intercept function calls and
pass them to the intended ActiveRecord class. If the re-
sult is an ActiveRecord object or list of ActiveRecord
objects, the proxy object checks that the result is read-
able before returning it to the original caller. This al-
lows GuardRails to enforce access policies for all of the
database methods without needing to modify the Ruby
on Rails framework.

List Violations. An interesting situation arises when a
program attempts to access a list of protected objects,
some of which it is not permitted to access. GuardRails
supports three ways of resolving this situation: treating
it as a single violation for the list object; treating each
object that violates the policy as a violation individually;
or not handling any violations but silently removing the
inaccessible objects from the list. Often, the same choice

should be used in all cases of a certain access type so we
let developers specify which option to use for each access
type. The default choice is to silently remove inaccessi-
ble objects from lists, following our goal of providing as
little disruption as possible to application functionality.

Configuration. To enable GuardRails to support a wide
range of applications, it uses a configuration file to spec-
ify application-specific details. For example, in order to
give the policy functions access to the current user ob-
ject, the configuration file must specify how to retrieve
this object (typically just a function or reference name).
Some built-in policy functions also require extra infor-
mation such as the :admin function, which needs to know
how to determine if the requesting user is an administra-
tor. The developer provides this information by adding
a Ruby function to the configuration file that checks if a
user object is an administrator.

3.3 Examples
We illustrate the value of data policy annotations with a
few examples from our evaluation applications (see Ta-
ble 3 for descriptions of the applications).

Read Protected Objects. The Redmine application con-
tained a security flaw where unauthorized users were
able to see private project issues. In response to a request
for the list of issues for a selected project, the application
returns the issues for the desired project and all of its sub-
projects with no regard to the subproject’s access control
list. For example, if a public project included a private
subproject, all users could see the subproject’s issue list
by viewing the parent project’s issue list.

Adding the single annotation below to the Issue model
fixed this bug by guaranteeing that users cannot see pri-
vate Issue objects:

@read, user.memberships.include? self.project,
:to login

class Issue
...

Note that because of the default policy to silently remove
inaccessible items from a list, this policy automatically
provides the desired functionality without any code mod-
ifications.

Edit Protected Attributes. The Spree application con-
tained a security flaw where users could alter the price of
a line item in their order by modifying a POST request to
include an assignment to the price attribute instead of an
assignment to the quantity attribute. This bug appeared
because Spree unsafely used the mass assignment func-
tion update attributes. Adding a single GuardRails anno-
tation to the Line Item model prevents the price attribute
from being changed:

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 5

@edit, price, false, :nothing

To maintain the behavior of the application, the functions
that safely modify the price attribute can be marked as
privileged against this policy.

4 Context-Sensitive Sanitization

In general, an injection attack works by exploiting a dis-
connect between how a developer intends for input data
to be used and the way it is actually used in the appli-
cation. Substantial effort has been devoted to devising
ways to prevent or mitigate these attacks, primarily by
ensuring that no malicious string is allowed to be used in
a context where it can cause harm. Despite this, injec-
tion attacks remain one of the greatest threats to modern
web applications. The Open Wep Application Security
Project (OWASP) Top Ten for 2010 lists injection attacks
(in general) and cross-site scripting attacks (a form of in-
jection attack) as the top two application security risks
for 2010 [16].

Like access control checking, data sanitization is typi-
cally scattered throughout the application and can easily
be performed in unsafe ways. To prevent a wide range
of injection attacks, including SQL injection and cross-
site-scripting, GuardRails uses an extensible system of
fine-grained taint tracking with context-specific sanitiza-
tion. Next, we describe how GuardRails maintains fine-
grained taint information on data, both as it is used in the
program and stored in the database. Section 4.2 describes
how context-sensitive transformers protect applications
from misusing tainted data.

4.1 Fine-Grained Taint Tracking

Taint tracking is a common and powerful approach to
dealing with injection vulnerabilities that has frequently
been applied to both web applications [2, 10, 11, 13, 15,
23, 25, 29] and other applications [1, 7, 9, 12, 17, 20, 22,
28]. A taint-tracking system marks data from untrusted
sources as tainted and keeps track of how tainted infor-
mation propagates to other objects. Taint tracking may
be done dynamically or statically; we only use dynamic
taint tracking. In the simplest model, a single taint bit is
associated with each object, and every object that is influ-
enced by a tainted object becomes tainted. Object-level
dynamic taint-tracking is already implemented in Ruby.

The weakness of this approach, however, is that it is
too simplistic to handle the complexity of how strings
are manipulated by an application. When tainted strings
are concatenated with untainted strings, for example, an
object-level tainting system must mark the entire result
as tainted. This leads to over-tainting, where all of the
strings that interact with a tainted string become tainted

and the normal functionality of the application is lost
even when there is no malicious data [17]. One way to
deal with this is to keep track of tainting at a finer gran-
ularity. Character-level taint systems, including PHPre-
vent [13], Chin and Wagner’s Java tainting system [2],
and RESIN [29], track distinct taint states for individ-
ual characters in a string. This solves the concatenation
problem by allowing the tainted and untainted characters
to coexist in the final resulting string according to their
sources, but requires more overhead to keep track of the
taint status of every character independently.

GuardRails provides character-level taint-tracking, but
instead of recording taint bits for every character indi-
vidually, groups sequences of adjacent characters into
chunks with the same taint status. In practice, most
strings in web applications exhibit taint locality where
tainted characters tend to be found adjacent to each other.
This allows GuardRails to minimize the amount of space
needed to store taint information, while still maintaining
the flexibility to track taint at the character level.

In our current implementation, tainting is only done
on strings, meaning that if data in a string is converted
into another format (other than a character or a string),
the taint information will be lost.1 We believe this deci-
sion to be well-justified, as only tracking strings is suffi-
cient assuming a benevolent developer. A malicious de-
veloper could easily lose taint information by extracting
each character of a string, converting it to its ASCII value
(an integer), and then converting the resulting integers
back into their ASCII characters and the original string,
but such operations are not likely to be present in a non-
malicious application.

Our system only marks string objects with taint in-
formation, limiting our ability to track implicit flows.
GuardRails does not prevent the use of tainted strings
in choosing what code path to traverse, such as when
the contents of a string play a role in a conditional state-
ment. While it is conceivable that an attacker might ma-
nipulate input to direct the code in a specific way, we
do not believe this risk to be a large one. On the other
hand, tracking implicit flows and preventing the use of
tainted strings in code decisions can easily break the ex-
isting functionality of many applications. Following our
design goals and aim to assist benevolent developers in
producing more secure applications, it seems justified to
ignore the risks of implicit flows.

4.2 Sanitization

The main distinguishing feature of our taint system is the
ability to perform arbitrarily complex transformations on

1In Ruby, characters are simply strings of length one, so taint in-
formation is not lost when characters are extracted from strings and
manipulated directly.

6 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tainted strings. Rather than stopping with an error when
tainted data may be misused, GuardRails provides de-
velopers with a way to apply context-sensitive routines
to transform tainted data into safe data based on the use
context. Each chunk in a taint-tracked string includes a
reference to a Transformer object that applies the appro-
priate context-specific transformation to the string when
it is used. We define a use context as any distinct sit-
uation when a string is used such that malicious input
could affect the result. Examples of use contexts include
SQL queries, HTML output, and HTML output inside a
link tag, but programmers can define arbitrarily expres-
sive and precise use contexts. The transformer method
takes in a use context and a string and applies the appro-
priate context-specfic transformation routine to the input.

If a chunk is untainted, its Transformer object is the
identity transformer, which maps every string to itself in
every context. Each tainted chunk has a Transformer ob-
ject that may alter the output representation of the string
depending on the context. Taint status gives information
about the current state of a string, whereas the Trans-
former objects control how the string will be transformed
when it is used.

Our goal is to sanitize tainted strings enough to pre-
vent them from being dangerous but avoid having to
block them altogether or throw an error message. Af-
ter all, it is not uncommon for a benign string to con-
tain text that should not be allowed, and simply sanitiz-
ing this string resolves the problem without needing to
raise any alarms. As with access policies, GuardRails
seeks to minimize locations where developers can make
mistakes by attaching the sanitization rules directly to
the data itself. In this case, chunks of strings contain
their own policies as to how they must be sanitized be-
fore being used in different contexts, contexts that are
automatically established by GuardRails, as discussed in
later sections. Default tainting policies prevent standard
SQL injection and cross-site scripting attacks, but the
transformation system is powerful enough for program-
mers to define custom routines and contexts to provide
richer policies. Weinberger’s study of XSS sanitization
in different web application frameworks reveals the im-
portance of context-sensitive sanitization with a rich set
of contexts and the risks of subtle sanitization bugs when
sanitization is not done carefully [26].

Example. Figure 1 shows a simple default Transformer
used by GuardRails. If a chunk containing this Trans-
former is used in a SQL command, the sanitizer associ-
ated with the SQL context will be applied to the string
to produce the output chunk. The SQLSanitize function
(defined by GuardRails) returns a version of the chunk
that is safe to use in a SQL statement, removing any text
that could change the meaning of a SQL command. Sim-
ilarly, if the chunk is used within a Ruby eval statement,

then it will be sanitized with the Invisible filter, which
always returns an empty string. In HTML, the applied
sanitization function differs based on the use context of
the string within the HTML. Several HTML contexts are
predefined, but new contexts can be defined using an
XPath expression. The default policy specifies that if a
tainted string appears between <script> tags, then the
string will be removed via the Invisible filter. Elsewhere,
the NoHTMLAllowed function will only strip HTML tags
from the string. The sanitization routines used in the fig-
ure (NoHTMLAllowed, BoldTagsAllowed, etc.) are pro-
vided by GuardRails, but the sanitization function can
be any function that takes a string as input and returns a
string as output. Similarly, the context types for HTML
(LinkTag, DivTag, etc.) are predefined by GuardRails, but
developers can define their own and specify new contexts
using XPath expressions (as shown in the script exam-
ple).

{ :HTML =>
{ ”//script” => Invisible,

:default => NoHTMLAllowed },
:SQL => SQLSanitize,
:Ruby eval => Invisible }

Figure 1: Default Transformer

The Transformer approach supports rich contexts with
context-specific policies. Contexts can be arbitrarily
nested, so we could, for example, apply a different policy
to chunks used in an tag that is inside a <div>
tag with a particular attribute compared to chunks used
inside other tags.

4.2.1 Specifying Sanitization Policies

In many cases, developers want policies that differ from
the default policy. Following the format of the data poli-
cies, this is done using annotations of the form:

@taint, <field>, <transformer>

As with the data policies, the field component may
either be used to specify which field should be marked
with this taint status or may be left blank and placed di-
rectly above the declaration of a field in the model. The
Transformer specifies the context hierarchy that maps the
context to a sanitization routine within a Transformer ob-
ject.

One example where such policies are useful is Red-
mine, a popular application for project management and
bug tracking. Its Project object has name and descrip-
tion fields. A reasonable policy requires the name field
to contain only letters and numbers, while the description
field can contain bold, italics, and underline tags. Red-
mine uses the RedCloth plugin to allow for HTML-like

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 7

tags in the Project description, but GuardRails makes this
both simpler and more systematic allowing developers to
use annotations to specify which rules to apply to spe-
cific fields. We could specify this using the following
annotation:

@taint, {:HTML => {:default => BIU Allowed}}

This annotation establishes that whenever the string from
the description field is used in HTML, it should, by de-
fault, be sanitized using the BIU Allowed function, which
removes all HTML except bold, italics, and underline
tags. This :default setting replaces the one specified in
the default Transformer, but preserves all other context
rules, meaning the string will still be removed when used
in <script> tags, as detailed in Figure 1. If the use
context is not already present in the default Transformer,
then it will be added at the top as the highest priority rule
when a match occurs.

It may be the case, however, that the developer does
not want to append to the default Transformer, but over-
write it instead. Adding an exclamation point to the end
of a category name specifies that the default rules for this
category should not be included automatically, as in the
following example:

@taint, {:HTML! => {:default => AlphaNumeric}}

This annotation specifies that in any HTML context the
name field will be sanitized using AlphaNumeric, which
removes all characters that are not letters or numbers. As
the :HTML! keyword was used none of the other HTML
context rules will be carried over from the default Trans-
former. Because the other top-level contexts (such as
:SQL and :Ruby eval) were not mentioned in the anno-
tation, they will still be included form the default Trans-
former.

4.2.2 Determining the Use Context

GuardRails inserts additional code throughout the appli-
cation that applies the appropriate transformers. While
our system allows for any number of different use con-
texts, we focus primarily on dealing with SQL com-
mands and HTML output. We identified all the loca-
tions in Rails where SQL commands are executed and
HTML is formed into an output page and added calls to
the Transformer objects associated with the relevant in-
put strings, passing in the use context.

Many SQL injection vulnerabilities are already elim-
inated by the original Ruby on Rails framework. By
design, Ruby on Rails tries to avoid the use of SQL
queries altogether. Using prepared queries when SQL
is necessary also helps prevent attacks. Nonetheless, it
is still possible to construct a SQL statement that is open
to attack. In these scenarios, GuardRails intercepts the

SQL commands and sanitizes the tainted chunks using
the string’s Transformer object.

A more common danger is posed by cross-site script-
ing vulnerabilities. To ensure that no outgoing HTML
contains a potential attack, GuardRails intercepts the fi-
nal generated HTML before it is sent by the server.
The output page is collected into a single string, where
each chunk in that string preserves its taint information.
GuardRails processes the output page, calling the appro-
priate transformer for each string chunk. We use Noko-
giri [14] to parse the HTML and determine the context
in which the chunk is being used in the page. This con-
text information is then passed to the Transformer, which
applies the appropriate sanitization routine. The detailed
parse tree produced by Nokogiri is what allows for the
arbitrarily specific HTML contexts. Note that it is im-
portant that the transformations are applied to the HTML
chunks in order, as the result of a chunk being trans-
formed earlier in the page may affect the use context of
a chunk later in the document. After all of the tainted
chunks have been sanitized, the resulting output page is
sent to the user. As the entire HTML page must be con-
structed, then analyzed in its entirety before being sent
to the user, this approach may have unacceptable conse-
quences to the latency of processing a request, but could
be avoided by more aggressively transmitting partial out-
puts once they are known to be safe. This is discussed
further in Section 5.

4.3 Implementation
GuardRails defines taint propagation rules to keep track
of the transformers attached to strings as they move
throughout the application. Whenever user input enters
the system either through URL parameters, form data,
or uploaded files, the content is immediately marked as
tainted by assigning it the default Transformer. If the ap-
plication receives user input in a non-conventional way
(e.g. by directly obtaining content from another site), the
developer can manually mark these locations to indicate
that the data obtained is tainted.

We modify the Ruby String class to contain an ad-
ditional field used to store taint information about the
string. Note that this change is made dynamically by
GuardRails within the context of Ruby on Rails and does
not involve any modification to the Ruby implementa-
tion. A string can contain any number of chunks, so we
use an array of pairs, one for each chunk, where the first
element represents the last character index of that chunk
and the second element is a reference to the correspond-
ing Transformer. For example, the string

Joe

generated by concatenating three strings (where under-
lining represents untainted data and boldface represents

8 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tainted data), would be represented using the chunks:

[[18, <Transformer::Identity>],
[21, <Transformer::Default>],
[25, <Transformer::Identity>]]

To maintain taint information as string objects are ma-
nipulated, we override many of the methods in the String
class, along with some from other related classes such as
RegExp and MatchData. Our goal when deciding how to
propagate taint information in these string functions was
to be as conservative as possible to minimize the possi-
bility of any exploits. Generally, the string resulting from
a string function will be marked as at least as danger-
ous as the original string. Functions like concatenation
preserve the taint status of each input string in the final
result, just as one would expect. Other functions like
copying and taking substrings also yield the appropriate
taint statuses that reflect the taint of the original string. In
some cases, discussed in Section 4.3.2, the conservative
approach is too restrictive.

4.3.1 Persistent Storage

Web applications often take input from a user, store it in
a database, and retrieve and use that information to re-
spond to later requests. This can expose applications to
persistent cross-site scripting attacks, which rely on ma-
licious strings being stored in the database and later used
in HTML responses. Therefore, we need a way to store
taint information persistently, as the database is outside
of the scope of our Ruby string modifications.

To solve this problem, we use a method similar to
that used by RESIN [29] and DBTaint [4]. For every
string that is stored in the database, we add an additional
column that contains that string’s taint information. We
then modify the accessors for that string so that when
the string is saved to the database, it is broken into its
raw content and taint information, and when it is read
from the database, both the content and the taint are re-
combined back into the original string. We also modify
several other functions that interact with the database to
ensure that the taint information is always connected to
the string. This solution makes more sense than serializ-
ing the entire object, as it does not disrupt any existing
lookup queries made by the application that search for
specific text in the database.

4.3.2 Problematic Functions

In our tests, we found that there are some cases where
being overly safe can result in overtainting in a way that
interferes with the behavior of the application. Our rules
are slightly more relaxed in these situations, but only
when necessary and the security risk is minimal. Next,

we discuss several of these cases and others where deter-
mining the appropriate tainting is more complex.

Pattern Substitution. Ruby provides the sub and gsub
procedures that provide regular expression substitution
in strings. With these functions, the contents of one
chunk affect different parts of the output string in com-
plex ways. If the input string is tainted and the replace-
ment is untainted, then the resulting taint status is am-
biguous, as the tainted string affects where the untainted
string is placed.

A maximally conservative approach might consider
the untainted replacement as tainted, as its location was
specifically dictated by the contents of the tainted string.
While our is generally to take a conservative approach to
tainting, we found in our test applications that this ap-
proach frequently leads to overtainting. Hence, we adopt
a more relaxed model where output characters are tainted
only when they directly result from a tainted chunk. Fig-
ure 2 illustrates some examples of how taint information
is manipulated in commands such as gsub.

Composing Transformers. Another set of special cases
are those functions that blend multiple tainted chunks
in a way where it is difficult or impossible to keep the
resulting taint statuses separate. One such function is
squeeze, which replaces identical consecutive charac-
ters in a string with a single copy of that character (see
Figure 2 for examples). If the repeated characters have
the same taint status then there is no issue: the resulting
single character should also have the same taint status.
If, however, each of the repeated characters has a differ-
ent taint status, the resulting character depends on both
inputs. Picking one of the two taint statuses could po-
tentially leave the application vulnerable, so we mix the
different taint statues by composing the transformers. A
Transformer object can simply be considered a function
that takes in a string and a context and returns a sani-
tized string for that context. This means that we can com-
bine Transformers simply by composing their respective
functions. When the composed Transformer is given a
string and context, it applies the first Transformer with
the given context, then applies the second Transformer
with the same context to the result of the first.

As the order in which the two Transformers are ap-
plied might affect the final result, we perform the trans-
formations in both possible orders and check that the re-
sults are the same. If they are not, then GuardRails acts
as conservatively as possible, either throwing an error or
emptying the contents of the string. In practice, this is-
sue is not particularly problematic as only a few uncom-
monly used string functions (squeeze, next, succ, upto,
and unpack) need to compose Transformers and the ma-
jority of Transformers produce the same result regardless

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 9

String Command Result
"foobar".gsub("o","0") "f00bar"

"medium".gsub(/(datu|mediu|agendu|bacteriu)m/,"\1a") "media"
"utopia".gsub(/(a|e|i|o|u)/) { |x| x.swapcase } "UtOpIA"

"football".squeeze "fotbal"
"battle".squeeze "batle"

Table 2: Example String Commands with Taint
Underlined and bold text in these examples indicate different taint statuses. The second gsub example is very similar to the matching
used by Ruby on Rails in the pluralize function, which converts words to their plural form. The second squeeze example demonstrates
how taint must be merged in cases where the value of a chunk comes from multiple sources.

of the order in which they are applied.

String Interpolation. One key advantage of taint track-
ing system employed by GuardRails is that modifies
string operations dynamically, with no need to directly
alter any Ruby libraries. String interpolation, a means
of evaluating Ruby code in the middle of a string, is
managed by native Ruby C code, however, and can-
not be changed dynamically. To resolve this problem,
the source-to-source transformation done by GuardRails
transforms all instances in the web application where in-
terpolation is used with syntactically equivalent concate-
nation. Additionally, because Ruby on Rails itself also
uses interpolation, GuardRails runs the same source-to-
source transformation on the Ruby on Rails code, replac-
ing all uses of interpolation with concatenation.

4.4 Examples

We illustrate how one taint-tracking system eliminates
vulnerabilities and simplifies application code by de-
scribing a few examples from our evaluation applica-
tions.

SQL Injection. Substruct, an e-commerce application,
handles most forms safely but one particular set of fields
was left vulnerable to SQL injection [21]. The issue lay
with the use of the function update all, which performs
direct database updates and can easily be used unsafely,
as in the following code written by the developers:

update all(”value = '#{value}'”, ”name = '#{name}'”)

This code directly includes the user-provided value string
in the SQL command. A malicious user could exploit
this to take control of the command and potentially take
control of the database.

GuardRails prevents this vulnerability from being ex-
ploited. Since update all is known to be a way of passing
strings directly into SQL commands, GuardRails mod-
ifies the function to transform the provided strings for
the SQL use context. As form data is marked auto-
matically with the default Transformer, the potentially

harmful strings will be sanitized to remove any danger-
ous text that might modify the SQL command. Note that
for this example, the vulnerability is eliminated by using
GuardRails even if no annotations are provided by the
developer.

Cross-Site Scripting. Onyx correctly sanitizes input that
is used to post comments on images, but does not per-
form the same checks on input to certain administrator
fields. This allows any administrator to inject code into
the application to attack application users or other site
administrators. In the case of the site description field,
simply putting in a double quote as part of the input
is enough to break the HTML structure of the resulting
pages. These are examples of simple persistent cross-site
scripting issues, where the offending string is first saved
in the database, then attacks users when later loaded from
the database and placed into HTML responses.

Applying GuardRails fixes these cross-site scripting
vulnerabilities. Recall that the default Transformer (Fig-
ure 1) removes all tags when an unsafe string is used in
an HTML context. Thus, when the attacker submits the
malicious string in the web form, it is immediately as-
signed the default Transformer. When that string is later
used in HTML, it is sanitized using the NoHTMLAllowed
filter. The taint information is preserved when strings
are saved and loaded from the database (Section 4.3.1),
so the vulnerability is not exploitable even though it in-
volves strings read from the database.

5 Evaluation

We conducted a preliminary evaluation of GuardRails by
testing it on a variety of Ruby on Rails applications. Ta-
ble 3 summarizes the test applications. These applica-
tions are diverse in terms of complexity and cover a range
of application types and design styles. We were able to
use GuardRails effectively on all the applications without
any modifications.

As detailed in Section 3.3, we have had success at pre-
venting known access control issues with simple policy
annotations. Our system of fine-grained taint tracking

10 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Application Description Source Lines of Code
Onyx image gallery http://www.hulihanapplications.com/projects/onyx 680
Spree shopping cart http://spreecommerce.com/ 11561

Substruct shopping cart http://code.google.com/p/substruct/ 5556
Redmine project management http://www.redmine.org/ 30747

PaperTracks publication and citation tracker developed ourselves 1980

Table 3: Test Applications

also succeeded at blocking SQL injection and cross-site
scripting attacks, as explained in Section 4.4.

While performance was not a major design goal,
it is still a practical concern. To estimate the over-
head imposed by our system, we transformed the image
gallery application Onyx with various configurations of
GuardRails and measured the average throughput for 50
concurrent users. Table 4 summarizes the results.

As currently implemented, GuardRails does impose a
significant performance cost. But, we believe most of
this performance overhead is due to limitations of our
prototype system rather than intrinsic costs of our ap-
proach.

Performing the access control checking decreases
throughput by around 25 percent. Most of the perfor-
mance overhead comes from the code needed to assign
policies dynamically. This code is independent of the
number of policies, so the performance does not greatly
depend on the number of annotated policies. We could
reduce this overhead by using static analysis to determine
which policies can be assigned statically instead of dy-
namically.

Taint tracking incurs substantial overhead, reducing
throughput by more than 75 percent for some requests.
Our taint tracking implementation replaces the native
C string implementations provided by Ruby with inter-
preted Ruby implementations. Since the Ruby string
implementations are highly optimized, and interpreting
Ruby code is much slower than native C, it is not surpris-
ing that this incurs a substantial performance hit. Com-
plex functions like gsub, split, delete, and slice require
more code to ensure that taint status is handled correctly.
The split method, for example, took 0.14 seconds to run
400 times without the taint system applied in one test.
With the taint system applied, the same test took 0.15
seconds when operating on untainted strings but nearly 5
seconds to split tainted strings. In future work, we hope
both to optimize string methods both by rewriting them
in C and using more efficient algorithms, and we are op-
timistic that much of the performance overhead imposed
by GuardRails could be eliminated by doing this.

6 Related Work

Much research has been done towards the goal of im-
proving security of web applications and developing ac-
cess control policies. Here, we review the most closely
related work on data policy enforcement and taint track-
ing.

6.1 Data Policy Enforcement

Aspect-oriented programming is a design paradigm that
centralizes code that would normally be spread through-
out an application, often referred to as cross-cutting
concerns [8]. Data policy enforcement is such a con-
cern and several authors have suggested using aspect-
oriented programming to implement security policy en-
forcement [24, 27]. Like our project, this work seeks to
reduce implementation errors and improve readability by
centralizing information about security policies.

Automated data policy enforcement is becoming a
popular method for preventing security vulnerabilities.
Some projects let developers specify data policies, assign
the policies to object instances explicitly, and enforce the
policies using a runtime system [29, 19]. It is often dif-
ficult to define security policies in a clear and concise
format. Some projects attempt to remedy this by creat-
ing a policy description language [5] while others aim to
infer appropriate policies [3] without developer input.

The most similar previous work is RESIN, a tool that
enforces developer-specified policies on web applica-
tions [29]. GuardRails and RESIN differ in several fun-
damental ways. RESIN handles policies attached to in-
dividual object instances, so developers must manually
add the policies on each object instance they want to
protect. GuardRails instead associates policies with data
models (classes), so the appropriate policy is automat-
ically applied to all instances of the class. Addition-
ally, GuardRails automates much more of the work re-
quired to build a secure web application than RESIN
does. RESIN requires the developer to write an entire
class for each security policy while GuardRails only re-
quires a small annotation.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 11

Transformation Status Homepage Login Interface Image Gallery
Original Application 8.9 9.6 9.2
Access Control Only 7.1 7.1 6.6

Taint Tracking w/o HTML Parsing 2.5 2.8 2.5
Full System 2.0 2.5 2.2

Table 4: Performance Measurements from Onyx
Each number indicates the number of transactions per second for the given request and configuration.

6.2 Taint Tracking

Taint tracking techniques have been used to find format
string vulnerabilities [20, 22, 28], prevent buffer over-
flows [22, 28], improve signature generation [12], and
even to track information flow at the operating system
level [7]. Several systems, like the GIFT framework [9],
are designed, like GuardRails, to be extensible to prevent
many types of injection attacks [1, 15]. As mentioned in
Section 4.1, some recent research has focused on solv-
ing the over/undertainting problem with character-by-
character taint tracking [2, 13, 29]. Many systems are
limited to using boolean taint states [22, 28] or make use
of the compiler, making them difficult to directly apply
to a dynamic, interpreted language like Ruby [1, 11].

Similar to our context-specific transformers, the
Context-Sensitive String Evaluation (CSSE) [15] system
treats tainted strings differently depending on the context
of their use. CSSE uses meta-data tags to allow for com-
plex taint statuses. CSSE, however, focuses on propagat-
ing information about where the content originated from,
with the context-specific code dealing with the tainted
strings at the location of their use based on this origin in-
formation. The Auto Escape mode in Google’s Template
System is another similar system that uses different san-
itization routines depending on the context of a string in
HTML [6]. Without taint-tracking, however, Auto Es-
cape cannot distinguish between safe and unsafe strings
without explicit specifications from the developer, so it is
necessary to explicitly identify templates that should use
auto escape mode.

Other systems do not modify the web application itself
or the underlying platform, but instead operate between
the application’s key entry and exit points. Sekar devel-
oped one such tool [18] that records the input received
by the application, and later uses taint inference in out-
put and database commands to find similar strings that
may have been derived from this input. The tool also
focuses on looking for changes in syntax of important
commands that might be indicative of an injection at-
tack. Another system, DBTaint [4] works outside of the
application, helping to preserve arbitrary taint informa-
tion given from an arbitrary application in the database.
Both of these tools have the advantage of being largely

platform-independent, and neither needs any application
modifications.

7 Conclusion

GuardRails seeks to reduce the effort required to build
a secure web application by enforcing security policies
defined with the data model, in particular, access con-
trol policies and context-sensitive string transformations.
The main novelty of GuardRails is the way policies are
tied directly to data models which fits developer under-
standing naturally, provides a large amount of expres-
siveness, and centralized policies in a way that mini-
mizes the likelihood of missing necessary access control
checks. Our early experience with GuardRails provides
cause for optimism that application developers can be re-
lieved of much of the tedious and error-prone work typ-
ically required to build a secure web application. Al-
though the performance overhead is prohibitive for large
scale commercial sites, many web applications can toler-
ate fairly poor performance. Further, although our cur-
rent prototype implementation incurs substantial over-
head, we believe many of techniques we advocate could
be implemented more efficiently if they are more fully in-
tegrated into the underlying framework implementation,
and that reducing developer effort and mitigating secu-
rity risk will become increasingly important in rapid web
application development.

Availability

GuardRails is available under an open source license
from http://guardrails.cs.virginia.edu/.

Acknowledgements

This work was funded in part by grants from the National
Science Foundation and a MURI award from the Air
Force Office of Scientific Research. The authors thank
Armando Fox for his helpful comments and suggestions,
and thank Dawn Song, Prateek Saxena, and the attendees
at RubyNation for helpful discussions about this work.

12 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

References
[1] CHANG, W., STREIFF, B., AND LIN, C. Efficient and extensible

security enforcement using dynamic data flow analysis. In Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security (New York, NY, USA, 2008), CCS ’08, ACM,
pp. 39–50.

[2] CHIN, E., AND WAGNER, D. Efficient Character-level Taint
Tracking for Java. In 2009 ACM Workshop on Secure Web Ser-
vices (2009).

[3] DALTON, M., KOZYRAKIS, C., AND ZELDOVICH, N. Neme-
sis: preventing authentication & access control vulnerabilities
in web applications. In Proceedings of the 18th conference
on USENIX security symposium (Berkeley, CA, USA, 2009),
SSYM’09, USENIX Association, pp. 267–282.

[4] DAVIS, B., AND CHEN, H. DBTaint: Cross-application Informa-
tion Flow Tracking via Databases. In 2010 USENIX Conference
on Web Application Development (2010), WebApps’10.

[5] EFSTATHOPOULOS, P., AND KOHLER, E. Manageable fine-
grained information flow. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008
(New York, NY, USA, 2008), Eurosys ’08, ACM, pp. 301–313.

[6] GOOGLE. Auto escape. http://google-ctemplate.googlecode.
com/svn/trunk/doc/auto escape.html, 2010.

[7] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A., AND
HAND, S. Practical taint-based protection using demand emula-
tion. In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (New York, NY, USA,
2006), EuroSys ’06, ACM, pp. 29–41.

[8] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-Oriented
Programming. In European Conference on Object-Oriented Pro-
gramming (1997).

[9] LAM, L. C., AND CHIUEH, T.-C. A general dynamic infor-
mation flow tracking framework for security applications. In
Proceedings of the 22nd Annual Computer Security Applications
Conference (Washington, DC, USA, 2006), IEEE Computer So-
ciety, pp. 463–472.

[10] LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabil-
ities in java applications with static analysis. In Proceedings of
the 14th conference on USENIX Security Symposium - Volume 14
(Berkeley, CA, USA, 2005), USENIX Association, pp. 18–18.

[11] NANDA, S., LAM, L.-C., AND CHIUEH, T.-C. Dynamic Multi-
process Information Flow Tracking for Web Application Secu-
rity. In 2007 ACM/IFIP/USENIX International Conference on
Middleware Companion (2007).

[12] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploitson
commodity software. In Proceedings of the 12th AnnualNetwork
and Distributed System Security Symposium (2005), NDSS05.

[13] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D.,
SHIRLEY, J., AND EVANS, D. Automatically Hardening Web
applications Using Precise Tainting. In Security and Privacy in
the Age of Ubiquitous Computing (2005).

[14] PATTERSON, A., DALESSIO, M., NUTTER, C., ARBEO, S.,
MAHONEY, P., AND HARADA, Y. Nokogiri: an HTML, XML,
SAX, and Reader Parser. http://nokogiri.org/, 2008.

[15] PIETRASZEK, T., AND BERGHE, C. Defending against injection
attacks through context-sensitive string evaluation. In Recent Ad-
vances in Intrusion Detection, A. Valdes and D. Zamboni, Eds.,
vol. 3858 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2006, pp. 124–145.

[16] PROJECT, O. W. A. S. OWASP Top 10 — The Ten Most Critical
Web Application Security Risks. http://www.owasp.org/index.
php/Top 10, 2010.

[17] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to
Ask). In IEEE Symposium on Security and Privacy (Oakland)
(2010).

[18] SEKAR, R. An Efficient Black-box Technique for Defeating Web
Application Attacks. In 16th Annual Network and Distributed
System Security Symposium (NDSS) (2009).

[19] SEO, J., AND LAM, M. S. InvisiType: Object-Oriented Security
Policies. In 17th Annual Network and Distributed System Secu-
rity Symposium (2010).

[20] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER,
D. Detecting format string vulnerabilities with type qualifiers. In
Proceedings of the 10th conference on USENIX Security Sym-
posium - Volume 10 (Berkeley, CA, USA, 2001), SSYM’01,
USENIX Association, pp. 16–16.

[21] SUBSTRUCT DEVELOPER. Preference.save settings is inse-
cure. http://code.google.com/p/substruct/issues/detail?id=
36, Mar. 2008.

[22] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure
program execution via dynamic information flow tracking. In
Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems (New
York, NY, USA, 2004), ASPLOS-XI, ACM, pp. 85–96.

[23] TRIPP, O., PISTOIA, M., FINK, S. J., SRIDHARAN, M., AND
WEISMAN, O. TAJ: Effective Taint Analysis of Web Applica-
tions. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2009), PLDI
’09, ACM, pp. 87–97.

[24] VIEGA, J., BLOCH, J. T., AND CH, P. Applying aspect-oriented
programming to security. Cutter IT Journal 14 (2001), 31–39.

[25] VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E.,
KRUEGEL, C., AND VIGNA, G. Cross-Site Scripting Prevention
with Dynamic Data Tainting and Static Analysis. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS ’07) (2007).

[26] WEINBERGER, J., SAXENA, P., AKHAWE, D., FINIFTER, M.,
SHIN, R., AND SONG, D. An empirical analysis of xss saniti-
zation in web application frameworks. Tech. Rep. UCB/EECS-
2011-11, EECS Department, University of California, Berkeley,
Feb 2011.

[27] WIN, B. D., VANHAUTE, B., AND DECKE, B. D. Developing
secure applications through aspect-oriented programming. Ad-
vances in Network and Distributed Systems Security (2001), 125–
138.

[28] XU, W., BHATKAR, S., AND SEKAR, R. Taint-Enhanced Pol-
icy Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks. In Proceedings of the 15th conference on USENIX
Security Symposium (USENIX-SS ’06) (2006).

[29] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving Application Security with Data Flow Assertions. In
ACM SIGOPS 22nd Symposium on Operating Systems Principles
(2009).

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 13

PHP Aspis: Using Partial Taint Tracking
To Protect Against Injection Attacks

Ioannis Papagiannis
Imperial College London

Matteo Migliavacca
Imperial College London

Peter Pietzuch
Imperial College London

Abstract
Web applications are increasingly popular victims of se-
curity attacks. Injection attacks, such as Cross Site
Scripting or SQL Injection, are a persistent problem.
Even though developers are aware of them, the suggested
best practices for protection are error prone: unless all
user input is consistently filtered, any application may be
vulnerable. When hosting web applications, administra-
tors face a dilemma: they can only deploy applications
that are trusted or they risk their system’s security.

To prevent injection vulnerabilities, we introduce
PHP Aspis: a source code transformation tool that ap-
plies partial taint tracking at the language level. PHP As-
pis augments values with taint meta-data to track their
origin in order to detect injection vulnerabilities. To im-
prove performance, PHP Aspis carries out taint propaga-
tion only in an application’s most vulnerable parts: third-
party plugins. We evaluate PHP Aspis with Wordpress,
a popular open source weblog platform, and show that
it prevents all code injection exploits that were found in
Wordpress plugins in 2010.

1 Introduction

The most common types of web application attacks in-
volve code injection [4]: Javascript that is embedded into
the generated HTML (Cross Site Scripting, or XSS), SQL
that is part of a generated database query (SQL Injection,
or SQLI) or scripts that are executed on the web server
(Shell Injection and Eval Injection). These attacks com-
monly exploit the web application’s trust in user-provided
data. If user-provided data are not properly filtered and
sanitised before use, an attacker can trick the applica-
tion into generating arbitrary HMTL responses and SQL
queries, or even execute user-supplied, malicious code.

Even though web developers are generally aware of
code injection vulnerabilities, applications continue to
suffer from relevant exploits. In 2010, 23.9% of the total
reported vulnerabilities to the CVE database were classi-

fied as SQLI or XSS [12]. Morover, injection vulnera-
bilities are often common in third-party plugins instead of
the well-tested core of a web application: in 2010, 10 out
of 12 reported Wordpress injection exploits in the CVE
database involved plugins and not Wordpress itself.

Such vulnerabilities still remain because suggested so-
lutions often require manual tracking and filtering of
user-generated data throughout the source code of an ap-
plication. Yet, even a single unprotected input chan-
nel in an application is enough to cause an injection
vulnerability. Thus, less experienced and therefore less
security-conscious developers of third-party plugins are
more likely to write vulnerable code.

Past research has suggested runtime taint tracking [19,
18, 14] as an effective solution to prevent injection ex-
ploits. In this approach, the origin of all data within
the application is tracked by associating meta-data with
strings. When an application executes a sensitive opera-
tion, such as outputting HTML, these meta-data are used
to escape potentially dangerous values. The most effi-
cient implementation of taint tracking is within the lan-
guage runtime. Runtime taint tracking is not widely used
in PHP, however, because it relies on custom runtimes
that are not available in production environments. Thus,
developers are forced to avoid vulnerabilities manually.

We show that injection vulnerabilities in PHP can be
addressed by applying taint tracking entirely at the source
code level without modifications to the PHP language
runtime. To reduce the incurred performance overhead
due to extensive source code rewriting, we introduce par-
tial taint tracking, which limits taint tracking only to
functions of the web application in which vulnerabilities
are more likely to occur. Partial taint tracking effectively
captures the different levels of trust placed into different
parts of web applications. It offers better performance
because parts of the application code remain unchanged.

We demonstrate this approach using PHP Aspis1, a

1An Aspis was the circular wooden shield carried by soldiers in an-
cient Greece.

1

14 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tool that performs taint tracking only on third-party plug-
ins by rewriting their source code to explicitly track and
propagate the origin of characters in strings. PHP Aspis
augments values to include taint meta-data and rewrites
PHP statements to operate in the presence of taint meta-
data and propagate these correctly. PHP Aspis then
uses the taint meta-data to automatically sanitise user-
provided untrusted values and transparently prevent in-
jection attacks. Overall, PHP Aspis does not require
modifications to the PHP language runtime or to the web
server.

Our evaluation shows that, by using partial taint track-
ing, PHP Aspis successfully prevents most XSS and
SQLI exploits reported in public Wordpress plugins since
2010. Page generation time is significantly reduced com-
pared to tracking taint in the entire Wordpress codebase.

In summary, the contributions of this paper are:

• a taint tracking implementation for PHP that uses
source code transformations only;

• a method for applying taint tracking only to parts of
a web application, in which exploits are more likely
to occur;

• an implementation of a code transformation tool and
its evaluation with real-world exploits reported in
the Wordpress platform.

The next section provides background on code injec-
tion vulnerabilities and introduces partial taint tracking as
a suitable defence. In §3, we describe our approach for
achieving taint propagation in PHP based on code rewrit-
ing, and we show how to limit the scope of taint tracking
to parts of a codebase. Finally, we evaluate our approach
by securing Wordpress in §4 and conclude in §5.

2 Preventing Injection Vulnerabilities

2.1 Injection Vulnerabilities
Consider a weblog with a search field. Typically, input to
the search field results in a web request with the search
term as a parameter:

http://goodsite.com/find?t=spaceship

A response of the web server to this request may contain
the following fragment:

<p> The te rm ` ` s p a c e s h i p ' ' was n o t found . < / p>

The important element of the above response is that the
user-submitted search term is included as is in the output.
This can be easily exploited by an attacker to construct an
XSS attack. The attacker first creates the following URL:

http://goodsite.com/find?t=<script\%20
src='http://attack.com/attack.js'/>

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2002 2003 2004 2005 2006 2007 2008 2009 2010

T
o

ta
l
V

u
ln

e
ra

b
ili

ti
e

s
 (

%
)

Year

XSS
SQLI

Figure 1: Historical percentage of XSS and SQLI in all CVE
vulnerabilities

When an unsuspecting user clicks on this link, the fol-
lowing HTML fragment is generated:

<p> The te rm ` `<s c r i p t s r c = ' h t t p : / / a t t a c k . com /
a t t a c k . j s ' /> ' ' was n o t found . < / p>

The victim’s browser then fetches the malicious
Javascript code and executes it. Since the HTML doc-
ument originated from goodsite.com, the script is ex-
ecuted with full access to the victim’s web browser ses-
sion. If the user has an account with this weblog and is al-
ready logged on, their cookies can be sent to the attacker.
In general, the script can issue any unverified operations
on behalf of the user.

SQL Injection attacks are analogous: they take advan-
tage of applications that process user input to form an
SQL query to a database. Similarly, Eval and Shell In-
jection attacks target PHP’s eval() and exec() state-
ments respectively. Since these statements execute arbi-
trary code at runtime, such an attack can easily compro-
mise the host machine.

Figure 1 shows the percentage of reported SQLI and
XSS vulnerabilities in recent years, as classified in the
CVE database. Both problems continue to affect appli-
cations despite an increase of developer awareness. Ta-
ble 1 shows our classification of vulnerabilities for two
popular open source web platforms, Wordpress and Dru-
pal. Code injection vulnerabilities are the most common
type in both, with higher percentages compared to tradi-
tional applications across all programming languages in
Figure 1. By relying on prepared statements, an auto-
mated way to avoid SQLI (see §2.2), the Drupal platform
has comparatively few such exploits.

2.2 Existing Practices
The traditional approach to address injection vulnerabil-
ities is to treat all information that may potentially come
from the user as untrusted—it should not be used for sen-
sitive operations, such as page generation or SQL queries,
unless properly sanitised or filtered. In the previous ex-
ample, a proper sanitisation function would translate all

2

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 15

Num. of Occurrences
Type Wordpress Drupal

Cross Site Scripting 9 28
SQL Injection 3 1

Information Leakage 1 0
Insufficient Access Control 1 9

Eval Injection 0 1
Cross Site Request Forgery 1 0

Table 1: Web application vulnerabilities in 2010

characters with special meaning in HTML to their dis-
play equivalents (e.g. “<” to “<”). Sanitisation func-
tions such as htmlentities() or escapeshellarg()
are part of the PHP language. After sanitisation, the
string can safely be echoed to the client because it can
no longer change the semantics of the output. SQLI fil-
tering functions operate similarly but they also check for
user-provided SQL keywords in the query [13, 19].

Unfortunately, sanitisation functions are difficult to ap-
ply in practice. Each sensitive operation requires a differ-
ent sanitisation function. For example, if the same string
is echoed to the user and used as part of an SQL query,
two different strings must be generated based on the orig-
inal value. Centralised filtering of input data when they
are received is impractical because there is no single data
representation that is both meaningful and secure in all
possible contexts. For example, the string “WHERE” is
safe in HTML but not in an SQL query. Therefore, de-
velopers have to propagate the original user data and only
sanitise them before being used.

In addition, sanitisation assumes that developers can
effectively track the origin of data and enforce that user-
generated data always pass through their respective sani-
tisation function. In practice, left-out checks by inexperi-
enced developers or unforeseen interactions that result in
unexpected data flow (e.g. assuming that a script cannot
be called from an external user) are likely to occur.

2.2.1 Static Approaches

Past research has suggested static analysis tools that de-
tect injection vulnerabilities in PHP scripts. Pixy [11] and
WebSSARI [10] rely on data flow analysis to detect sen-
sitive functions that may receive user data without sani-
tisation and produce warnings. Wassermann and Su [16]
model string values and operations as grammars and then
inspect them before query operations to reduce the false
positive rate for SQLI detection. Xie and Aiken [17] use
symbolic execution to support PHP’s dynamic features
and report a low false positive rate.

Although static analysis tools do not introduce runtime
overhead, they are not fully automated, cannot support all
PHP features and do not always achieve a low false pos-
itive rate. In addition, they cannot handle vulnerabilities

that involve the file system or the database. As a result,
such tools are not widely used for PHP development.

Prepared statements are a way to avoid SQLI exploits.
Instead of concatenating queries, an application defines
static placeholder queries with parameters filled in at
runtime. Parameters passed to the placeholders cannot
change the semantics of the query, as its structure is de-
termined in advance when the statement is prepared. In
practice, many PHP applications do not use them because
they were not traditionally supported by PHP or MySQL
and instead manually sanitise SQL queries.

2.2.2 Dynamic Taint Tracking

A dynamic approach to addressing injection vulnerabil-
ities in existing applications when they occur is runtime
taint tracking [19, 6]. It automates the tracking of the
origin of data and enforces that data pass through their
respective sanitisation functions. Runtime taint tracking
involves three different steps:

1. Data entry points. All data entering the application
that may originate from the user are transparently
augmented with taint meta-data. The form of these
meta-data may vary: from one bit that marks that a
particular string is user-provided (or tainted) [14] to
a pointer that links to arbitrary policy objects [19].

2. Taint propagation. As the application processes
data, the runtime system transparently propagates
the associated taint meta-data. For example, when
a tainted string is concatenated with another string,
the result must be marked as tainted.

3. Guarded sinks. Every operation that can be used in
an injection vulnerability (e.g. echo() and eval())
is intercepted. The interceptor examines the corre-
sponding taint meta-data and calls the relevant sani-
tisation function or aborts the operation.

Taint tracking has been shown to be effective in secur-
ing existing web applications [19, 18, 9, 14, 6]. Com-
pared to static approaches, it does not require either de-
bugging or refactoring an existing codebase. Perl and
Ruby support it in some form (through Perl’s taint mode
and Ruby’s safe levels) but not PHP. Taint tracking can
be applied to PHP by modifying the core of the PHP run-
time [19]. Typically, it has been implemented by aug-
menting the interpreter’s zval struct with taint data. Sim-
ple approaches [13, 14] assign one bit of taint meta-data
per string character and propagate that meta-data to sinks
independently of the application’s sanitisation efforts.

Later systems stored more meta-data per character in
order to provide more fine-grained guarantees. Neme-
sis [7] uses two taint bits to automatically infer authen-
tication and enforce access control. Resin [19] uses a
pointer to arbitrary policy objects that can be also used

3

16 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

to prevent injection vulnerabilities.
Xu et al. [18] suggest that a taint tracking implemen-

tation in C can be used to compile the PHP runtime and
transparently add taint tracking support. Their approach
ignores sanitisation efforts of the hosted PHP applica-
tion and therefore suffers from false positives. Also, it
does not support different policies for different applica-
tions running in the same runtime, a common scenario
for many PHP deployments.

However, unless taint tracking is considered part of
PHP and is officially adopted, third party implementa-
tions are impractical. As the PHP manual puts it:

“modifications to the Zend2 engine should be
avoided. Changes here result in incompati-
bilities with the rest of the world, and hardly
anyone will ever adapt to specially patched
Zend engines. Modifications can’t be detached
from the main PHP sources and are overridden
with the next update using the “official” source
repositories. Therefore, this method is gener-
ally considered bad practice”

In the past, taint tracking support has been suggested
as a feature to the PHP community but it has not been
adopted, partly because of fears that it may lead to a false
sense of security [15].

2.3 Partial Taint Tracking
PHP is the most popular web development language, as
indicated by web surveys [2], and its gentle learning
curve often attracts less experienced developers. Inexpe-
rienced developers are more likely to extend web appli-
cations through third-party code in the form of plugins.

Such extensibility is frequently a popular feature for
web applications but leads to a significant security threat
from plugins. In 2009, the CVE database reported that the
Wordpress platform suffered from 15 injection vulnera-
bilities, out of which 13 were introduced by third-party
plugins and only 2 involved the core platform. In 2010,
the breakdown was similar: 10 vulnerabilities were due
to plugins and only 2 due to Wordpress itself.

As a result, not all application code is equally prone to
injection vulnerabilities. For example, Wordpress spends
much of its page generation time in initialisation code,
setting up the platform before handling user requests.
This involves time-consuming steps such as querying the
database for installed plugins, setting them up, and gen-
erating static parts of the response involving theme-aware
headers and footers.

Injection vulnerabilities, on the other hand, tend to ap-
pear in code that handles user-generated content: CVE-
2010-4257, an SQLI vulnerability, involved a function

2Zend is the name of the official PHP scripting engine

PHP Aspis Transformed Application

Taint-Tracking Code

Non Tracking Code

"spaceship"

Taint

PHP Statements

Library Calls

Sanitization Operations

HTML output
<p>spaceship</p>

SQL query
WHERE p=spaceship

Eval statement
spaceship()

1

2
3

4
Guarded sinks

Input
HTTP request

Figure 2: Partial taint tracking using PHP Aspis

that handles track-backs after a user published a post;
CVE-2009-3891, an XSS vulnerability, involved a func-
tion that validates uploaded files; and CVE-2009-2851
and CVE-2010-4536, again XSS vulnerabilities, involved
multiple functions that display user comments.

We exploit this observation by introducing partial taint
tracking, which only transforms the source code of the
most vulnerable parts of an application in order to sup-
port taint tracking. By relying on source-level transfor-
mations, partial taint tracking does not require the de-
velopment and maintenance of a modified version of the
PHP runtime.

We use a simple approach to decide when to track taint:
we focus on parts of third-party plugins that handle user-
generated data. This restricts source code transforma-
tions to a small fraction of the codebase of a web appli-
cation. As a consequence, we mitigate the large perfor-
mance penalty that exhaustive taint tracking at the source
level would incur.

3 PHP Aspis

We describe the design and implementation of PHP As-
pis, a PHP source code transformation tool for partial
taint tracking. Figure 2 presents an overview of how
PHP Aspis transforms applications. First, it modifies
code that receives data from users and marks the data as
user-generated (label 1). Second, it divides the applica-
tion’s codebase in two different categories: tracking and
non-tracking code. Instead of tracking taint uniformly, it
focuses on parts of the codebase that are more likely to
contain code injection vulnerabilities (label 2). In track-
ing code, PHP Aspis records the origin of data at the
character level and filters data at output statements when
an injection vulnerability could exist (label 3). For non-
tracking code, it does not perform taint tracking, trusting
the code not to be vulnerable (label 4).

Next we introduce the representation of taint meta-data
used to record the origin of the data in each variable.
In §3.2, we describe the transformations that can be ap-

4

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 17

Sanitisation htmlentities()

functions htmlspecialchars()

Guarded sinks
echo()⇒ AspisAntiXss()

print()⇒ AspisAntiXss()

. . .

Table 2: Excerpt of the definition of the XSS taint category

plied to PHP source code to (a) ensure its correct oper-
ation in the presence of taint meta-data; (b) propagate
taint meta-data correctly; and (c) attach checks that in-
spect taint meta-data before each “sensitive” operation.
Finally, we discuss how the non-tracking code can inter-
act with the parts of the application that have been trans-
formed to track taint in §3.3

3.1 Taint Representation
PHP Aspis uses character-level taint tracking, i.e. tracks
the taint of each string character individually [19]. Tradi-
tional variable-level taint tracking implementations (e.g.
Ruby’s safe levels) require the developer to untaint values
explicitly before they are used. Instead, PHP Aspis pre-
vents injection attacks transparently, and for this, it needs
to know the exact characters that originate from the user.
For example, consider an application that concatenates a
user-provided value with a static HTML template, stores
the result in $v and then returns $v to the client as a re-
sponse. Inferring that variable $v is tainted is of little use
because $v also contains application-generated HTML.
Instead, PHP Aspis uses character-level taint meta-data
and only sanitises the user-generated parts of $v.

3.1.1 Taint Categories

PHP Aspis can track multiple independent and user pro-
vided taint categories. A taint category is a generic way
of defining how an application is supposed to sanitise data
and how PHP Aspis should enforce that the application
always sanitises data before they are used.

Each taint category is defined as a set of sanitisation
functions and a set of guarded sinks. Sanitisation func-
tions can be PHP library functions or can be defined
by the application. A sanitisation function is called by
the application to transform untrusted user data so that
they cannot be used for a particular type of injection
attack. Commonly, sanitisation functions either trans-
form unsafe character sequences to safe equivalents (e.g.
htmlentities) or filter out a subset of potentially dan-
gerous occurrences (e.g. by removing <script> but not
). Calls to sanitisation functions by the application
are intercepted and PHP Aspis untaints the correspond-
ing data to avoid sanitising them again.

Guarded sinks are functions that protect data flow to
sensitive sink functions. When a call to a sink function

is made, PHP Aspis invokes the guard with references to
the parameters passed to the sink function. The guard
is a user-provided function that has access to the rele-
vant taint category meta-data and typically invokes one
or more sanitisation functions for that taint category.

For example, Table 2 shows an excerpt of an XSS
taint category definition. It specifies that a user-provided
string can be safely echoed to the user after either
htmlentities or htmlspecialchars has been in-
voked on it. The second part exhaustively lists all func-
tions that can output strings to the user (e.g. echo,
print, etc.) and guards them with an external filter-
ing function (AspisAntiXss). The guard either aborts
the print operation or sanitises any remaining characters.
The administrator can change the definitions of taint cat-
egories according to the requirements of the application.

By listing all the sanitisation functions of an applica-
tion in the relevant taint category, PHP Aspis can closely
monitor the application’s sanitisation efforts. When ap-
plied to a well designed application, PHP Aspis untaints
user data as they get sanitised by the application, but be-
fore they reach the sink guards. Thus, sink guards can
apply a simple, application agnostic, sanitisation opera-
tion (e.g. htmlentities) acting as a “safety net”.

On the other hand, an application may not define ex-
plicit sanitisation functions or these functions may be
omitted from the relevant taint category. In such cases,
sink guards have to replicate the filtering logic of the ap-
plication. In general, however, sink guards lack contex-
tual information and this prevents them from enforcing
context-aware filtering, e.g. guards cannot enforce saniti-
sation that varies according to the current user.

A different taint category must be used for each type of
injection vulnerability. PHP Aspis tracks different taint
categories independently from each other. For example,
when a sanitisation function of an XSS taint category is
called on a string, the string is still considered unsanitised
for all other taint categories. This ensures that a sanitisa-
tion function for handling one type of injection vulnera-
bility is not used to sanitise data for another type.

3.1.2 Storing taint meta-data

It is challenging to represent taint meta-data so that it sup-
ports arbitrary taint categories and character-level taint
tracking. This is due to the following properties of PHP:

P1 PHP is not object-oriented. Although it supports
objects, built-in types such as string cannot be
augmented transparently with taint meta-data. This
precludes solutions that rely on altered class li-
braries [6].

P2 PHP does not offer direct access to memory. Any so-
lution must track PHP references because variables’
memory addresses cannot be used [18].

5

18 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

String Taint meta-data
$s='Hello' array(0=>false)
$n='John' array(0=>true)
$r=$s.$n array(0=>false, 5=>true)

Table 3: Representation of taint meta-data for a single taint
category

P3 PHP uses different assignment semantics for objects
(“by reference”) compared to other types including
arrays (“by copy”). This does not allow for the sub-
stitution of any scalar type with an object without
manually copying objects to avoid aliasing.

P4 PHP is a dynamically typed language, which means
that there is no generic method to statically identify
all string variables.

Due to these properties, our solution relies on PHP ar-
rays to store taint meta-data by enclosing the original val-
ues. Table 3 shows how PHP Aspis encodes taint meta-
data for a single taint category. For each string, PHP As-
pis keeps an array of character taints, with each index
representing the first character that has this taint. In the
example, string $s is untainted, $n is tainted and their
concatenation, $r, it untainted from index 0 to 4, and
tainted from index 5 onwards. Numerical values use the
same structure for taint representation but only store a
common taint for all digits.

Taint meta-data must remain associated with the value
that they refer to. As shown in Table 4, we choose to store
them together. First, all scalars such as 'Hello' and 12

are replaced with arrays (rows 1 and 2). We refer to this
enclosing array as the value’s Aspis. The Aspis contains
the original value and an array of the taint meta-data for
all currently tracked taint categories (TaintCats). Sim-
ilarly, scalars within arrays are transformed into Aspis-
protected values.

According to P4, PHP lacks static variable type in-
formation. Moreover, it offers type identification func-
tions at runtime. When scalars are replaced with ar-
rays, the system must be able to distinguish between
an Aspis-protected value and a proper array. For this,
we enclose the resulting arrays themselves in an Aspis-
protected value, albeit without any taint (false in rows 3
and 4). The original value of a variable can always be
found at index 0 when Aspis-protected. Objects are han-
dled similarly. Aspis-protected values can replace origi-
nal values in all places except for array keys: PHP arrays
can only use the types string or int as keys. To cir-
cumvent this, the key’s taint categories are attached to
the content’s Aspis (KeyTaintCats) and the key retains
its original type (row 5).

Overall, this taint representation is compatible with the
language properties mentioned above. By avoiding stor-

Original value Aspis-protected value

1. 'Hello'
array(

'Hello',TaintCats
)

2. 12 array(12,TaintCats)

3. array()
array(

array()
,false)

4. array('John')

array(

array(
array(

'John',TaintCats
)

)
,false)

5. array(13=>20)

array(

array(13=>
array(

20,ContentTaintCats,
KeyTaintCats

)

)
,false)

Table 4: Augmenting values with taint meta-data

ing taint inside objects, we ensure that an assignment can-
not lead to two separate values referencing the same taint
category instances (P3). By storing taint categories in
place, we ensure that variable aliasing correctly aliases
taints (P2). Finally, by not storing taint meta-data sep-
arately, the code transformations that enable taint prop-
agation can be limited to correctly handling the origi-
nal, Aspis-protected values. As a result, the structure
of the application in terms of functions and classes re-
mains unchanged, which simplifies interoperability with
non-tracking code as explained in § 3.3.

3.2 Taint-tracking Transformations
Based on this taint representation, PHP Aspis modifies
an application to support taint tracking. We refer to these
source code transformations as taint-tracking transfor-
mations. These transformations achieve the three steps
described in §2.2.2 required for runtime taint tracking:
data entry points, taint propagation and guarded sinks.

3.2.1 Data Entry Points

Taint-tracking transformations must mark any user-
generated data as fully tainted, i.e. all taint meta-data for
every taint category in an Aspis-protected value should
be set to true. Any input channel such as the incoming
HTTP request that is not under the direct control of the
application may potentially contain user-generated data.

6

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 19

Original expression Transformed expression
$s.$t concat($s,$t)

$l = &$m $l=&$m

$j = $i++ $j=postincr($i)

$b+$c add($b,$c)

if ($v) {} if ($v[0]) {}
foreach foreach

($a as $k=>$v) ($a[0] as $k=>$v)

{...} {restoreTaint($k,$v)...}

Table 5: Transformations to propagate taint and restore the
original semantics when Aspis-protected values are used

In each transformed PHP script, PHP Aspis inserts
initialisation code that (1) scans the superglobal arrays
to identify the HTTP request data, (2) replaces all sub-
mitted values with their Aspis-enclosed counterparts and
(3) marks user submitted values as fully tainted. All con-
stants defined within the script are also Aspis-protected,
however, they are marked as fully untainted (i.e. all taint
meta-data for every taint category have the value false).
As a result, all initial values are Aspis-protected in the
transformed script, tainted or not.

3.2.2 Taint Propagation

Next all statements and expressions are transformed to
(1) operate with Aspis-protected values, (2) propagate
their taint correctly and (3) return Aspis-protected values.

Table 5 lists some representative transformations for
common operations supported by PHP Aspis. Functions
in the right column are introduced to maintain the original
semantics and/or propagate taint. For example, concat
replaces operations for string concatenating in PHP (e.g.
double quotes or the concat operator “.”) and returns
an Aspis-protected result. Control statements are trans-
formed to access the enclosed original values directly.
Only the foreach statement requires an extra call to
restoreTaint to restore the taint meta-data of the key
for subsequent statements in the loop body. The meta-
data is stored with the content in KeyTaintCats, as
shown in row 5 of Table 4.

PHP function library. Without modification, built-in
PHP functions cannot operate on Aspis-protected values
and do not propagate taint meta-data. Since these func-
tions are commonly compiled for performance reasons,
PHP Aspis uses interceptor functions to intercept calls to
them and attach wrappers for taint propagation.

By default, PHP Aspis uses a generic interceptor for
built-in functions. The generic interceptor reverts Aspis-
protected parameters to their original values and wraps
return values to be Aspis-protected again. This default
behaviour is acceptable for library functions that do not

propagate taint (e.g. fclose). However, the removal of
taint from result values may lead to false negatives in taint
tracking. PHP Aspis therefore provides custom intercep-
tor functions for specific built-in functions. By increasing
the number of intercepted functions, we improve the ac-
curacy of taint tracking and reduce false negatives.

The purpose of a custom interceptor is to propagate
taint from the input parameters to the return values. Such
interceptors rely on the well defined semantics of the li-
brary functions. When possible, the interceptor calcu-
lates the taint of the return value based on the taints of
the inputs (e.g. substr). It then removes the taint meta-
data from the input values, invokes the original library
function and attaches the calculated taint to the result
value. Alternatively, the interceptor compares the result
value to the passed parameter and infers the taint of the
result. As an example, assume that the interceptor for
stripslashes receives a string with a taint category
array(0=>false,5=>true). The comparison of the
original to the result string identifies the actual character
indices that stripslashes removed from the original
string; assume here, for simplicity, that only index 2 was
removed. To calculate the taint of the result, the inter-
ceptor subtracts from all taint category indices the total
number of characters removed before each index. Thus,
it returns array(0=>false,4=>true) in the given ex-
ample. In total, 66 provided interceptors use this method.

For other functions, the interceptor can use the origi-
nal function to obtain a result with the correct taint au-
tomatically. For example, usort sorts an array accord-
ing to a user-provided callback function and thus can sort
Aspis-protected values without changes. If the callback
is a library function, the function is unable to compare
Aspis-protected elements and calls to usort would fail.
When callbacks are used, custom interceptors introduce
a new callback replacing the old. That new callback calls
the original callback after removing taint from its param-
eters. In total, 21 provided interceptors used this method.

In cases in which the result taint cannot be determined,
such as for sort, an interceptor provides a separate, taint-
aware version of the original PHP library function. We
had to re-implement 19 library functions in this way.

Our current prototype intercepts 106 functions. These
include most of the standard PHP string library that are
enough to effectively propagate taint in Wordpress (§4).

Dynamic features. PHP has many dynamic features
such as variable variables, variable function calls and the
eval and create function functions. These are not
compatible with Aspis-protected values, but PHP Aspis
must nevertheless maintain their correct semantics.

Variable variables only require access to the enclosed
string. A dynamic access to a variable named $v is
transformed from $$v to ${$v[0]}. Variable func-

7

20 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tion calls that use variables or library functions (e.g.
call user func array) allow a script to call a func-
tion that is statically unknown. PHP Aspis transforms
these calls and inspects them at runtime. When a library
call is detected, PHP Aspis generates an interceptor, as
described in the previous section, at runtime.

The functions eval and create function are used
to execute code generated at runtime. Since application
generated code does not propagate taint, PHP Aspis must
apply the taint-tracking transformations at runtime. To
avoid a high runtime overhead, PHP Aspis uses a caching
mechanism such as Zend Cache when available.

3.2.3 Guarded Sinks

PHP Aspis can protect code from injection vulnerabili-
ties using the taint meta-data and defined taint categories.
As described in §3.1.1, guard functions specified as part
of active taint categories are executed before the calls
to their respective sensitive sink functions. Guards use
PHP’s sanitisation routines or define their own. For ex-
ample, we use an SQL filtering routine that rejects queries
with user-provided SQL operators or keywords [13].

3.3 Partial Taint Tracking
The taint tracking transformations used by PHP Aspis re-
quire extensive changes to the source code, which has an
adverse impact on execution performance. To preserve
program semantics, transformations often involve the re-
placement of efficient low-level operations by slower,
high-level ones (see Table 5).

Partial taint tracking aims to improve execution per-
formance by limiting taint tracking to the parts of the
application in which injection vulnerabilities are more
likely to exist. Partial taint tracking can be applied at the
granularity of contexts: functions, classes or the global
scope. The administrator can assign each of these to be
of the following types: tracking or non-tracking.

Next we discuss how the presence of non-tracking code
reduces the ability of PHP Aspis to prevent exploits. We
also present the additional transformations that are done
by PHP Aspis to support partial taint tracking.

3.3.1 Missed Vulnerabilities

When partial taint tracking is used, all code must be clas-
sified into tracking or non-tracking code. This decision is
based on the trust that the application administrator has
in the developers of a given part of the codebase. When
parts of the codebase are classified as non-tracking, injec-
tion vulnerabilities within this code cannot be detected.
On the other hand, PHP Aspis must still be able to detect
vulnerabilities in tracking code. However, in the presence
of non-tracking code, tracking code may not be the place
where an exploit manifests itself and thus can be detected.

PHP Aspis Transformed Application

Taint-Tracking Code

Non Tracking Code

<script .../>

Taint

Input
HTTP request

1 2

Data altering

Guarded
Source

HTML output
<script ... />

t()

n()
3

Figure 3: XSS vulnerability manifesting in non-tracking code

For example, a non-tracking function n in Figure 3
calls a tracking function t (step 1). It then receives a user-
provided value $v from function t (step 2) and prints this
value (step 3). If t fails to escape user input, n is un-
able to sanitise the data transparently. This is because, in
non-tracking code, taint meta-data are not available and
calls to sensitive sinks such as print are not intercepted.
From the perspective of n, t acts as the source of user
generated data that must be sanitised before they leave
the tracking context.

To address this issue, PHP Aspis takes a conserva-
tive approach. It can sanitise data at the boundary be-
tween tracking and non-tracking code. PHP Aspis adds
source guards to each taint category to provide sanitisa-
tion functions for this purpose. A source is a tracking
function and the guard is the sanitisation function applied
to its return value when called from non-tracking code.
In the above example, the tracking function t can act as
a source of user generated data when called from n. A
guard for t would intercept t’s return value and apply
htmlentities to any user-generated characters. Source
guards ensure that user data are properly sanitised before
they can be used in non-tracking code.

Note though that this early sanitisation is an additional
operation introduced by PHP Aspis. Thus, if the non-
tracking context that received the data attempts to sanitise
them again, the application would fail. Moreover, there is
no generic sanitisation routine that can always be applied
because the final use of the data is unknown. Instead,
this solution is only suitable for cases when both the fi-
nal use of the data is known and the application does not
perform any additional sanitisation. This is often the case
for third-party plugin APIs.

3.3.2 Compatibility Transformations

The taint-tracking transformations in §3.2 generate code
that handles Aspis-protected values. For example, a
tracking function that changes the case of a string pa-
rameter $p expects to find the actual string in $p[0].
Such a function can no longer be called directly from

8

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 21

non-tracking code with a simple string for its parame-
ter. Instead, PHP Aspis requires additional transforma-
tions to intercept this call and automatically convert $p
to an Aspis-protected value, which is marked as fully un-
tainted. We refer to these additional transformations for
partial taint tracking as compatibility transformations.

Compatibility transformations make changes to both
tracking and non-tracking code. These changes alter the
data that are exchanged between a tracking context and a
non-tracking context, i.e. data exchanged between func-
tions, classes and code in the global scope. They strip
Aspis-protected values when passed to non-tracking con-
texts and restore Aspis protection for tracking contexts.

Function calls. A function call is the most common
way of passing data across contexts. PHP Aspis trans-
forms all cross-context function calls: a call from a
tracking to a non-tracking context has its taint removed
from parameters and the return value Aspis-protected
again. The opposite happens for calls from non-tracking
to tracking contexts. This also applies to method calls.

Adapting parameters and return values is similar to us-
ing the default interceptor function from §3.2. User code,
however, can share objects of user-defined classes. In-
stead of adapting every internal object property, PHP As-
pis uses proxy objects that decorate passed values. Con-
sider an object $o of class c and assume that c is a track-
ing context. When $o is passed to the non-tracking con-
text of function f, f is unable to access $o’s state directly
or call its methods. Instead, it receives the decorator $do
that points to $o internally. $do is then responsible for
adapting the parameters and the return values of method
calls when such calls occur. It also handles reads and
writes of public object properties.

PHP also supports call-by-reference semantics for
function parameters. Since changes to reference param-
eters by the callee are visible to the caller, these param-
eters effectively resemble return values. Compatibility
transformations handle reference parameters similarly to
return values—they are adapted to the calling context af-
ter the function call returns.

This behaviour can lead to problems if references to a
single variable are stored in contexts of different types,
i.e. if a tracking class internally has a reference to a vari-
able also stored in a non-tracking class. In such cases,
PHP Aspis can no longer track these variables effectively
across contexts, forcing the administrator to mark both
contexts as tracking or non-tracking. Since shared refer-
ences to internal state make it hard to maintain class in-
variants, they are considered bad practice [5] and a man-
ual audit did not reveal any occurrences in Wordpress.

Accessing global variables. PHP functions can ac-
cess references to variables in the global scope using

the global keyword. These variables may be Aspis-
protected or not, dependent on the type of the current
global context and previous function calls. The compat-
ibility transformations rewrite global statements: when
the imported variable does not match the context of the
function, the variable is altered so that it can be used
by the function. After the function returns, all im-
ported global variables must be reverted to their previous
forms—return statements are preceded with the neces-
sary reverse transformations. When functions do not re-
turn values, reverse transformations are added as the last
function statement.

Accessing superglobal variables. PHP also supports
the notion of superglobals: arrays that include the HTTP
request data and can be accessed from any scope with-
out a global declaration. Data in these arrays are al-
ways kept tainted; removing their taint would effectively
stop taint tracking everywhere in the application. As a
result, only tracking contexts should directly access su-
perglobals. In addition, compatibility transformations en-
able limited access from non-tracking contexts when ac-
cess can be statically detected (i.e. a direct read to $ GET

but not an indirect access through an aliasing variable).
This is because PHP Aspis does not perform static alias
analysis to detect such indirect accesses [11].

Include statements. PHP’s global scope includes code
outside of function and class definitions and spans across
all included scripts. Compatibility transformations can
handle different context types for different scripts. This
introduces a problem for variables in the global scope:
they are Aspis-protected when they are created by a track-
ing context but have their original value when they are
created by a non-tracking context.

To address this issue, PHP Aspis alters temporarily all
variables in the global scope to be compatible with the
current context of an included script, before an include

statement is executed. After the include, all global
variables are altered again to match the previous con-
text type. To mitigate the performance overhead of this,
global scope code placed in different files but used to han-
dle the same request should be in the same context type.

Dynamic features. Compatibility transformations in-
tercept calls to create function and eval at runtime.
PHP Aspis then rewrites the provided code according to
the context type of the caller: when non-tracking code
calls eval, only the compatibility transformations are
applied and non-tracking code is generated. Moreover,
create function uses a global array to store the con-
text type of the resulting function. This information is
then used to adapt the function’s parameters and return
value in subsequent calls.

9

22 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

3.4 Discussion
The taint tracking carried out by PHP Aspis is not pre-
cise. PHP Aspis follows a design philosophy that avoids
uncertain taint prediction (e.g. in library functions with-
out interceptors), which may result in false positives and
affect application semantics. Instead, it favours a reduced
ability to capture taint on certain execution paths, leading
to false negatives. For this, it should not be trusted as the
sole mechanism for protection against injection attacks.

Partial taint tracking is suited for applications where
a partition between trusted and untrusted components is
justified, e.g. third-party code. In addition, interactions
across such components must be limited because if data
flow from a tracking to non-tracking context and back,
taint meta-data may be lost. PHP Aspis also does not
track taint in file systems or databases, although tech-
niques for this have been proposed in the past [8, 19].

PHP is a language without formal semantics. Avail-
able documentation is imprecise regarding certain fea-
tures (e.g. increment operators and their side effects)
and there are behavioural changes between interpreter
versions (e.g. runtime call-by-reference semantics). Al-
though our approach requires changes when the language
semantics change, we believe that this cost is smaller than
the maintenance of third-party runtime implementations
that require updates even with maintenance releases.

Our taint tracking transformations support most com-
mon PHP features, as they are specified in the online
manual [1]. We have yet to add support for newer fea-
tures from PHP5 such as namespaces or closures.

4 Evaluation

The goals of our evaluation are to measure the effective-
ness of our approach in preventing real-world vulnerabil-
ities and to explore the performance penalty for the trans-
formed application. To achieve this, we use PHP Aspis
to secure an installation of Wordpress [3], a popular open
source web logging platform, with known vulnerabilities.

We first describe how an administrator sets up PHP As-
pis to protect a Wordpress installation. We then discuss
the vulnerabilities observed and show how PHP Aspis
addresses them. Finally, we measure the performance
penalty incurred by PHP Aspis for multiple applications.

4.1 Securing Wordpress
Wordpress’ extensibility relies on a set of hooks defined
at certain places during request handling. User-provided
functions can attach to these hooks and multiple types are
supported: actions are used by plugins to carry out opera-
tions in response to certain event (e.g. send an email when
a new post is published), and filters allow a plugin to alter

CVE Type Guarded Sources Prevented
2010-4518 XSS 1 Yes
2010-2924 SQLI 2 Yes
2010-4630 XSS 0 Yes
2010-4747 XSS 1 Yes
2011-0740 XSS 1 Yes
2010-4637 XSS 2 Yes
2010-3977 XSS 5 Yes
2010-1186 XSS 15 Yes
2010-4402 XSS 6 Yes
2011-0641 XSS 2 Yes
2011-1047 SQLI 1 Yes
2010-4277 XSS 3 Yes
2011-0760 XSS 1 No
2011-0759 XSS 9 No
2010-0673 SQLI –– ––

Table 6: Wordpress plugins’ injection vulnerabilities; reported
in 2010 and in the first quarter of 2011.

data before they are used by Wordpress (e.g. a post must
receive special formatting before being displayed).

A plugin contains a set of event handlers for specific
actions and filters and their initialisation code. Plugin
scripts can also be executed through direct HTTP re-
quests. In such cases, plugin scripts execute outside of
the main Wordpress page generation process.

We secure a plugin from injection vulnerabilities using
PHP Aspis as follows: first, we list the functions, classes
and scripts defined by the plugin and mark the relevant
contexts as tracking; second, we automatically inspect
the plugin for possible sensitive sinks, such as print state-
ments and SQL queries. We then decide the taint cate-
gories to be used in order to avoid irrelevant tracking (i.e.
avoid tracking taint for eval injection if no eval state-
ments exist); third, we obtain a list of event handlers from
the add filter statements used by the plugin. We aug-
ment the taint category definitions with these handlers as
guarded sources because filters’ return values are subse-
quently used by Wordpress (§3.3); and fourth, we classify
the plugin initialisation code as non-tracking as it is less
likely to contain injection vulnerabilities (§2.3).

4.2 Security
Table 6 lists all injection vulnerabilities reported in Word-
press plugins since 2010. For each vulnerable plugin, we
verify the vulnerability using the attack vector described
in the CVE report. We then try the same attack vector on
an installation protected by PHP Aspis.

The experiments are done on the latest vulnerable plu-
gin versions, as mentioned on each CVE report, running
on Wordpress 2.9.2. PHP Aspis manages to prevent most
vulnerabilities, which can be summarised according to
three different categories:

10

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 23

Direct request vulnerabilities. The most common
type of vulnerability involves direct requests to plugin
scripts. Many scripts do not perform any sanitisation
for some parameters (2010-4518, 2010-2924, 2010-4630,
2010-4747, 2011-0740). Others do not anticipate invalid
parameter values and neglect to sanitise when printing er-
ror messages (2010-4637, 2010-3977, 2010-1186).

PHP Aspis manages to prevent all attack vectors de-
scribed in the CVE reports by propagating taint correctly
from the HTTP parameters, within the taint-transformed
plugin scripts and to various printing or script termina-
tion statements such as such as die and exit, when its
sanitisation functions are invoked.

Action vulnerabilities. Some of the plugins tested
(2010-4402, 2011-0641, 2011-1047) introduce a vulner-
ability in an action event handler. Similarly, a few other
plugins (2010-2924, 2010-1186, 2011-1047) only exhibit
a vulnerability through a direct request but explicitly load
Wordpress before servicing such a request. Wordpress
transforms $ GET and $ POST by applying some prelim-
inary functions to their values in wp-settings.php.
As the Wordpress initialisation code is classified as non-
tracking, it effectively removes all taint from the HTTP
parameters and introduces a false negative for all plugins
that execute after Wordpress has loaded.

Given that this behaviour is common for all plugins,
we also use taint tracking in a limited set of Wordpress
contexts—the functions add magic quotes, esc sql

and the wpdb class, which are invoked by this code. As
the assignment statements that alter the superglobal ta-
bles are in the global scope of wp-settings.php, we
also perform taint tracking in this context.

Unfortunately, this file is central in Wordpress initiali-
sation: enabling taint tracking there leads to substantially
reduced performance. To avoid this problem, we intro-
duce a small function that encloses the assignment state-
ments and we mark its context as tracking. This change
required three extra lines of code to define and call the
function but it significantly improved performance.

Filter vulnerabilities. From all tested plugins, only
one (2010-4277) introduces a vulnerability in the code
attached to a filter hook. Although we can verify the
behaviour described in the CVE report, we believe that
it is intended functionality of Wordpress: the Javascript
injection is only done by a user who can normally post
Javascript-enabled text. PHP Aspis correctly marks the
post’s text as untainted and avoided a false positive.

To test the filter, we edit the plugin to receive the text
of posts from a tainted $ GET parameter instead of the
Wordpress hook. After this change, PHP Aspis prop-
erly propagates taint and correctly escapes the dangerous
Javascript in the guard applied to the filter hook.

4.2.1 False positives and negatives.

As discussed in §3.4, PHP Aspis may introduce both false
negatives and false positives. By propagating taint cor-
rectly, we largely avoid the problem of false positives.
False negatives, however, can be common because they
are introduced (1) by built-in library functions that do
not propagate taint, (2) by calls to non-tracking contexts
and (3), by data paths that involve the file system or the
database. In these cases, taint is removed from data, and
when that data are subsequently used, vulnerabilities may
not be prevented. PHP Aspis’ current inability to track
taint in the database is the reason why the XSS vulnera-
bilities 2011-0760 and 2011-0759 are not prevented.

To reduce the rate of false negatives, we use intercep-
tors that perform precise taint tracking for all built-in li-
brary functions used by the tested plugins. In addition, we
find that classifying the aforementioned set of Wordpress
initialisation routines as tracking contexts is sufficient to
prevent all other reported injection vulnerabilities. Note
that the last vulnerable plugin (2010-0673) has been with-
drawn and was not available for testing.

4.3 Performance
To evaluate the performance impact of PHP Aspis, we
measure the page generation time for:

• a simple prime generator that tests each candi-
date number by dividing it with all smaller inte-
gers (Prime);

• a typical script that queries the local database and
returns an HTML response (DB).

• Wordpress (WP) with the vulnerable Embedded
Video plugin (2010-4277). Wordpress is configured
to display a single post with a video link, which trig-
gers the plugin on page generation.

Our measurements are taken in a 3 Ghz Intel
Core 2 Duo E6850 machine with 4 GiB RAM, run-
ning Ubuntu 10.04 32-bit. We use PHP 5.3.3 and Zend
Server 5.0.3 CE with Zend Optimizer and Zend Data
Cache enabled. For each application, we enable tracking
of two taint categories, XSS and SQLI.

Table 7 shows the 90th percentile of page generation
times over 500 requests for various configurations. Over-
all, we observe that fully tracking taint has a performance
impact that increases page generation between 3.4× and
10.4×. The overhead of PHP Aspis depends on how CPU
intensive the application is: DB is the least affected be-
cause its page generation is the result of a single database
query. On the other hand, Prime has the worst perfor-
mance penalty of 10.4×, mostly due to the replacement
of efficient mathematical operators with function calls.

Wordpress (WP) with full taint tracking results in
a 6.0× increase of page generation time. With par-

11

24 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

App. Tracking Page generation Penalty
Prime Off 44.9 ms -
Prime On 466.8 ms 10.4×

DB Off 0.4 ms -
DB On 1.3 ms 3.4×
WP Off 65.6 ms -
WP On 394.4 ms 6.0×
WP Partial 144.3 ms 2.2×

Table 7: Performance overhead of PHP Aspis in terms of page
generation time

tial taint tracking configured only on the installed plu-
gin, page generation overhead is significantly reduced to
2.2×. Given that Wordpress uses globals extensively, the
main source of performance reduction for the partial taint
tracking configuration are the checks on global variable
access as part of the compatibility transformations.

Although full taint tracking at the source code level in-
curs a significant performance penalty, partial taint track-
ing can reduce the overhead considerably. In practice,
2.2× performance overhead when navigating Wordpress
pages with partial taint tracking is acceptable for deploy-
ments in which security has priority over performance.

5 Conclusions

In this paper, we presented PHP Aspis, a tool that ap-
plies partial taint tracking at the source code level, with
a focus on third-party extensions. PHP Aspis avoids the
need for taint tracking support in the PHP runtime. Al-
though the performance penalty of PHP Aspis can in-
crease the page generation time by several times, we have
shown that if taint tracking is limited only to a subset of a
web application, the performance penalty is significantly
reduced while many real world vulnerabilities are miti-
gated. Our evaluation with the Wordpress platform shows
that PHP Aspis can offer increased protection when a
moderate increase in page generation time is acceptable.

Acknowledgements. We thank David Eyers, Evangelia
Kalyvianaki, the anonymous reviewers and our shep-
herd, Nickolai Zeldovich, for their comments on ear-
lier paper drafts. This work was supported by the grant
EP/F04246 (“SmartFlow: Extendable Event-Based Mid-
dleware”) from the UK Engineering and Physical Sci-
ences Research Council (EPSRC).

References

[1] PHP online manual. www.php.net/manual.
[2] Programming Languages Popularity website. www.

langpop.com.
[3] Wordpress website. www.wordpress.org.

[4] PHP Security Guide 1.0. Tech. rep., PHP Security
Consortium, 2005.

[5] BLOCH, J. Effective Java. Prentice Hall, 2008.
[6] CHIN, E., AND WAGNER, D. Efficient character-

level taint tracking for Java. In Secure Web Services
(Chicago, IL, 2009), ACM.

[7] DALTON, M., KOZYRAKIS, C., AND ZELDOVICH,
N. Nemesis: Preventing authentication & ac-
cess control vulnerabilities in web applications.
In Security Symposium (Montreal, Canada, 2009),
USENIX.

[8] DAVIS, B., AND CHEN, H. DBTaint: Cross-
Application Information Flow Tracking via
Databases. In WebApps (Boston, MA, 2010),
USENIX.

[9] HALFOND, W., ORSO, A., AND MANOLIOS, P.
WASP: Protecting Web Applications Using Posi-
tive Tainting and Syntax-Aware Evaluation. IEEE
Transactions on Software Engineering 34, 1 (2008).

[10] HUANG, Y.-W., YU, F., ET AL. Securing web ap-
plication code by static analysis and runtime pro-
tection. In World Wide Web (New York, NY, 2004),
ACM.

[11] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E.
Pixy: a static analysis tool for detecting web ap-
plication vulnerabilities. In Symposium on Security
and Privacy (Berkeley, CA, 2006), IEEE.

[12] MITRE CORPORATION. Common Vulnerabilities
And Exposures (CVE) database, 2010.

[13] NGUYEN-TUONG, A., GUARNIERI, S., ET AL.
Automatically hardening web applications using
precise tainting. In IFIP International Information
Security Conference (Chiba, Japan, 2005).

[14] PIETRASZEK, T., AND BERGHE, C. Defending
against injection attacks through context-sensitive
string evaluation. In Recent Advances in Intrusion
Detection (Menlo Park, CA, 2006).

[15] VENEMA, W. Runtime taint support proposal. In
PHP Internals Mailing List (2006).

[16] WASSERMANN, G., AND SU, Z. Sound and pre-
cise analysis of web applications for injection vul-
nerabilities. In PLDI (San Diego, CA, 2007), ACM.

[17] XIE, Y., AND AIKEN, A. Static detection of se-
curity vulnerabilities in scripting languages. In
Security Symposium (Vancouver, Canada, 2006),
USENIX.

[18] XU, W., BHATKAR, S., AND SEKAR, R. Taint-
enhanced policy enforcement: A practical approach
to defeat a wide range of attacks. In Security Sym-
posium (Vancouver, Canada, 2006), USENIX.

[19] YIP, A., WANG, X., ZELDOVICH, N., AND
KAASHOEK, M. F. Improving application security
with data flow assertions. In SOSP (New York, NY,
2009), ACM.

12

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 25

Secure Data Preservers for Web Services

Jayanthkumar Kannan
Google Inc.

Petros Maniatis
Intel Labs

Byung-Gon Chun
Yahoo! Research

Abstract
We examine a novel proposal wherein a user who hands off her
data to a web service has complete choice over the code and
policies that constrain access to her data. Such an approach is
possible if the web service does not require raw access to the
user’s data to implement its functionality; access to a carefully
chosen interface to the data suffices.

Our data preserver framework rearchitects such web services
around the notion of a preserver, an object that encapsulates
the user’s data with code and policies chosen by the user. Our
framework relies on a variety of deployment mechanisms, such
as administrative isolation, software-based isolation (e.g., virtual
machines), and hardware-based isolation (e.g., trusted platform
modules) to enforce that the service interacts with the preserver
only via the chosen interface. Our prototype implementation il-
lustrates three such web services, and we evaluate the cost of pri-
vacy in our framework by characterizing the performance over-
head compared to the status quo.

1 Introduction
Internet users today typically entrust web services with
diverse data, ranging in complexity from credit card
numbers, email addresses, and authentication credentials,
to datasets as complex as stock trading strategies, web
queries, and movie ratings. They do so with certain ex-
pectations of how their data will be used, what parts will
be shared, and with whom they will be shared. These
expectations are often violated in practice; the Dataloss
database [1] lists 400 data loss incidents in 2009, each of
which exposed on average half a million customer records
outside the web service hosting those records.

Data exposure incidents can be broadly categorized into
two classes: external and internal. External violations oc-
cur when an Internet attacker exploits service vulnerabil-
ities to steal user data. Internal violations occur when a
malicious insider at the service abuses the possession of
user data beyond what the user signed up for, e.g., by sell-
ing customer marketing data. 65% of the aforementioned
data-exposure incidents are external, while about 30% are
internal (the remainder have no stated cause).

The impact of such data exposure incidents is exacer-
bated by the fact that data owners are powerless to pro-
actively defend against the possibility of abuse. Once a
user hands off her data to a web service, the user has given
up control over her data irreversibly; “the horse has left
the barn” forever and the user has no further say on how

her data is used and who uses it.
This work introduces a novel proposal that restores con-

trol over the user’s data to the user; we insist that any code
that needs to be trusted by the user and all policies on how
her data is accessed are specified by her. She need not rely
on the web service or any of its proprietary code for per-
forming access control over her data; the fate of her data is
completely up to her. The user is free to choose code from
any third party (e.g., an open source repository, or a se-
curity company) to serve as her software trusted comput-
ing base; she need not rely on a proprietary module. This
trust can even be based on a proof of correctness (e.g.,
Proof Carrying Code [20]). Further, any policies pertain-
ing to how her data is stored and accessed (e.g., by whom,
how many times) are under her control. These properties
of personalizable code and policies distinguish us from
currently available solutions.

At first look, personalizable trust looks difficult to
achieve: the web service may have arbitrary code that re-
quires access to the user’s data, but such code cannot be
revealed publicly and the user cannot be allowed to choose
it. However, for certain classes of web services where the
application does not require access to the raw data and a
simple interface suffices, such personalizable trust is pos-
sible. We will show later that for several classes of web
services such restricted access is sufficient.

For such services, it is possible to enforce the use of a
well-defined, access-controlled interface to user data. For
example, a movie recommendation service that requires
only statistical aggregates of a user’s movie watching his-
tory need never access the user’s detailed watching his-
tory. To provide such enforcement, we leverage the idea
of preserving the user’s own data with code and policy
she trusts; we refer to such a preserved object as a secure
data preserver (see Figure 1).

One could imagine a straightforward implementation of
the secure data preserver (SDaP) approach that serves the
user’s data via the interface from a trusted server (say the
user’s home machine, or a trusted hosting service). Un-
fortunately, this solution has two main drawbacks. First,
placing user data at a maximally isolated hosting service
may increase provisioning cost and access latency, and
reduce bandwidth, as compared to the status quo which
offers no isolation guarantees. Second, even when data
placement is explicitly decided by a particular business

26 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

is
ol

at
io

n
bo

un
da

ry

(a) Service +
User Data (b) Service + Preserver

Service

Service
Code

OS
HW

User
Data

Service

Service Code

OS
HW

Data
Interface

Preserver

Preserver
Code
User
Data

access
control

Figure 1: The SDaP approach.

model—for instance, charging services such as Google
Checkout that store user data at Google’s data centers—
the user control available may be lacking: Google Check-
out only offers a simple, click-to-pay interface, leaving the
user with limited access-control options.

In this work, we explore a general software architec-
ture to enable the use of preservers by users and web ser-
vices. Our architecture has three salient features. First,
it supports flexible placement and hosting decisions for
preservers to provide various trade-offs between perfor-
mance, cost, and isolation. Apart from the options of host-
ing the preserver at a client’s machine or at a trusted
third party, our framework introduces the colocation op-
tion; the preserver can be hosted securely at the service
itself by leveraging a trusted hardware or software mod-
ule (e.g., in a separate virtual machine). This colocation
option presents a different trade-off choice; higher perfor-
mance, zero provisioning cost on part of the user, and the
involvement of no third parties. Second, we provide a pol-
icy layer around the available data placement mechanisms
with two purposes: to mediate interface access so as to
enable fine-grained control even for coarse-grained inter-
faces, and to mediate data placement so as to fit the user’s
desired cost, isolation, and performance goals. Third, we
offer preserver transformation mechanisms that reduce
the risk of data exposure (by filtering raw data) or increase
anonymity (by aggregating data with those of other users).

We evaluate SDaPs experimentally in a prototype that
implements three applications with diverse interface ac-
cess patterns: day-trading, targeted advertising, and pay-
ment. We evaluate these applications along a spectrum of
placement configurations: at the user’s own computer or
at a trusted third party (TTP), offering maximum isolation
from the service but worst-case performance, and at the
service operator’s site, isolated via virtualization, offering
higher performance. The isolation offered by client- or
TTP-hosted preservers comes at the cost of Internet-like
latencies and bandwidth for preserver access (as high as
1 Gbps per user for day-trading). Our current virtual ma-
chine monitor/trusted platform module based colocation
implementation protects against external threats; it can be
extended to resist internal threats as well by leveraging se-
cure co-processors using standard techniques [32]. Colo-

cation offers significantly better performance than off-site
placement, around 1 ms interface latency at a reason-
able storage overhead (about 120 KB per user). Given the
growing cost of data exposure (estimated to be over 200
dollars per customer record [22]), these overheads may be
an acceptable price for controls over data exposure, espe-
cially for financial and health information.

While we acknowledge that the concept of encapsula-
tion is itself well-known, our main contributions in this
work are: (a) introducing the principle of interface-based
access control in the context of web services, and demon-
strating the wide applicability of such a model, (b) in-
troducing a new colocation model to enforce such access
control, (c) design of a simple yet expressive policy lan-
guage for policy control, and (d) an implementation that
demonstrates three application scenarios.

Our applicability to a service is limited by three factors.
First, SDaPs make sense only for applications with sim-
ple, narrow interfaces that expose little of the user data.
For rich interfaces (when it may be too optimistic to hope
for a secure preserver implementation) or interfaces that
may expose the user’s data directly, information flow con-
trol mechanisms may be preferable [12, 24, 27, 33]. Sec-
ond, we do not aim to find appropriate interfaces for ap-
plications; we limit ourselves to the easier task of help-
ing a large class of applications that already have such
interfaces. Third, we recognize that a service will have
to be refactored to accommodate strong interfaces to user
data, possibly executing locally preserver code written
elsewhere. We believe this is realistic given the increas-
ing support of web services for third-party applications.

The rest of the paper is structured as follows. Section 2
refines our problem statement, while Sections 3 and 4
present an architectural and design overview respectively
of our preserver framework. We discuss our implementa-
tion in Section 5 and evaluate its performance and security
in Section 6. We then present related work in Section 7
and conclude in Section 8.

2 The User-Data Encapsulation Problem
In this section, we present a problem statement, including
assumptions, threat models we target, and the deployment
scenarios we support. We then present motivating appli-
cation scenarios followed by our design goals.

2.1 Problem Statement

Our goal is to rearchitect web services so as to isolate user
data from service code and data. Our top priority is to pro-
tect user data from abusive access; we define as abusive
any access that violates a well-defined, well-known inter-
face, including unauthorized disclosure or update. We aim
for the interface to be such that the data need never be
revealed directly and policies can be meaningfully spec-
ified on its invocation; we will show such interfaces can

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 27

be found for a variety of services. A secondary priority is
to provide reasonable performance and scalability. Given
a chosen interface, our security objective is to ensure that
any information revealed to a service is obtainable only
via a sequence of legal interface invocations. This sig-
nificantly limits an adversary’s impact since the interface
does not expose raw data; at best, she can exercise the in-
terface to the maximum allowed by the policies.

It is important to clarify the scope of our work. First,
we assume that an interface has been arrived at for a ser-
vice that provides the desired privacy to the user; we do
not verify that such an interface guarantees the desired pri-
vacy, or automate the process of refactoring existing code.
Second, we assume that a preserver implementation car-
ries out this interface correctly without any side channels
or bugs. We aim for simple narrow interfaces to make cor-
rect implementation feasible.

2.2 Threat Model

The threat model we consider is variable, and is chosen by
the user. We distinguish three choices, of increasing threat
strength. A benign threat is one caused by service miscon-
figuration or buggy implementation (e.g., missing access
policy on an externally visible database, insecure cookies,
etc.), in the absence of any malice. An external adversar-
ial threat corresponds to an Internet attacker who exploits
software vulnerabilities at an otherwise honest service. An
internal adversarial threat corresponds to a malicious in-
sider with physical access to service infrastructure.

We make standard security assumptions. First, trusted
hardware such as Trusted Platform Modules (TPM [5])
and Tamper Resistant Secure Coprocessors (e.g., IBM
4758 [11]) provide their stated guarantees (software attes-
tation, internal storage, data sealing) despite software at-
tacks; tamper-resistant secure coprocessors can also with-
stand physical attacks (e.g., probes). Second, trusted hy-
pervisors or virtual machine monitors (e.g., Terra [13],
SecVisor [25]) correctly provide software isolation among
virtual machines. Third, a trusted hosting service can be
guaranteed to adhere to its stated interface, and is resis-
tant to internal or external attacks. Finally, we assume
that standard cryptography works as specified (e.g., ad-
versaries cannot obtain keys from ciphertext).

2.3 Deployment Scenario

We aim to support three main deployment scenarios
corresponding to different choices on the performance-
isolation trade-off.

The closest choice in performance to the status quo with
an increase in isolation keeps user data on the same ser-
vice infrastructure, but enforces the use of an access in-
terface; we refer to this as colocation. Typical software
encapsulation is the simplest version of this, and protects
from benign threats such as software bugs. Virtualization

via a secure hypervisor can effectively enforce that isola-
tion even for external attacks that manage to execute at the
privilege level of the service. Adding attestation (as can be
provided by TPMs for instance) allows an honest service
to prove to clients that this level of isolation is maintained.
However, internal attacks can only be tolerated with the
help of tamper-resistant secure co-processors. Though our
design focuses primarily on the colocation scenario, we
support two other deployment options.

The second deployment option is the trusted third party
(TTP) option; placing user data in a completely sepa-
rate administrative domain provides the greatest isolation,
since even organizational malfeasance on the part of the
service cannot violate user-data interfaces. However, ad-
ministrative separation implies even further reduced inter-
face bandwidth and timeliness (Internet-wide connections
are required). This scenario is the most expensive for the
user, who may have to settle for existing types of data
hosting already provided (e.g., use existing charging ser-
vices via their existing interfaces), rather than springing
for a fully customized solution. The third deployment op-
tion offers a similar level of isolation and is the cheapest
(for the user); the user can host her data on her own ma-
chine (the client-side option). Performance and availabil-
ity are the lowest due to end-user connectivity.

2.4 Usage Idioms

The requirement of a suitable interface is fundamental to
our architecture; we now present three basic application
idioms for which such interface-based access is feasible
to delineate the scope of our work.
Sensitive Query Idiom: Applications in this idiom are
characterized by a large data stream offered by the service
(possibly for a fee), on which the user wishes to evaluate
a sensitive query. Query results are either sent back to the
user and expected to be limited in volume, or may result
in service operations. For example, in Google Health, the
user’s data is a detailed list of her prescriptions and dis-
eases, and the service notifies her of any information relat-
ing to these (e.g., a product recall, conflict of medicines).
In applications of this idiom, an interface of the form Re-
portNewDatum() is exported by the user to the service; the
service invokes this interface upon arrival of a new datum,
and the preserver is responsible for notifying the user of
any matches or initiating corresponding actions. Notifica-
tions are encrypted and the preserver can batch them up,
push them to the user or wait for pulls by the user, and
even put in fake matches. Other examples include stock-
trading, Google News Alerts etc.
Analytics on Sensitive Data Idiom: This idiom is char-
acterized by expensive computations on large, sensitive
user datasets. The provider executes a public algorithm
on large datasets of a single user or multiple users, return-
ing results back to the user, or using the results to offer a

28 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

particular targeted service. Examples include targeted ad-
vertising and recommendation services. In targeted adver-
tising, an activity log of a set of users (e.g., web visit logs,
search logs, location trajectories) are mined to construct
a prediction model. A slim interface for this scenario is a
call of the form SelectAds(ListOfAds) which the preserver
implements via statistical analysis.
Proxying Idiom: This idiom captures functionality whose
purpose is to obtain the help of an external service. The
user data in this case has the flavor of a capability for ac-
cessing that external service. For instance, consider the
case when a user hands her credit card number (CCN) to
a web service. If we restructure this application, an in-
terface of the form Charge(Amount, MerchantAccount)
would suffice; the preserver is responsible for the ac-
tual charging, and returning the confirmation code to the
merchant. Other examples include confiding email ad-
dresses to websites, granting Facebook access to Gmail
username/password to retrieve contacts, etc.
Data Hosting Non-idiom: For the idioms we discussed,
the interface to user data is simple and narrow. To bet-
ter characterize the scope of our work, we describe here a
class of applications that do not fit within our work. Such
applications rely on the service reading and updating the
user’s data at the finest granularity. Examples are collab-
orative document-editing services (e.g., Google Docs) or
social networking services (e.g., Facebook itself, as op-
posed to Facebook Apps, which we described above).
Applications in the hosting idiom are better handled by
data-centric—instead of interface-centric—control mech-
anisms such as information flow control (e.g., XBook
[27]) or end-to-end encryption (e.g., NOYB [14]).

2.5 Design Goals

Based on the applications we have discussed so far, we
present our basic design goals:
Simple Interface: A user’s data should be accessed only
via a simple, narrow interface. The use of such inter-
faces is the key for allowing the user the flexibility to
choose code from any provider that implements an inter-
face, while offering confidence that said code is correct.
Flexible Deployment: Flexible interposition of the
boundary between the user’s data and the web service is
necessary so that users and services can choose a suitable
deployment option to match isolation requirements, at a
given performance and cost budget.
Fine-grained Use Policy: Even given an interface, dif-
ferent uses may imply different permissions, with dif-
ferent restrictions. For example, a user may wish to use
the Google Checkout service but impose restrictions on
time-to-use and budget. As a result, we aim to allow fine-
grained and flexible user control over how the interface to
a user’s data is exercised.
Trust But Mitigate Risk: Enforced interfaces are fine,

Data Layer

User Data

P3

Policy Engine

Base Layer

Preserver1Service

OS

Service

Client

Install

P2

Interface

Install/xform/agg

Host Facilities H H

H
os

t
H

ub

Invoke

Service
Data

Policy Data

Figure 2: The SDaP architecture.

but even assumptions on trusted mechanisms occasion-
ally fail—in fact, we would not be discussing this topic
without this painful truth. As a result, risk mitigation on
what may be exposed even if a trusted encapsulation of
a user’s data were to be breached is significant. This is
particularly important for multi-service workflows, where
typically only a small subset of the raw user data or an
anonymized form of raw user data need be provided to a
subordinate service. For example, consider an advertising
service that has access to all of a user’s purchase history; if
that service delegates the task of understanding the user’s
music tastes to a music recommendation service, there is
no reason to provide the recommendation service with all
history, but only music-related history.

3 Preserver Architecture

In this section, we present the software components of
the architecture, followed by an operational overview that
shows their interaction.

3.1 Components

Figure 2 shows a preserver (Preserver1) that serves a
user’s data to the service via a chosen interface; P2, P3

are preservers derived from Preserver1 through hosting
transfers or transformations. The three main components
of a preserver are shown within Preserver1. The data
layer is the data-specific code that implements the re-
quired interface. The policy engine vets interface invoca-
tions per the user’s policy stored alongside the user’s data
as policy data. Finally, the base layer coordinates these
two components, and is responsible for: (a) interfacing
with the service, (b) implementing the hosting protocol,
and (c) invoking any required data transformations along-
side hosting transfers. The base layer relies on host facil-
ities for its interactions with the external world (such as
network access). At the service side, the host hub module
runs alongside the service. It serves as a proxy between
the service code and the preserver, and allows us to de-
couple the particular application from the details of inter-
actions with the preserver.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 29

3.2 Operational View

The lifecycle of a preserver consists of installation, fol-
lowed by any combination of invocations, hosting trans-
fers, and transformations. We give an overview of these;
our design section discusses them in detail.

A user who wishes to use preservers to protect her data
when stored at a service, picks a preserver implementa-
tion from third party security companies (e.g., Symantec)
that exports an interface suitable for that kind of data. Or,
she may pick one from an open-source repository of pre-
server implementations, or purchase one from an online
app-store. Another option is for the service itself to offer a
third-party audited preserver which the user may trust. For
such a rich ecosystem of preserver implementations, we
envision that APIs suitable for specific kinds of data will
eventually be well-defined for commonly used sensitive
information such as credit card numbers (CCNs), email
addresses, web histories, and trading strategies. Services
that require use of a specific kind of data can support such
an API, which can then be implemented by open-source
reference implementations and security companies. The
evolution of APIs like OpenSocial [3] are encouraging in
this regard. Once the user picks a preserver implemen-
tation, she customizes it with policies that limit where
her data may be stored and who may invoke it. We envi-
sion that users will use visual interfaces for this purpose,
which would then be translated to our declarative policy
language. Once customization is done, the user initiates
an installation process by which the preserver is hosted
(at TTP/client/service as desired) and the association be-
tween the service and the preserver established.

We discussed needed changes from the user’s perspec-
tive; we now turn to the service’s side. First, a service has
to modify its code to interact with the preserver via a pro-
grammatic interface, instead of accessing raw data. Since
web service code is rewritten much more frequently than
desktop applications and is usually modular, we believe
this is feasible. For instance, in the case of our charging
preserver, the required service-side modifications took us
only a day. Second, services need to run third-party pre-
server code for certain deployment options (colocation,
preserver hosted on isolated physical infrastructure within
the service). We believe this does not present serious secu-
rity concerns since preserver functionality is very limited;
preservers can be sandboxed with simple policies (e.g.,
allow network access to only the payment gateway, al-
low no disk access). A service can also insist that the pre-
server be signed from a set of well-known security com-
panies. The overhead of preserver storage and invocation
may also hinder adoption by services. Our evaluation sec-
tion (Section 6) measures and discusses the implications
of this overhead; this overhead amounts to the cost of data
isolation in our framework.

Once the association between a service and a preserver

is established, the service can make invocation requests
via its host hub; these requests are dispatched to the
base layer, which invokes the policy engine to determine
whether the invocation should be allowed or not. If al-
lowed, the invocation is dispatched to the data layer and
the result returned. A service makes a hosting transfer re-
quest in a similar fashion; if the policy engine permits the
transfer, the base layer initiates a hosting transfer protocol
and initiates any policy-specified transformations along-
side the transfer.
Interaction between Base Layer and Host Hub: The
mechanics of interaction between the host hub (running
alongside the service code) and the base layer (at the pre-
server) depends on the deployment scenario. If the pre-
server is hosted at a TTP or at the client, then this com-
munication is over the network, and trust is guaranteed
by the physical isolation between the preserver and the
service. If the preserver is co-located at the service, then
communication is achieved via the trusted module at the
service site (e.g., Xen hypercalls, TPM late launch, se-
cure co-processor invocation). The base layer requires the
following functionality from such a trusted module: (a)
isolation, (b) non-volatile storage, which can be used for
anti-replay protection, (c) random number generation, and
(d) remote attestation (we will argue in Section 6.3 that
these four properties suffice for the security of our frame-
work; for now, we note they are provided by all three trust
modules we consider).

Details about base layers, policy engines, and aggre-
gation modules follow in the next section; here we focus
on the two roles of the host hub. The first is to serve as
a proxy for communication to/from the preserver from/to
the service. The second role applies only to colocation;
it provides host facilities, such as network access, to the
preserver. This lets the preserver leverage such function-
ality without having to implement it, considerably sim-
plifying the implementation. The host hub runs within
the untrusted service, but this does not violate our trust,
since data can be encrypted if desired before any network
communication via the host hub. The host hub currently
provides three services: network access, persistent stor-
age, and access to current time from a trusted remote time
server (useful for time-bound policies).

4 Design
This section presents the design of two key components
of the preserver: the policy engine and the data transfor-
mation mechanisms. We discuss the policy engine in two
parts: the hosting policy engine (Section 4.1) and the in-
vocation policy engine (Section 4.2). We then discuss data
transformations (Section 4.3).

The main challenge in designing the policy layer is to
design a policy language that captures typical kinds of
constraints (based on our application scenarios), whilst

30 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

enabling a secure implementation. We make the design
decision of using a declarative policy language that pre-
cisely defines the set of allowed invocations. Our lan-
guage is based on a simplified version of SecPAL [7] (a
declarative authorization policy language for distributed
systems); we reduced SecPAL’s features to make simpler
its interpreter, since it is part of our TCB.

4.1 Preserver Hosting

We introduce some notation before discussing our host-
ing protocol. A preserver C storing user U ’s data and res-
ident on a machine M owned by principal S is denoted
as CU@[M,S]; the machine M is included in the nota-
tion since whether C can be hosted at M can depend on
whether M has a trusted hardware/software module. Once
a preserver C (we omit U, S,M when the preserver re-
ferred to is clear from the context) has been associated
with S, it will respond to invocation requests per any con-
figured policies (denoted by P (C); policies are sent along
with the preserver during installation). S can also request
hosting transfers from C’s current machine to one belong-
ing to another service (for inter-organizational transfers)
or to one belonging to S (say, for replication). If this trans-
fer is concordant with the preserver’s hosting policy, then
the hosting protocol is initiated; we discuss these next.
Hosting Policy: We wish to design a language flexible
enough to allow a user to grant a service S the right
to host her data based on: (a) white-lists of services,
(b) trusted hardware/software modules available on that
service, and (c) delegating the decision to a service. We
show an example below to illustrate the flavor of our
language.
(1) alice SAYS CanHost(M) IF OwnsMa-
chine(amazon,M)
(2) alice SAYS CanHost(M) IF TrustedService(S),
OwnsMachine(S,M), HasCoprocessor(M)
(3) alice SAYS amazon CANSAY TrustedService(S)

We use a lower-case typewriter font to indicate prin-
cipals like Alice (the user; a principal’s identity is estab-
lished by a list of public keys sent by the user or by a
certificate binding its name to a public key), capitals to
indicate language keywords, and mixed-case for indicat-
ing predicates. A predicate can either be built-in or user-
defined. The predicate OwnsMachine(S,M) is a built-in
predicate that is true if S acknowledges M as its own
(using a certificate). The predicates HasCoprocessor(M),
HasTPM(M), HasVMM(M) are built-in predicates that are
true if M can prove that it has a co-processor / TPM /
VMM respectively using certificates and suitable attesta-
tions. The user-defined predicate CanHost(M) evaluates to
true if machine M can host the user’s preserver. The user-
defined predicate TrustedService(S) is a helper predicate.

The first rule says that alice allows any machine M
to host her preserver, provided amazon certifies such a

machine. The second rule indicates alice allows ma-
chine M to host her preserver if (a) S is a trusted ser-
vice, (b) S asserts that M is its machine, and (c) M has
a secure co-processor. The third rule allows amazon to
recommend any service S as a trusted service.

A hosting request received at CU@[M,S] has three pa-
rameters: the machine M ′ to which the transfer is re-
quested, the service S′ owning machine M ′, and a set
of assertions PHR. The set of assertions PHR are pre-
sented by the principal in support of its request; it may
include delegation assertions (such as “S SAYS S’ Can-
Host(X)”) and capability assertions (such as “CA SAYS
HasTPM(M’)”). When such a request is received by
CU@[M,S], it is checked against its policy. This involves
checking whether the fact “U SAYS CanHost(M’)” is
derivable from P (C)∪PHR per SecPAL’s inference rules.
If so, then the hosting protocol is initiated.
Hosting Protocol: The hosting protocol forwards a pre-
server from one machine M to another M ′. The transfer
of a preserver to a TTP is done over SSL; for colocation,
the transfer is more complex since the protocol should first
verify the presence of the trusted module on the service
side. We rely on the attestation functionality of the trusted
module in order to do so.

The goal of the hosting protocol is to maintain the
confidentiality of the preserver during its transfer to the
service side, whilst verifying the presence of the trusted
module. We achieve this by extending the standard Diffie-
Hellman key-exchange protocol:

• Step 1: M → M ′: (g, p, A), N
• Step 2: M ′ → M : B, Attestation[M ′, BaseLayer,
N, (g, p, A), B]

• Step 3: M → M ′: {CU@[M,S]}DHK

Here, (g, p, A = ga mod p) and B = gb mod p are from
the standard Diffie-Hellman protocol, and DHK is the
Diffie-Hellman key (generated as Ab mod p = Ba mod p).
This protocol only adds two fields to the standard proto-
col: the nonce N and the attestation (say, from a Trusted
Platform Module) that proves that the base layer gener-
ated the value B in response to ((g, p, A), N). Thus, the
security properties of the original protocol still apply. The
attestation is made with an attestation identity key M ′;
this key is vouched for by a certification authority as be-
longing to a trusted module (e.g., TPM). The attestation
guarantees freshness (since it is bound to N), and rules
out tampering on both the input and output.

At the completion of the exchange, the base layer at
M ′ de-serializes the transferred preserver C ′

U@[M ′, S′].
At this point, the preserver C ′ is operational; it shares the
same data as C and is owned by the same user U . After the
transfer, we do not enforce any data consistency between
C and C ′ (much like the case today; if Amazon hands out
a user’s purchase history to a third party, it need not update

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 31

it automatically). A user or service can notify any such de-
rived preservers and update them, but this is not automatic
since synchronous data updates are typically not required
across multiple web services.

4.2 Preserver Invocation Policy

An invocation policy allows the user to specify constraints
on the invocation parameters to the preserver interface.
Our policy language supports two kinds of constraints:
stateless and stateful.

Stateless constraints specify conditions that must
be satisfied by arguments to a single invocation of a
preserver, e.g., “never charge more than 100 dollars in
a single invocation”. We support predicates based on
comparison operations, along with any conjunction or
disjunction operations. Stateful constraints apply across
several invocations; for example, “no more than 100
dollars during the lifetime of the preserver”; such con-
straints are useful for specifying cumulative constraints.
For instance, users can specify a CCN budget over a time
window. We present an excerpt below.
(1) alice SAYS CanInvoke(amazon, A) IF LessThan(A,50)
(2) alice SAYS CanInvoke(doubleclick, A)
IF LessThan(A,Limit), Between(Time, “01/01/10”,”01/31/10”)
STATE (Limit = 50, Update(Limit, A))
(3) alice SAYS amazon CANSAY CanInvoke(S,A)
IF LessThan(A,Limit)
STATE (Limit = 50, Update(Limit, A))

The first rule gives the capability “can invoke up to
amount A” to Amazon as long as A < 50. The second
rule shows a stateful example; the semantics of this rule is
that DoubleClick is allowed to charge up to a cumulative
limit of 50 during Jan 2010. The syntax for a stateful pol-
icy is to annotate state variables with the STATE keyword.
This policy has a state variable called Limit set to 50 ini-
tially. The predicate Update(Limit,A) is a built-in update
predicate that indicates if this rule is matched, then the
Limit should be updated with the amount A. When a rule
is matched with a state keyword, it is removed from the
policy database, any state variables (e.g., Limit) suitably
updated, and the new rule inserted into the database. This
usage idiom is similar to SecPAL’s support for RBAC dy-
namic sessions. The alternative is to move this state out-
side the SecPAL policy, and house it within the preserver
functionality; we avoid this so that the policy implemen-
tation is not split across SecPAL and the preserver imple-
mentation. The third rule is very similar to the second rule;
however, this rule is matched for any principal to which
Amazon has bestowed invocation rights. This means that
the limit is enforced across all those invocations; this is
exactly the kind of behavior a user would expect.

Transfer of Invocation Policies: We now discuss how
the invocation protocol interacts with the hosting proto-
col. During a hosting transfer initiated from CU@[M,S]
to C ′

U@[M ′, S′], C should ensure that C ′ has suitable

policy assertions P (C ′) so that the user’s policy spec-
ified in P (C) is not violated. To ensure this, any poli-
cies PHR specified by S′ during the hosting request are
added to P (C ′) to record the fact that C ′ operates un-
der that context. Second, any stateful policies need to
be specially handled, e.g., consider our third invocation
policy: the total budget across all third parties that are
vouched for by Amazon is 100 dollars. If this constraint
is to hold across both C ′ and any future C ′′ that might
be derived from C, then one option is to use C as a com-
mon point during invocation to ensure that this constraint
is never violated. However, this requires any transferred
preserver C ′ to communicate with C upon invocations.
This is undesirable, and further, such synchronization is
not required in most web service applications. Instead, we
leverage the concept of exo-leasing [26]. Decomposable
constraints (such as budgets, number of queries answered)
from P (C) are split into two sub-constraints; the original
constraint in P (C) is updated with the first, and the sec-
ond is added to P (C ′). For instance, a budget is split be-
tween the current preserver and the transferred preserver.
We currently only support additive constraints which can
be split in any user-desired ratio; other kinds of constraints
can be added if required.

4.3 Preserver Data Transformation

This section discusses how to provide users control over
data transformations. This is different from providing in-
vocation control; the latter controls operations invoked
over the data, and the former controls the data itself. We
refer to a preserver whose data is derived from a set of
existing preservers as a derivative preserver. We support
two data transformations towards aiding risk mitigation:
filtering and aggregation.
Filtering: A derivative preserver obtained by filtering has
a subset of the original data; for instance, only the web
history in the last six months. A preserver that supports
such transformations on its data exports an interface call
for this purpose; this is invoked alongside a hosting pro-
tocol request so that the forwarded preserver contains a
subset of the originating preserver.
Aggregation: This allows the merging of raw data from
mutually trusting users of a service, so that the service can
use the aggregated raw data, while the users still obtain
some privacy guarantees due to aggregation. A trusted ag-
gregator preserver can also improve efficiency in the sen-
sitive query idiom, since it enables a (private) index across
preservers, sparing them from irrelevant events. We refer
to the set of aggregated users as “data crowds” (inspired
by the Crowds anonymity system [23]). We describe what
user actions are necessary for enabling aggregation, and
then discuss how the service carries it out.

To enable aggregation, a user U instructs her preserver
CU@[M,S] to aggregate her data with a set of preservers

32 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

CU ′ [M ′, S] where U ′ is a set of users that she trusts. The
set of users U ′ form a data crowd. We envision that a user
U can discover such a large enough set of such users U ′ by
mining her social network (for instance). During preserver
installation, each member U of the crowd C confides a
key KC shared among all members in the crowd to their
preserver. During installation, a user U ∈ C also notifies
the service of her willingness to be aggregated in a data
crowd identified by H(KA) (H is a hash function). S can
then identify the set of preservers CA belonging to that
particular data crowd using H(KA) as an identifier.

To aggregate, the service expects the preserver to sup-
port an aggregation interface call. This call requests the
preserver CU to merge with CU ′ and is a simple pair-wise
operation. These mergers are appropriately staged by the
service that initiates the aggregation. During the aggre-
gation operation of CU with CU ′ , preserver CU simply
encrypts its sensitive data using the shared key KA and
hands it off to U ′ along with its owner’s key. During this
aggregation, the resultant derivative preserver also main-
tains a list of all preservers merged into the aggregate
so far; preservers are identified by the public key of the
owner sent during installation. This list is required so as
to prevent duplicate aggregation; such duplicate aggrega-
tion can reduce the privacy guarantees. Once the count
of source preservers in an aggregated preserver exceeds a
user-specified constraint, the aggregate preserver can then
reveal its data to the service S. This scheme places the
bulk of the aggregation functionality upon the service giv-
ing it freedom to optimize the aggregation.

5 Implementation
Our implementation supports three deployments: TTP,
client-side, and Xen-based colocation. We plan to support
TPMs and secure co-processors using standard implemen-
tation techniques such as late launch (e.g., Flicker [18]).
We implement three preservers, one per idiom: a stock
trading preserver, a targeted ads preserver, and a CCN-
based charging preserver (we only describe the first two
here due to space constraints). We first describe our frame-
work, and then these preservers (details are presented in
our technical report [16]).
Preserver Framework: For TTP deployment, the net-
work isolates the preserver from the service. The colo-
cation deployment relies on Xen. We ported and extended
XenSocket [34] to our setup (Linux 2.6.29-2 / Xen 3.4-
1) in order to provide fast two-way communication be-
tween the web service VM and the preserver VM using
shared memory and event channels. The base layer imple-
ments policy checking by converting policies to DataLog
clauses, and answers queries by a simple top-down reso-
lution algorithm (described in SecPAL [7]; we could not
use their implementation since it required .NET libraries).
We use the PolarSSL library for embedded systems for

light-weight cryptographic functionality, since it is a sig-
nificantly smaller code base (12K) compared to OpenSSL
(over 200K lines of code); this design decision can be re-
visited if required. We use a TPM, if available, to verify
that a remote machine is running Xen using the Trousers
library. Note that we only use a TPM to verify the execu-
tion of Xen; we still assume that Xen isolates correctly.
Stock Trading Preserver: We model our stock preserver
after a feature in a popular day trading software, Sierra
Chart [4] that makes trades automatically when an incom-
ing stream of ticker data matches certain conditions. This
preserver belongs to the query idiom and exports a sin-
gle function call TickerEvent (SYMBOL, PRICE) that re-
turns an ORDER(“NONE” /“BUY” / “SELL”, SYMBOL,
QUANTITY) indicating whether the preserver wishes to
make a trade and of what quantity. The preserver allows
the user to specify two conditions (which can be arbitrar-
ily nested boolean predicates with operations like AND,
OR, and NOT, and base predicates that consist of the cur-
rent price, its moving average, current position, and com-
parison operations): a “BUY” and a “SELL” condition.
Our implementation of predicate matching is straight-
forward; we apply no query optimizations, so our results
are only meaningful for comparison.
Targeted Advertising Preserver: We implemented two
preservers for targeted advertising (serving targeted ads
and building long-term models), both in the analytics id-
iom. They store the user’s browsing history and are up-
dated periodically (say, daily).

The first preserver is used for targeted advertising
for which we implemented two possible interfaces:
ChooseAd(List of Ads, Ad Categories) and GetInter-
estVector(). In the first, the preserver selects the ad to be
displayed using a procedure followed by web services to-
day (described in Adnostic [29]). In the second, the pre-
server extracts the user’s interest vector from her brows-
ing history, and then perturbs it using differential privacy
techniques (details are in our technical report [16]). This
preserver uses a stateful policy to record the number of
queries made (since information leak in interactive pri-
vacy mechanisms increases linearly with the number of
queries). The second preserver allows the service to use
any proprietary algorithm in serving ads since the fea-
ture vector, which summarizes a user’s detailed history,
is itself revealed after being appropriately perturbed with
noise. This preserver is used by the service to build long-
term models related to the affinity of users with specific
profiles to specific advertisements; our aggregation func-
tionality is of use here.

Based on these preservers, we estimate the typical
refactoring effort for a web service in adopting the pre-
server architecture. We do not have access to a stock bro-
ker’s code base, so our experience is based on the targeted
ads preserver and the CCN case. For the targeted ads case,

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 33

given the availability of client-side plugins like Adnostic
and PrivAd, we believe the refactoring effort will be min-
imal. In the CCN case, modifying the Zen shopping cart
[6] to interact with the preserver took us only a day.

6 Evaluation
In this section, we first present the performance evalua-
tion of our framework, followed by a security analysis.
Our performance evaluation has two goals. First, evaluate
the cost of isolation in our framework as the performance
overhead and provisioning cost of client-side / TTP / colo-
cation deployment, relative to the base case (no isolation).
Second compare various deployment options to determine
the ideal deployment for different workloads.
Experimental Scenarios: We consider three scenarios:
(a) the base case, (b) the TTP case, and (c) the Xen-based
colocation case. Since a TTP deployment is equivalent in
most respects to a client-side preserver, we discuss them
together. We compare these scenarios along three dimen-
sions of performance: setup cost, invocation cost, data
transformation cost. The term cost includes latency, net-
work bandwidth consumption, and storage cost. Of these,
the invocation cost is borne every time the user’s data is
accessed, and is thus the primary metric of comparison.
The setup cost is incurred only during the initial and sub-
sequent transfers of the user’s data (since this is an infre-
quent event, the details are omitted from this paper; they
are in our technical report [16]), while the transformation
cost, though not as frequent as invocation, may be signif-
icant if the aggregation involves data belonging to large
numbers of users. All results are reported over 100 runs.
For latency, we report the median and the 95% confidence
interval for the median; we report only the median for
bandwidth since it is much less variable.
Hardware Configuration: Our test server is a 2.67 GHz
quad core Intel Xeon with 5 GB memory. A desktop (Intel
Pentium4 1.8 GHz processor, 1 GB memory), on the same
LAN as the server, served as a TTP (or client). The band-
width between the server and this desktop was 10 Gbps
and the round-trip about 0.2 ms. To simulate a wide-area
network between the client/TTP and the service, we used
DummyNet [2] to artificially delay packets by a config-
urable parameter; the default round-trip is 10 ms.

6.1 The Cost of Isolation

We measured the performance metrics during invocation
and setup, and then examine provisioning requirements.
For these measurements, we used a dummy data layer
that accepts an invocation payload of a specific size and
returns a response of a specific size.
Invocation Costs: To examine the invocation cost across
different payload sizes, we plotted the latency as a func-
tion of payload size (varied in multiples of 2 from 256
bytes to 32 KB) in Figure 3(left). At 1 KB invocation

size, though the latency via Xen (1237µs) is about 800
µs worse compared to the base case (415µs), it is still sig-
nificantly lower compared to the TTP case (24.37ms). We
found considerable variation ranging from 900 to 4000µs
with a median of 1237µs; we believe this is related to the
Xen scheduling algorithm which may delay the execution
of the preserver VM. This plot shows that the overhead
added by Xen as a percentage of the base case declines,
while the network transfer time increases the latency for
the TTP case. In the TTP case, the latency is due to two
round-trips (one each for exchange of TCP SYN and SYN
ACKs, and the invocation), and network transfer time.
The traffic for the TTP case varies roughly linearly with
the size of the payload: 1.7 KB (for invocations of 256
bytes), 10 KB (4 KB), and 72 KB (32 KB); of course, in
the Xen case and the base case, no network communica-
tion is involved for invocation.
Provisioning Cost: We first estimate the colocation pro-
visioning cost and the monetary/provisioning costs for
TTP/client-side preservers.

Under colocation, preserver storage requires memory
and disk; our preserver code is about 400 KB (120 KB
compressed) from 100 SLOC. The overhead is due to
glibc which we plan to remove. We used the Difference
Engine [15] which finds similar pages across VMs to re-
duce memory costs; thus, the memory requirements for
the VMs of users who share the preserver code from the
same provider are significantly reduced. In our experi-
ments, we initially allocated 64 MB of memory to each
preserver VM, and then invoked a varying number of
client VMs with the same preserver. The Difference En-
gine saves us about 85% overall memory; the memory re-
quirement per preserver VM is about 10 MB (this estimate
was obtained by invoking 10 VMs, and then allowing time
for the detection of identical and similar memory pages).
At the current estimate of 10 MB per preserver, every 100
users require about 1 GB memory. We believe that this
can be reduced further since we do not use any kernel fa-
cilities; thus, the preserver can run directly on the VMM.

The trade-offs are different for TTP/client-side pre-
servers. The TTP shoulders the cost of availability and
performance. Web-service hosting (with unlimited band-
width) are about 10 − 15 dollars per month today; ex-
pectations are higher from a trusted service because of
the security risks, so one may expect a higher cost. In the
client-side preserver, availability and performance fall on
the user instead.

6.2 Performance of Various Preserver Deployments

We evaluated the stock trading preserver and targeted ads
preserver for comparing the deployments since they repre-
sent different workloads (frequent small invocation versus
low-frequency invocation with larger payload). The CCN
preserver’s results are in our technical report [16].

34 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100

La
te

nc
y

(µ
s)

Invocation Size (KB)

TTPCase
XenCase

BaseCase

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

La
te

nc
y

(m
s)

Number of Invocations

TTPCase
XenCase

BaseCase

 1

 10

 100

 1000

 10 100

La
te

nc
y

(m
s)

Number of Ads

TTPCase
XenCase

BaseCase

Figure 3: Invocation costs: (left) measurement preserver; latency vs. payload size, (middle) stock preserver; latency vs. number of
ticker events, (right) targeted ads preservers; latency vs number of ads.

Stock Preserver:To reflect a typical trading scenario with
hundreds of ticker events per second, we plotted latency
versus numbers of back-to-back invocations (stock ticker
events) in Figure 3(middle). As expected, the TTP case
requiring network access is substantially slower as com-
pared to the Xen case and the base case. Comparing the
Xen case and the base case for a sequence of 100 back-
to-back invocations, the latencies are 43.4ms and 9.05ms
respectively; though the overhead due to Xen is substan-
tial, it is still a significant improvement over the TTP
case, which requires 12 seconds. Regarding the traffic,
in the TTP case, the traffic generated for a sequence of
5, 10, 50, 100, 500 and 1000 invocations are respectively
2.8, 4.8, 20.2, 39.4, 194, 387 KB respectively. Thus, the
bandwidth required for say, 500 events per second, is
about 1.6 MB/s per user per stock symbol (and a single
user typically trades multiple symbols). These results re-
flect that server site colocation can offer significant benefit
in terms of network bandwidth.
Targeted Ads Preserver: We present two results for the
targeted ads scenario. Figure 3(right) shows the latency
per invocation for the preserver to serve targeted ads us-
ing the ChooseAd interface (we do not show results for
the GetInterestVector interface due to lack of space). This
graph shows that the Xen preserver has nearly the same
overhead as the Base case preserver once the number
of ads out of which the preserver selects one exceeds
5. This is mainly because the payload size dominates
the transfer time; the context switch overhead is mini-
mal. In the TTP case, the latency is clearly impacted by
the wide-area network delay. The traffic generated in the
TTP case was measured to be 2.6, 8.3, 15.8, 29.2 KB for
10, 50, 100, 200 ads respectively. These reflect the band-
width savings of colocation; since this bandwidth is in-
curred for every website the user visits, this could be sig-
nificant. Our technical report [16] has performance results
on two other operations: allowing a user to update her web
history and the data aggregation transformation.

6.3 Security Analysis

We now discuss the desirable security properties of our
preserver, determine the TCB for these to hold, and argue

that our TCB is a significant improvement over the status
quo. Our security goal is that any data access or preserver
transfer obeys the user-sanctioned interface and policies.
Depending on the deployment, the adversary either has
control of the service software stack (above the VMM
layer) or has physical access to the machine hosting the
preserver; the first applies to VMMs, TPMs, and the sec-
ond to TTPs, client-side preservers, secure co-processors.
In the TTP/client case, we rely on physical isolation and
the preserver implementation’s correctness; the rest of this
section is concerned with the security goal for colocation.

Colocation has one basic caveat: the service can launch
an availability attack by refusing to service requests us-
ing its host hub or by preventing a user from updating her
preserver. We assume that the trusted module provides the
four security properties detailed in Section 3: isolation,
anti-replay protection, random number generation, and re-
mote attestation. We also assume that any side-channels
(such as memory page caching, CPU usage) have limited
bandwidth (a subject of ongoing research [30]). We first
analyze the installation protocol and then examine the in-
vocation protocol.

Installation Protocol: The installation protocol is
somewhat complex since it involves a Diffie-Hellman key
exchange along with remote attestation. In order to argue
its correctness, we now present an informal argument (our
technical report [16] has a formal argument in LS2 [10],
a formal specification language). Our informal argument
is based on three salient features of the installation pro-
tocol (Section 4.1). First, the attestation guarantees that
the public key is generated by the base layer. Second, the
Diffie-Hellman-based installation protocol ensures confi-
dentiality; only the party that generated the public key it-
self can decrypt the preserver. From the first observation,
this party can only be the base layer. This relies on the
random number generation ability of the trusted module
to ensure that the generated public key is truly random.
Third, since attestation verifies the purported input and
output to the code which generated the public key, man-
in-the-middle attacks are ruled out; an adversary cannot
tamper with the attestation without rendering it invalid.
These three properties together ensure that the preserver

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 35

can only be decrypted by the base layer, thus ruling out
any leakage during installation. The correctness of the
base layer’s implementation helps argue that the preserver
is correctly decrypted and instantiated at the service.

Invocation Protocol: Upon invocation, the base layer
verifies: (a) the invoking principal’s identity, (b) any sup-
porting policies, and (c) that user-specified policies along
with supporting policies allow the principal the privilege
to make the particular invocation. The principal’s iden-
tity is verified either against a list of public keys sent dur-
ing installation (which binds service names to their public
keys or offloads trust to a certification authority). In either
case, the correctness of installation ensures that the iden-
tity cannot be spoofed. The base layer verifies the sup-
porting policies by verifying each statement of the form
X SAY S · · · against the signature of X . The policy re-
solver takes two sets of policies as input: user-specified
policies and the invoker’s supporting policies. The latter,
we have argued, is correct; for the former, we rely on the
anti-replay property provided by the trusted module to en-
sure that the preserver’s policies (which can be updated
over time) are up-to-date and reflects the outcome of all
past invocations. This ensures that any stateful constraints
are correctly ensured. Once invocation is permitted by the
base layer, it is passed on to the data layer which imple-
ments the interface. In cases such as a query preserver or
an analytics preserver, this functionality is carried out en-
tirely within the data layer, which we assume to be correct.
For the proxy preserver, which requires network access,
we note that though the network stack is itself offloaded
to the host hub, the SSL library resides in the preserver;
thus the host hub cannot compromise confidentiality or
integrity of network communication.

6.3.1 TCB Estimate

From the preceding discussion, it is clear that our TCB
includes: (A) the trust module, (B) the data layer inter-
face and implementation, and (C) the base layer proto-
cols and implementation. In our colocation implementa-
tion, (A) is the Xen VMM and Dom0 kernel; we share
these with other VMM-based security architectures (e.g.,
Terra [13]). Mechanisms to improve VMM-based secu-
rity (e.g., disaggregation [19] removes Dom0 from the
TCB) also apply to our framework. Regarding the base
layer and the data layer, their per-module LOC estimates
are: Base Layer (6K), PolarSSL (12K), XenSocket (1K),
Trousers (10K), Data Layers (Stock Preserver: 340, Ads:
341, CCN: 353). This list omits two implementation de-
pendencies we plan to remove. First, we boot up the pre-
server atop Linux 2.6.29-2; however, our preservers do
not utilize any OS functionality (since device-drivers, net-
work stack, etc., are provided by the host hub), and can
be ported to run directly atop Xen or MiniOS (a bare-
bones OS distributed with Xen). Second, the preservers

use glibc’s memory allocation and a few STL data struc-
tures; we plan to hand-implement a custom memory al-
locator to avoid these dependencies. We base our trust in
the data layer interface and implementation in the inter-
face’s simplicity. Currently, despite our efforts at a simple
design, the base layer is more complex than the data layer,
as reflected in the LOC metric. In the lack of a formal ar-
gument for correctness, for now, our argument is that even
our complex base layer offers a significant improvement
in security to users who have no choice today but to rely
on unaudited closed source service code.

7 Related Work
Before examining broader related work, we discuss
three closely related papers: Wilhelm’s thesis [31],
CLAMP [21], and BStore [9]. Work in the mobile agent
security literature, such as Wilhelm’s thesis [31], lever-
ages mobile agents (an agent is code passed around from
one system to another to accomplish some functional-
ity) to address data access control in a distributed sys-
tem. Our main differences are: (a) our interface is data
dependent and its invocation can be user-controlled, and
(b) preservers return some function of the secret data as
output; this output provides some useful secrecy guaran-
tees to the user. CLAMP [21] rearchitects a web service to
isolate various clients by refactoring two security-critical
pieces into stand-alone modules: a query restrictor (which
guards a database) and a dispatcher (which authenticates
the user). Our goal is different: it is to protect an individual
user’s data (as opposed to a shared database), both from
external and internal attacks. BStore [9] argues for the de-
coupling of the storage component from the rest of the
web service: users entrust their files to a third party stor-
age service which enforces policies on their behalf. Our
preserver architecture is in a similar spirit, except that it
pertains to all aspects of how data is handled by the web
service, not just storage; the enforcement of an interface
means that user data is never directly exposed to the web
service. Our work is also related to the following areas:
Information Flow Control (IFC): The principle of IFC
has been implemented in OSes (e.g., Asbestos [12])
and programming languages (e.g., JIF [24]), and enables
policy-based control of information flow between secu-
rity compartments. IFC has also been used to build secure
web service frameworks, e.g., W5 [17], xBook [27]. Pre-
servers provide data access control; this is complemen-
tary to IFC’s data propagation control. Preservers rely on
an interface that offers sufficient privacy to the user and
is usable to the service. The advantage of interface-based
access control is that we can rely on a variety of iso-
lation mechanisms without requiring a particular OS or
programming language. Further, the interface’s simplicity
makes it feasible to envision proving a preserver’s correct-
ness; doing so in the IFC case requires one to prove the

36 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

correctness of the enforcement mechanism (OS or com-
piler) which can be significantly more complex.
Decentralized Frameworks For Web Services: Privacy
frameworks that require only support from users have
been proposed as an alternative to web services. VIS [8]
maintains a social network in a completely decentralized
fashion by users hosting their data on trusted parties of
their own choice; there is no centralized web service.
Preservers are more compatible with the current ecosys-
tem of a web service storing users’ data. NOYB [14] and
LockR [28] are two recent proposals that use end-to-end
encryption in social network services; both approaches are
specific to social networks, and their mechanisms can be
incorporated in the preserver framework, if so desired.

8 Conclusion
Our preserver framework rearchitects web services
around the principle of giving users control over the code
and policies affecting their data. This principle allows a
user to decouple her data privacy from the services she
uses. Our framework achieves this via interface-based
access control, which applies to a variety of web ser-
vices (though not all). Our colocation deployment model
demonstrates that this property can be achieved with mod-
erate overhead, while more stringent security can be ob-
tained with other deployment models. In the future, we
hope to formalize two aspects of our framework. First, we
wish to prove the correctness of our interface implemen-
tation. Second, we hope to define and prove precise guar-
antees on information leak via interfaces.

Acknowledgments: We thank Gautam Altekar, Kevin
Fall, Jon Howell, Eddie Kohler, Jay Lorch, Radia Perl-
man, and the anonymous reviewers for their careful feed-
back on our work, as well as the authors of Adnostic, in
particular Arvind Narayanan, for sharing their data.

References
[1] DataLoss DB: Open Security Foundation. http:

//datalossdb.org.
[2] DummyNet Homepage. http://info.iet.unipi.it/

˜luigi/dummynet/.
[3] OpenSocial. http://code.google.com/apis/

opensocial/.
[4] Sierra Chart: Financial Market Charting and Trading Software.

http://sierrachart.com.
[5] TPM Main Specification Level 2 Version 1.2, Revi-

sion 103 (Trusted Computing Group). http://www.
trustedcomputinggroup.org/resources/tpm_
main_specification/.

[6] Zen E-Commerce Solution. http://www.zen-cart.com/.
[7] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and

Semantics of a Decentralized Authorization Language. In Proc.
IEEE Computer Security Foundations Symposium, 2006.

[8] R. Cáceres, L. Cox, H. Lim, A. Shakimov, and A. Varshavsky. Vir-
tual Individual Servers as Privacy-Preserving Proxies for Mobile
Devices. In Proc. MobiHeld, 2009.

[9] R. Chandra, P. Gupta, and N. Zeldovich. Separating Web Applica-
tions from User Data Storage with BStore. In WebApps, 2010.

[10] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A Logic of Se-
cure Systems and its Application to Trusted Computing. In IEEE
Security and Privacy, 2009.

[11] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and
S. Smith. Building the IBM 4758 Secure Coprocessor. Computer,
34(10), 2001.

[12] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and
Event Processes in the Asbestos Operating System. In SOSP, 2005.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Computing.
In SOSP, 2003.

[14] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in Online Social
Networks. In Proc. WOSP, 2008.

[15] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Vargh-
ese, G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing
Memory Redundancy in Virtual Machines. In OSDI, 2008.

[16] J. Kannan, P. Maniatis, and B.-G. Chun. A Data Capsule Frame-
work For Web Services: Providing Flexible Data Access Control
To Users. arXiv:1002.0298v1 [cs.CR].

[17] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A
World Wide Web Without Walls. In Proc. HotNets, 2007.

[18] J. M. Mccune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In
EuroSys, 2008.

[19] D. G. Murray, G. Milos, and S. Hand. Improving Xen Security
through Disaggregation. In VEE, 2008.

[20] G. C. Necula. Proof-carrying code: Design, Implementation, and
Applications. In Proc. PPDP, 2000.

[21] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical Prevention of Large-Scale Data
Leaks. In IEEE Security and Privacy, 2009.

[22] L. Ponemon. Fourth Annual US Cost of Data Breach
Study. http://www.ponemon.org/local/
upload/fckjail/generalcontent/18/file/
2008-2009 US Cost of Data Breach Report Final.
pdf, 2009. Retrieved Feb 2010.

[23] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Trans-
actions. ACM Transactions on Information and System Security,
1(1), 1998.

[24] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow
Security. IEEE JSAC, 21, 2003.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hy-
pervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes. In SOSP, 2007.

[26] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow Synchro-
nization for Mobile Clients of Commodity Storage Servers. In
Middleware, 2008.

[27] K. Singh, S. Bhola, and W. Lee. xBook: Redesigning Privacy Con-
trol in Social Networking Platforms. In USENIX Security, 2009.

[28] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr:
Better Privacy for Social Networks. In CoNEXT, 2009.

[29] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertising. In
NDSS, 2010.

[30] E. Tromer, A. Chu, T. Ristenpart, S. Amarasinghe, R. L. Rivest,
S. Savage, H. Shacham, and Q. Zhao. Architectural Attacks and
their Mitigation by Binary Transformation. In SOSP, 2009.

[31] U. G. Wilhelm. A Technical Approach to Privacy based on Mo-
bile Agents Protected by Tamper-Resistant Hardware. PhD thesis,
Lausanne, 1999.

[32] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mel-
lon University, 1994.

[33] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
Application Security with Data Flow Assertions. In SOSP, 2009.

[34] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin. XenSocket:
A High-Throughput Interdomain Transport for Virtual Machines.
In Middleware, 2007.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 37

BenchLab: An Open Testbed for Realistic Benchmarking
of Web Applications

Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, Prashant Shenoy
University of Massachusetts Amherst

{cecchet,veena,twood,shenoy}@cs.umass.edu

Abstract

Web applications have evolved from serving static content to dynamically generating Web pages. Web 2.0 applica-
tions include JavaScript and AJAX technologies that manage increasingly complex interactions between the client
and the Web server. Traditional benchmarks rely on browser emulators that mimic the basic network functionality of
real Web browsers but cannot emulate the more complex interactions. Moreover, experiments are typically conduct-
ed on LANs, which fail to capture real latencies perceived by users geographically distributed on the Internet. To
address these issues, we propose BenchLab, an open testbed that uses real Web browsers to measure the perfor-
mance of Web applications. We show why using real browsers is important for benchmarking modern Web applica-
tions such as Wikibooks and demonstrate geographically distributed load injection for modern Web applications.

1. Introduction
Over the past two decades, Web applications have
evolved from serving primarily static content to com-
plex Web 2.0 systems that support rich JavaScript and
AJAX interactions on the client side and employ so-
phisticated architectures involving multiple tiers, geo-
graphic replication and geo-caching on the server end.
From the server backend perspective, a number of Web
application frameworks have emerged in recent years,
such as Ruby on Rails, Python Django and PHP Cake,
that seek to simplify application development. From a
client perspective, Web applications now support rich
client interactivity as well as customizations based on
browser and device (e.g., laptop versus tablet versus
smartphone). The emergence of cloud computing has
only hastened these trends---today’s cloud platforms
(e.g., Platform-as-a-Service clouds such as Google Ap-
pEngine) support easy prototyping and deployment,
along with advanced features such as autoscaling.
To fully exploit these trends, Web researchers and de-
velopers need access to modern tools and benchmarks
to design, experiment, and enhance modern Web sys-
tems and applications. Over the years, a number of
Web application benchmarks have been proposed for
use by the community. For instance, the research com-
munity has relied on open-source benchmarks such as
TPC-W [16] and RUBiS [13] for a number of years;
however these benchmarks are outdated and do not
fully capture the complexities of today’s Web 2.0 ap-
plications and their workloads. To address this limita-
tion, a number of new benchmarks have been proposed,
such as TPC-E, SPECWeb2009 or SPECjEnter-
prise2010. However, the lack of open-source or freely
available implementations of these benchmarks has
meant that their use has been limited to commercial

vendors. CloudStone [15] is a recently proposed open-
source cloud/Web benchmark that addresses some of
the above issues; it employs a modern Web 2.0 applica-
tion architecture with load injectors relying on a Mar-
kov model to model user workloads. Cloudstone, how-
ever, does not capture or emulate client-side JavaScript
or AJAX interactions, an important aspect of today’s
Web 2.0 applications and an aspect that has implica-
tions on the server-side load.
In this paper, we present BenchLab, an open testbed for
realistic Web benchmarking that addresses the above
drawbacks. BenchLab’s server component employs
modern Web 2.0 applications that represent different
domains; currently supported server backends include
Wikibooks (a component of Wikipedia) and Cloud-
Stone’s Olio social calendaring application, with sup-
port for additional server applications planned in the
near future. BenchLab exploits modern virtualization
technology to package its server backends as virtual
appliances, thereby simplifying the deployment and
configuration of these server applications in laboratory
clusters and on public cloud servers. BenchLab sup-
ports Web performance benchmarking “at scale” by
leveraging modern public clouds---by using a number
of cloud-based client instances, possibly in different
geographic regions, to perform scalable load injection.
Cloud-based load injection is cost-effective, since it
does not require a large hardware infrastructure and
also captures Internet round-trip times. In the design of
BenchLab, we make the following contributions:
 We provide empirical results on the need to capture

the behavior of real Web browsers during Web load
injection. Our results show that traditional trace re-
play methods are no longer able to faithfully emu-
late modern workloads and exercise client and serv-

38 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

er-side functionality of modern Web applications.
Based on this insight, we design BenchLab to use
real Web browsers, in conjunction with automated
tools, to inject Web requests to the server applica-
tion. As noted above, we show that our load injec-
tion process can be scaled by leveraging inexpensive
client instances on public cloud platforms.

 Similar to CloudStone’s Rain [2], BenchLab pro-
vides a separation between the workload model-
ing/generation and the workload injection during
benchmark execution. Like Rain, BenchLab sup-
ports the injection of real Web traces as well as syn-
thetic ones generated from modeling Web user be-
havior. Unlike Rain, however, BenchLab uses real
browsers to inject the requests in these traces to
faithfully capture the behavior of real Web users.

 BenchLab is designed as an open platform for real-
istic benchmarking of modern Web applications us-
ing real Web browsers. It employs a modular archi-
tecture that is designed to support different backend
server applications. We have made the source code
for BenchLab available, while also providing virtual
appliance versions of our server application and cli-
ent tools for easy, quick deployment.

The rest of this document is structured as follows. Sec-
tion 2 explains why realistic benchmarking is an im-
portant and challenging problem. Section 3 introduces
BenchLab, our approach to realistic benchmarking
based on real Web browsers. Section 4 describes our
current implementation that is experimentally evaluated
in section 5. We discuss related work in section 6 be-
fore concluding in section 7.
2. Why Realistic Benchmarking Matters
A realistic Web benchmark should capture, in some
reasonable way, the behavior of modern Web applica-
tions as well as the behavior of end-users interacting
with these applications. While benchmarks such as
TPC-W or RUBiS were able to capture the realistic
behavior of Web applications from the 1990s, the fast
paced technological evolution towards Web 2.0 has
quickly made these benchmarks obsolete. A modern
Web benchmark should have realism along three key
dimensions: (i) a realistic server-side application, (ii) a
realistic Web workload generator that faithfully emu-
lates user behavior, and (iii) a realistic workload injec-
tor that emulates the actual “browser experience.” In
this section, we describe the key issues that must be
addressed in each of these three components when con-
structing a Web benchmark.
2.1. Realistic applications
The server-side component of the benchmark should
consist of a Web application that can emulate common

features of modern Web applications. These features
include:
Multi-tier architecture: Web applications commonly
use a multi-tier architecture comprising at least of a
database backend tier, where persistent state is stored,
and a front-end tier, where the application logic is im-
plemented. In modern applications, this multi-tier archi-
tecture is often implemented in the form of a Model-
View-Controller (MVC) architecture, reflecting a simi-
lar partitioning. A number of platforms are available to
implement such multi-tier applications. These include
traditional technologies such as JavaEE and PHP, as
well as a number of newer Web development frame-
works such as Ruby on Rails, Python Django and PHP
Cake. Although we are less concerned about the idio-
syncrasies of a particular platform in this work, we
must nevertheless pay attention to issues such as the
scaling behavior and server overheads imposed by a
particular platform.
Rich interactivity: Regardless of the actual platform
used to design them, modern Web applications make
extensive use of JavaScript, AJAX and Flash to enable
rich interactivity in the application. New HTML5 fea-
tures confirm this trend. In addition to supporting a rich
application interface, such applications may incorporate
functionality such as “auto complete suggestions”
where a list of completion choices is presented as a user
types text in a dialog or a search box; the list is contin-
uously updated as more text is typed by the user. Such
functions require multiple round trip interactions be-
tween the browser and the server and have an implica-
tion on the server overheads.
Scaling behavior: To scale to a larger number of users,
an application may incorporate techniques such as rep-
lication at each tier. Other common optimizations in-
clude use of caches such as memcached to accelerate
and scale the serving of Web content. When deployed
on platforms such as the cloud, it is even feasible to use
functions like auto-scaling that can automatically provi-
sion new servers when the load on existing ones crosses
a threshold.
Domain: Finally, the “vertical” domain of the applica-
tion has a key impact on the nature of the server-side
workload and application characteristics. For example,
“social” Web applications incorporate different features
and experience a different type of workload than say,
Web applications in the financial and retail domains.
Although it is not feasible for us to capture the idiosyn-
crasies of every domain, our open testbed is designed to
support any application backend in any domain. We
presently support two backends: Wikibooks [20] (a
component of Wikipedia [21]) and CloudStone’s Olio
[12] social calendaring application, with support for
additional server applications planned in the future.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 39

2.2. Realistic load generation
Realistic load generation is an important part of a
benchmark. The generated workload should capture
real user behavior and user interactions with the appli-
cation. There are two techniques to generate the work-
load for a benchmark. In the first case, we can use real
workload data to seed or generate the workload for the
benchmark; in the simplest case, the real workload is
replayed during benchmark execution. The advantage
of this approach is that it is able to capture real user
behavior. However, real workload data may not always
be available. Further, the data may represent a particu-
lar set of benchmark parameters and it is not always
easy to change these parameters (e.g., number of con-
current users, fraction of read and write requests, etc) to
suit the benchmarking needs. Consequently many
benchmarks rely on synthetic workload generators. The
generators model user behavior such as think times as
well as page popularities and other workload character-
istics. Cloudstone, for instance, uses a sophisticated
Markov model to capture user behavior [15]. The ad-
vantage of synthetic workload generation is that it al-
lows fine-grain control over the parameters that charac-
terize the workload [8].
BenchLab does not include a custom Web workload
generation component. Rather it is designed to work
with any existing workload generator. This is done by
decoupling the workload generation step from the
workload injection. In many benchmarks, workload
generation and injection are tightly coupled—a request
is injected as soon as it is generated. BenchLab assumes
that workload generation is done separately and the
output is stored as a trace file. This trace data is then
fed to the injection process for replay to the server ap-
plication. This decoupling, which is also used by Rain
[2], allows the flexibility of using real traces for work-
load injection (as we do for our Wikibooks backend) as
well as the use of any sophisticated synthetic workload
generator.
2.3. Realistic load injection
Traditionally Web workload injection has been per-
formed using trace replay tools such as httperf that use
one or a small number of machines to inject requests at
a high rate to the application. The tools can also com-
pute client-side statistics such as response time and
latency of HTTP requests. This type of workload injec-
tion is convenient since it allows emulating hundreds of
virtual users (sometimes even more) from a single ma-
chine, but it has limited use for many applications that
adjust behavior based on a client’s IP address. In some
scenarios, such as testing real applications prior to pro-
duction deployment, this can be problematic since
many requests originating from the same IP address can
trigger the DDoS detection mechanisms if any. More

importantly, this approach does not realistically test IP-
based localization services or IP-based load balancing.
An important limitation of trace replay-based tech-
niques is that they fall short of reproducing real Web
browser interactions as they do not execute JavaScript
or perform AJAX interactions. As a result, they may
even fail to generate requests that would be generated
by a real browser. Even the typing speed in a text field
can have an impact on the server load since each key-
stroke can generate a request to the server like with
Google Instant. Such interactions are hard to capture
using trace replay tools.
Modern applications also include browser-specific cus-
tomizations; they may send out custom style sheets and
custom JavaScript depending on the browser type. The
same application may also send a vastly different ver-
sion of a page to a mobile or a tablet browser than a
traditional desktop-class browser.1 Moreover, each
browser has different optimizations to fetch the content
of Web pages in parallel and to render them quickly.
Thus, the browser mix can impact the load seen by the
server applications, even for a fixed number of users.
Finally, the replay tools typically report the response
time of individual requests, rather than page load times
seen by a browser—typically a Web page can include
tens of components, including style sheets, images, ads
and others components, and the response time for a
page should include the time to load and render all of
these components from a browser standpoint.
To capture these subtleties, we argue for the use of real
Web browsers to drive the load injection. This is
achieved by using automated tools that interact with a
browser UI like a real user would and to issue requests
from the browser, using the traces generated by the
workload generation process. Having a variety of real
Web browsers with various configurations and plugins
improves the accuracy of benchmarking the real user
experience of a Web application.
3. BenchLab
BenchLab is an open testbed for Web application
benchmarking. It can be used with any standard
benchmark application as well as real Web applications
(section 3.2). Applications can have multiple datasets
and workloads (section 3.3), and load injection is per-
formed by real Web browsers (section 3.4).

3.1. Overview
Figure 1 gives an overview of the BenchLab compo-
nents and how they interact to run an experiment. The

1 Typically web applications redirect users from mobile de-
vices to a separate mobile version of the application. However
some recent applications have embedded support for mobile
browsers within the main application.

40 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

BenchLab WebApp is the central piece that controls
experiments. It is a Java Web application that can be
deployed in any Java Web container such as Apache
Tomcat. The BenchLab WebApp provides a Web inter-
face to interact with experimenters that want to manage
experiments and automated Web browsers that are exe-
cuting experiments.

Figure 1. BenchLab experiment flow overview.

Web traces can be recorded from a live system or gen-
erated statically (see section 3.3). Trace files are up-
loaded by the experimenter through a Web form and
stored in the BenchLab database. Virtual machines of
the Web Application under test can also be archived so
that traces, experiments and results can be matched
with the correct software used. However BenchLab
does not deploy, configure or monitor any server-side
software. There are a number of deployment frame-
works available that users can use depending on their
preferences (Gush, WADF, JEE, .Net deployment ser-
vice, etc) Server side monitoring is also the choice of
the experimenter (Ganglia and fenxi are popular choic-
es). It is the responsibility of the user to deploy the
application to be tested. Note that anyone can deploy a
BenchLab WebApp and therefore build his or her own
benchmark repository.
An experiment defines what trace should be played and
how. The user defines how many Web browsers and
eventually which browsers (vendor, platform, version
…) should replay the sessions. If the trace is not to be
replayed on the server it was recorded, it is possible to
remap the server name recorded in the URLs contained
in the trace to point to another server that will be the
target of the experiment.
The experiment can start as soon as enough browsers
have registered to participate in the experiment or be

scheduled to start at a specific time. The BenchLab
WebApp does not deploy the application nor the client
Web browsers, rather it waits for browsers to connect
and its scheduler assigns them to experiments.
The BenchLab client runtime (BCR) is a small program
that starts and controls a real Web browser on the client
machine. The BCR can be started as part of the booting
process of the operating system or started manually on-
demand. The BCR connects the browser to a BenchLab
WebApp (step 1 in Figure 1). When the browser con-
nects to the WebApp, it provides details about the exact
browser version and platform runtime it currently exe-
cutes on as well as its IP address. If an experiment
needs this browser, the WebApp redirects the browser
to a download page where it automatically gets the
trace for the session it needs to play (step 2 in Figure 1).
The BCR stores the trace on the local disk and makes
the Web browser regularly poll the WebApp to get the
experiment start time. There is no communication or
clock synchronization between clients, they just get a
start time as a countdown in seconds from the Bench-
Lab WebApp that informs them ‘experiment starts in x
seconds’. The activity of Web browsers is recorded by
the WebApp and stored in the database for monitoring
purposes.
When the start time has been reached, the BCR plays
the trace through the Web browser monitoring each
interaction (step 3 in Figure 1). If Web forms have to be
filled, the BCR uses the URL parameters stored in the
trace to set the different fields, checkboxes, list selec-
tions, files to upload, etc. Text fields are replayed with
a controllable rate that emulates human typing speed.
The latency and details about the page are recorded
(number of div sections, number of images, size of the
page and title of the page) locally on the client machine.
The results are uploaded to the BenchLab WebApp at
the end of the experiment (step 4 in Figure 1).
Clients replay the trace based on the timestamps con-
tained in the trace. If the client happens to be late com-
pared to the original timestamp, it will try to catch up
by playing requests as fast as it can. A global timeout
can be set to limit the length of the experiment and an
optional heartbeat can also be set. The heartbeat can be
used for browsers to report their status to the BenchLab
WebApp, or it can be used by the WebApp to notify
browsers to abort an experiment.
3.2. Application backends
Our experience in developing and supporting the RU-
BiS benchmark for more than 10 years, has shown that
users always struggle to setup the application and the
different tools. This is a recurrent problem with bench-
marks where more time is spent in installation and con-
figuration rather than experimentation and measure-
ment. To address this issue, we started to release RU-
BiSVA, a Virtual Appliance of RUBiS [13], i.e., a

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 41

virtual machine with the software stack already config-
ured and ready to use. The deployment can be automat-
ed on any platform that supports virtualization.
Virtualization is the de-facto technology for Web host-
ing and Web application deployment in the cloud.
Therefore, we have prepared virtual appliances of
standard benchmarks such as RUBiS, TPC-W [16] and
CloudStone [15] for BenchLab. This allows reproduc-
ing experiments using the exact same execution envi-
ronment and software configuration and will make it
easier for researchers to distribute, reproduce and com-
pare results.
As BenchLab aims at providing realistic applications
and benchmarks, we have also made virtual appliances
of Wikibooks [20]. Wikibooks provides a Web applica-
tion with a similar structure to Wikipedia [21], but a
more easily managed state size (GBs instead of TBs).
More details about our Wikibooks application backend
are provided in section 4.4.2.
3.3. Workload definitions
Most benchmarks generate the workload dynamically
from a set of parameters defined by the experimenter
such as number of users, mix of interactions, and arrival
rate. Statistically, the use of the same parameters should
lead to similar results between runs. In practice the ran-
domness used to emulate users can lead to different
requests to the Web application that require very differ-
ent resources depending on the complexity of the opera-
tions or the size of the dataset that needs to be accessed.
Consequently, the variance in the performance ob-
served between experiments using the same parameters
can be large. Therefore, it is necessary to decouple the
request generation from the request execution so that
the exact same set of requests can be replayed at will.
This can be done with little effort by instrumenting ex-
isting load generators and logging the requests that are
made to the server. The resulting trace file can then be
replayed by a generic tool like httperf or a more realis-
tic injector like a real Web browser.
The traces used in BenchLab are based on the standard
HTTP archive (HAR) format [9]. This format captures
requests with their sub-requests, post parameters, cook-
ies, headers, caching information and timestamps. Pa-
rameters include text to type in text fields, files to up-
load, boxes to check or buttons to click, etc. In the case
of real applications, these traces can also be generated
from an HTTP server access log to reproduce real
workloads. As Web browsers automatically generate
sub-requests to download the content of a page (cascad-
ing style sheets (.css), JavaScript code (.js), image files,
etc), only main requests from the trace file are replayed.
Defining and generating workloads are beyond the
scope of BenchLab. BenchLab focuses on the execution
and replay of existing traces. Traces are stored in a da-
tabase to be easily manipulated and distributed to injec-

tors. Traces cannot be scaled up, they are either re-
played completely or partially (a subset of the sessions
in the trace). This means that if a trace contains 100
user sessions, it can be replayed by at most 100 clients.
If a trace needs to be scaled, the user must use her
workload generator to generate a scaled trace.
3.4. Web browser load injection
A central contribution of BenchLab is the ability to
replay traces through real Web browsers. Major com-
panies such as Google and Facebook already use new
open source technologies like Selenium [14] to perform
functional testing. These tools automate a browser to
follow a script of actions, and they are primarily used
for checking that a Web application’s interactions gen-
erate valid HTML pages. We claim that the same tech-
nology can also be used for performance benchmarking.
BenchLab client runtime can be used with any Web
browser supported by Selenium: Firefox, Internet Ex-
plorer, Chrome and Safari. Support for mobile phones
with Webkit-based Web browsers is also under devel-
opment. The functionality of BenchLab on the client
side is limited to downloading a trace, replaying it, re-
cording response times and uploading response times at
the end of the replay. This small runtime is deployable
even on devices with limited resources such as
smartphones. Unlike commercial offerings, BenchLab
clients can be deployed on public clouds or any other
computing resource (e.g., desktop, smartphone).
Unlike traditional load injectors that work at the net-
work level, replaying through a Web browser accurate-
ly performs all activities such as typing data in Web
forms, scrolling pages and clicking buttons. The typing
speed in forms can also be configured to model a real
user typing. This is particularly useful when inputs are
processed by JavaScript code that can be triggered on
each keystroke. Through the browser, BenchLab cap-
tures the real user perceived latency including network
transfer, page processing and rendering time.
4. Implementation
BenchLab is implemented using open source software
and is also released as open source software for use by
the community. The latest version of the software and
documentation can be found on our Web site [3].

4.1. Trace recorder
We have implemented a trace recorder for Apache httpd
that collects request information from a live system
using the standard httpd logging mechanisms
(mod_log_config and mod_log_post). We then process
these logs to generate traces in HAR format. We have
contributed a new Java library called HarLib to manage
HAR traces in files and databases.
Additionally we can record HTML pages generated
using mod_dumpio. This is useful to build tools that

42 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

will check the consistency of Web pages obtained dur-
ing replay against the originally captured HTML.

4.2. Browser based load injection
We use the Selenium/Webdriver [14] framework that
provides support for Firefox, Internet Explorer and
Chrome on almost all the platforms (Linux, Windows,
MacOS) where they are available. Safari support is ex-
perimental as well as Webkit based browsers for An-
droid and iPhone. The BenchLab client runtime (BCR)
is a simple Java program interfacing with Selenium. We
currently use Selenium 2.0b3 that includes Webdriver.
The BCR can start any Firefox, IE or Chrome browser
installed on the machine and connect it to a BenchLab
WebApp. On Linux machines that do not have an X
server environment readily available, we use X virtual
frame buffer (Xvfb) to render the browser in a virtual X
server. This is especially useful when running clients in
the cloud on machines without a display.
When a browser is assigned to an experiment, the BCR
downloads the trace it has to replay through the browser
and stores it in a local file. The information about the
experiment, trace and session being executed by the
browser is encoded by the BenchLab WebApp in cook-
ies stored in the Web browser.
The BCR parses the trace file for the URLs and encod-
ed parameters that are then set in the corresponding
forms (text fields, button clicks, file uploads, etc.).
When a URL is a simple “GET” request, the BCR waits
according to the timestamp before redirecting the
browser to the URL. When a form has to be filled be-
fore being submitted, the BCR starts filling the form as
soon as the page is ready and just waits before clicking
the submit button. As we emulate the user typing speed
it can take multiple minutes to fill some forms like edits
to a wiki page with Wikipedia.
The BCR relies on the browser’s performance profiling
tools to record detailed timings in HAR format. This
includes network level performance (DNS resolution,
send/wait/receive time…) and browser level rendering
time. The entire HTML page and media files can be
recorded for debugging purposes if the client machine
has enough storage space. An alternative compressed
CSV format is also available to record coarser grain
performance metrics on resource constrained devices.
We have built Xen Linux virtual machines with the
BCR and Firefox to use on private clouds. We also built
Amazon EC2 AMIs for both Windows and Linux with
Firefox, Chrome and Internet Explorer (Windows only
for IE). These AMIs are publicly available.
4.3. BenchLab WebApp
The BenchLab WebApp is a Java application imple-
mented with JSP and Servlets. It uses an embedded
Apache Derby database. Each trace and experiment is
stored in separate tables for better scalability. Virtual

machines of Web applications are not stored in the da-
tabase but we store a URL to the image file that can
point to the local file system or a public URL such as an
S3 URL if the images are stored in the Amazon Simple
Storage Service.
The user interface is intentionally minimalist for effi-
ciency and scalability allowing a large number of
browsers to connect. BenchLab makes a minimal use of
JavaScript and does not use AJAX to keep all commu-
nications with clients purely asynchronous. Similarly
no clock synchronization is needed nor required.
As the BenchLab WebApp is entirely self-contained, it
can easily be deployed on any Java Web application
server. We currently use Apache Tomcat 6 for all our
experiments. We have tested it successfully on Linux
and Windows platforms, but it should run on any plat-
form with a Java runtime.
The BenchLab WebApp acts as a repository of traces,
benchmark virtual machines and experiments with their
results. That data can be easily downloaded using any
Web browser or replicated to any other BenchLab
WebApp instance.
4.4. Application backends
We provide Xen virtual machines and Amazon AMIs of
the CloudStone benchmark and the Wikibooks applica-
tion on our Web site [3]. As BenchLab does not impose
any deployment or configuration framework, any appli-
cation packaged in a VM can be used as a benchmark
backend.
4.4.1. CloudStone	
CloudStone [15] is a multi‐platform, multi-language
benchmark for Web 2.0 and Cloud Computing. It is
composed of a load injection framework called Faban,
and a social online calendar Web application called
Olio [12]. A workload driver is provided for Faban to
emulate users using a Markov model.
We have chosen the PHP version of Olio and packaged
it in a virtual machine that we will refer to as OlioVM.
OlioVM contains all the software dependencies to run
Olio including a MySQL database and the Java Webapp
implementing a geocoding service.
Faban is packaged in another VM with the load injec-
tion driver for Olio. We refer to this VM as FabanVM.
Faban relies on the Apache HttpClient v3 (HC3) library
[1] for the HTTP transport layer to interact with the
Web application. We have instrumented Faban to rec-
ord the requests sent to HC3 in order to obtain trace
files with all needed parameters for interactions that
require user input in POST methods. FabanVM is not
used for load injection in our experiments but only to
generate traces that can be replayed using our replay
tool. The replay tool is a simple Java program replaying
HTTP requests using the HC3 library.
As part of this work, we fixed a number of issues such
as the workload generator producing invalid inputs for

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 43

the Olio calendaring applications (e.g., invalid phone
numbers, zip codes, state name). We process trace files
to fix erroneous inputs and use these valid input traces
in all experiments except in section 5.3.3 where we
evaluate the impact of invalid inputs.
4.4.2. Wikibooks	
Wikibooks [20] is a wiki of the Wikimedia foundation
and provides free content textbooks and annotated texts.
It uses the same Wikimedia wiki software as Wikipedia
which is a PHP application storing its data in a MySQL
database. Our Wikibooks application backend includes
all Wikimedia extensions necessary to run the full Web
site including search engine and multimedia content.
The Wikibooks virtual appliance is composed of two
virtual machines. One virtual machine contains the
Wikimedia software and all its extensions and the other
VM runs the database. Database dumps of the Wiki-
books content are freely available from the Wikimedia
foundation in compressed XML format. We currently
use a dump from March 2010 that we restored into a
MySQL database. Real Wikibooks traces are available
from the Wikibench Web site [19].
Due to copyright issues, the multimedia content in
Wikibooks cannot be redistributed, and therefore, we
use a multimedia content generator that produces imag-
es with the same specifications as the original content
but with random pixels. Such multimedia content can
be either statically pre-generated or produced on-
demand at runtime.

4.5. Limitations
Our current implementation is limited by the current
functionality of the Selenium/Webdriver tools we are
using. Support for Firefox on all platforms and Internet
Explorer on Windows are overall stable though perfor-
mance may vary on different OS versions. The Chrome
driver does not support file upload yet but it provides
experimental access to Webkit browsers such as Safari
and Android based browsers.
Our prototype does not support input in popup windows
but we are able to discard JavaScript alert popups when
erroneous input is injected into forms.
The current BenchLab WebApp prototype does not
implement security features such as browser authentica-
tion, data encryption or result certification.
5. Experimental Results
5.1. Experimental setup and methodology
For all our experiments, the Web applications run on an
8-core AMD Opteron 2350 server, 4GB RAM with a
Linux 2.6.18-128.1.10.el5xen 64 bit kernel from a
standard CentOS distribution. We use the Xen v3.3.0
hypervisor. The server is physically located in the data
center of the UMass Amherst campus.

CloudStone is configured with 1 virtual CPU (vCPU)
and 512MB of memory for OlioVM. The Olio database
is initialized for 500 users. FabanVM is allocated 1
vCPU and 1024MB of memory and runs on a different
physical machine. Wikibooks VMs are both allocated 4
vCPUs and 2GB of RAM.
Experiments using Amazon EC2 resources use Linux
small instances with a CentOS distribution and the
BenchLab client runtime controlling Firefox 3.6.13.
The BenchLab Web application runs in Tomcat 6 on a
laptop located on the UMass Amherst campus.
We have written a Java replay tool similar to httperf
that can replay Faban traces through the Apache
HttpClient 3 library. We have validated the tool by re-
playing traces generated by Faban and comparing the
response time and server load with the ones obtained
originally by Faban.

5.2. Realistic application data sets
In this experiment we illustrate the importance of hav-
ing benchmark applications with realistic amounts of
application state. The CloudStone benchmark populates
the database and the filestore containing multimedia
content according to the number of users to emulate.
The state size grows proportionally to the number of
users. Table 1 shows the dataset state size from 3.2GB
for 25 users to 44GB for 500 users.

Table 1. CloudStone Web application server load
observed for various dataset sizes using a workload

trace of 25 users replayed with Apache HttpClient 3.
Dataset

size
State size
(in GB)

Database
rows

Avg CPU load
with 25 users

25 users 3.2 173745 8%
100 users 12 655344 10%
200 users 22 1151590 16%
400 users 38 1703262 41%
500 users 44 1891242 45%

We generated a load for 25 users using the Faban load
generator and recorded all the interactions with their
timestamps. We then replayed the trace using 25 emu-
lated browsers and observed the resource usage on the
CloudStone Web application (Olio) when different size
data sets were used in the backend. The results in Table
1 show the CPU load observed in the Web Application
VM. Note that in this experiment the trace is replayed
through the Apache HttpClient 3 library and not using a
real Web browser. The average CPU load on the server
is 8% with the 25 user dataset but it reaches 45% for the
exact same workload with a 500 user dataset. This is
mainly due to less effective caching and less efficient
database operations with larger tables.
Real applications like Wikipedia wikis have databases
of various sizes with the largest being the English Wik-
ipedia database which is now over 5.5TB. This experi-
ment shows that even for a modest workload accessing

44 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

the exact same working set of data, the impact on the
server load can vary greatly with the dataset size. It is
therefore important for realistic benchmarks to provide
realistic datasets.

5.3. Real browsers vs emulators
5.3.1. Complexity	of	Web	interactions	
Real Web applications have complex interactions with
the Web browser as shown in Table 2. While accessing
the home page of older benchmarks such as RUBiS or
TPC-W only generates 2 to 6 requests to fetch the page
content. Their real life counterpart, eBay.com and ama-
zon.com require 28 and 141 browser-server interac-
tions, respectively. A more modern benchmark applica-
tion such as CloudStone’s Olio requires 28 requests
which is still far from the 176 requests of the most pop-
ular social network Web site Facebook. When the user
enters http://en.wikibooks.org/ in his favorite Web
browser, 62 requests are generated on his behalf
by the Web browser to fetch the content of the Wiki-
books home page. Even if modern HTTP client libraries
such as Apache HttpComponents Client [1] provide a
good implementation of HTTP transport very similar to
the one used in Web browsers, other functionalities
such as caching, JavaScript execution, content type
detection, request reformatting or redirection may not
be accurately emulated.
Table 2. Browser generated requests per type when
browsing the home page of benchmarks and Web

sites.
Benchmark HTML CSS JS Multimedia Total

RUBiS 1 0 0 1 2
eBay.com 1 3 3 31 28
TPC-W 1 0 0 5 6

amazon.com 6 13 33 91 141
CloudStone 1 2 4 21 28

facebook.com 6 13 22 135 176
wikibooks.org 1 19 23 35 78
wikipedia.org 1 5 10 20 36

To further understand how real browsers interact with
real applications, we investigate how Firefox fetches a
page of the Wikipedia Web site and compare it to an
HTTP replay. The workflow of operations and the cor-
responding timings are shown in Figure 2. The times
for each block of GET operations correspond to the
network time measured by our HTTP replay tool (on
the left) and Firefox (on the right). Times between
blocks correspond to processing time in Firefox.
First we observe that the complexity of the application
forces the browser to proceed in multiple phases. After
sending the requested URL to the Web application, the
browser receives an HTML page that it analyzes (step 1
on Figure 2) to find links to JavaScript code and addi-
tional content to render the page (.css, images…). Fire-

fox opens six connections and performs the content
download in parallel. It then starts to render the page
and execute the JavaScript onLoad operations (step 2).
This requires additional JavaScript files to be down-
loaded and another round of code execution (step 3).

Figure 2. Time breakdown of a Wikibooks page ac-

cess with Firefox 3.6.13 and HTTP replay.
Finally images are downloaded reusing the same six
connections and a final rendering round (step 4) triggers
the download of the 3 final images at the bottom of the
page. The total page loading time in Firefox is 4.09s
with 1.88s for networking and 2.21s for processing and
rendering. The single threaded HTTP replay tool is not

GET /wiki/page
Analyze page

generate
page

GET combined.min.css
GET jquery-ui.css
GET main-ltr.css
GET commonPrint.css
GET shared.css
GET flaggedrevs.css
GET Common.css
GET wikibits.js
GET jquery.min.js
GET ajax.js
GET mwsuggest.js
GET plugins...js
GET Print.css
GET Vector.css
GET raw&gen=css
GET ClickTracking.js
GET Vector...js
GET js&useskin
GET WikiTable.css
GET CommonsTicker.css
GET flaggedrevs.js
GET Infobox.css
GET Messagebox.css
GET Hoverbox.css
GET Autocount.css
GET toc.css
GET Multilingual.css
GET mediawiki_88x31.png

Rendering + JavaScript
GET ExtraTools.js
GET Navigation.js
GET NavigationTabs.js
GET Displaytitle.js
GET RandomBook.js
GET Edittools.js
GET EditToolbar.js
GET BookSearch.js
GET MediaWikiCommon.css

0.90s

0.06s

send
files

GET page-base.png
GET page-fade.png
GET border.png
GET 1.png
GET external-link.png
GET bullet-icon.png
GET user-icon.png
GET tab-break.png
GET tab-current.png

0.97s

Rendering 0.28s
GET arrow-down.png
GET portal-break.png
GET arrow-right.png

send
files

send
files

send
files

Rendering + JavaScript

0.67s

0.14s

0.70s

0.12s

0.25s

1.02s

1.19s

1.13s

0.27s

Replay

1

2

3

4

0.25s

3.86s + 2.21s total rendering time 1.88s

Total network time

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 45

able to match Firefox’s optimized communications and
does not emulate processing, thus generating different
access patterns on the server leading to a different re-
source usage.
Finally, Table 3 shows how typing text in a Web page
can result in additional requests to a Web application.
When the user enters text in the search field of Wiki-
books, a request is sent to the server on each keystroke
to provide the user with a list of suggestions. The typ-
ing speed and the network latency influence how many
requests are going to be made to the server.
Table 3. JavaScript generated requests when typing

the word ‘Web 2.0’ in Wikibooks’ search field.
GET /api.php?action=opensearch&search=W
GET /api.php?action=opensearch&search=Web
GET /api.php?action=opensearch&search=Web+
GET /api.php?action=opensearch&search=Web+2
GET /api.php?action=opensearch&search=Web+2.
GET /api.php?action=opensearch&search=Web+2.0

In Table 3’s example, the user starts by typing ‘W’
causing a request to the server. She then quickly types
the letter ‘e’ before the response has come back. When
she types the next letter ‘b’ a second request goes to the
server. Each following keystroke is followed by another
request. This shows that even replaying in a Web
browser needs to take in to consideration the speed at
which a user performs operations since this can have an
impact on how many requests are issued to the server
directly affecting its load.

5.3.2. Latencies	and	server	load	
In this experiment, we inject the same 25 user Cloud-
Stone workload from the Amazon EC2 East coast data
center to our server running at UMass Amherst. The
emulator runs the 25 users from one virtual machine
whereas 25 server instances each running one Firefox
Web browser inject the load for the realistic injection.
Figure 3 shows the latencies observed by the emulator
and by the Web browsers.

Figure 3. Browser vs Emulator measured latencies
for the same load of 25 users using CloudStone be-

tween EC2 East coast and UMass Amherst.

The emulator has to mimic all the requests that a real
Web browser would issue. Therefore a lot of small que-
ries to fetch style sheets (.css) or JavaScript (.js) have
small latencies. Some more complex pages are not
fetched as efficiently on multiple connections and result
in much higher latencies when the latencies of sub-
requests are added up.
The latencies observed by the Web browsers vary sig-
nificantly from the ones observed by the emulator be-
cause not only do they account for the data transfer time
on the network, but also because they include the page
rendering time that is part of the user perceived latency.
Another key observation is that the showEvent interac-
tion that displays information about an event in Olio’s
online calendar makes use of the Yahoo map API. As
the emulator does not execute any JavaScript, all inter-
actions with the real Yahoo Web site and its map API
are not accounted in the interaction time. When a real
browser is used, it contacts the Yahoo map Web site
and displays the map with the location of the event. The
page rendering time is then influenced not only by the
response time of the Olio Web application but also with
the interactions with Yahoo’s Web site.

Figure 4. Server side CPU and disk IO usage with

an emulator injecting a 25 user load from EC2 East
coast to CloudStone at UMass Amherst.

Figure 5. Server side CPU and disk io usage with 25

Firefox browsers from EC2 East coast to Cloud-
Stone at UMass Amherst.

Figure 4 and Figure 5 show the average CPU usage
measured by vmstat every second on the Web applica-

46 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tion server for the emulated and realistic browser injec-
tion, respectively. While the user CPU time oscillates a
lot in the emulated case it averages 63.2%. The user
CPU time is more steady and constantly higher with the
browser injected load at an average of 77.7%. Moreo-
ver, we notice peaks of disk IO during the experiment
(for example at time 500 seconds), indicating that the
IO subsystem of the server is more stressed when serv-
ing the browser generated requests.
5.3.3. Impact	of	JavaScript	on	Browser	Replay	
When a user fills a form, JavaScript code can check the
content of the form and validate all the fields before
being submitted to the application server. While the
server has to spend more resources to send all the Ja-
vaScript code to the client, it does not have to treat any
malformed requests with improper content that can be
caught by the JavaScript validation code running in the
Web browser.
In this experiment, we use the addPerson interaction of
CloudStone that registers a new user with her profile
information. The JavaScript code in that page generates
a query to the server when the user name is typed in to
check if that name is available or already taken. Other
fields such as telephone number are checked for format
and other fields are checked for missing information.
Entering a zip code generates a query to the Geocoder
service that returns the corresponding city and state
names that are automatically filled in the corresponding
fields of the form.

Figure 6. Server side CPU load (user, system, idle)

with emulated load injection of 25 virtual users exe-
cuting CloudStone’s addPerson interaction with

valid or bad inputs.
The original Olio workload driver generated malformed
data that does not pass JavaScript checks but are ac-
cepted by the Olio application that does not check data
sent from the client. We found this bug in the Olio ap-
plication that inserts improper data in the database. We
use two traces: one with the original malformed data
and another one with valid inputs where we fixed the
problems found in the original trace.
We emulate 25 clients from a server located in EC2
East coast’s data center and run both traces. Figure 6
shows the load observed on the OlioVM when using

emulated users. The CPU utilization is steady at around
70% for both traces. As the application does not check
data validity and the emulator does not execute JavaS-
cript, there is no change between good and bad inputs.
Figure 7 shows the CPU load observed on the server
when the valid input trace is injected through Firefox.
As forms are filled with data, additional queries are
issued by JavaScript as mentioned earlier. This causes
heavy weight write queries to be interlaced with lighter
read queries. These additional context switches between
the PHP scripts running the application and the Tomcat
container running the Geocoder service cause signifi-
cantly different resource usage in the Web application
virtual machine.

Figure 7. Server side CPU load (user, system, idle)
using Firefox (25 browsers running from EC2 East

coast) executing CloudStone’s addPerson interaction
with valid inputs.

Figure 8. Server side CPU load (user, system, idle)
using Firefox (25 browsers running from EC2 East

coast) executing CloudStone’s addPerson interaction
with erroneous inputs.

Figure 8 shows the load seen by the Web application
server when the trace with invalid inputs is injected
through Firefox. As the JavaScript code checks for er-
roneous inputs, the requests never reach the application
server. The only activity observed by the application is
to answer the login uniqueness checks.

5.4. LAN vs WAN
In these experiments, we evaluate the impact of WAN
based load injection vs traditional LAN based injection.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 47

5.4.1. Local	vs	remote	users	
We observed the response time for a trace of 25 emu-
lated users injected with our replay tool from a machine
on the same LAN as the server and from a machine on
Amazon EC2 East coast data center. As expected, the
latencies are much higher on the WAN with 149ms
average vs 44ms on the LAN. However, we observe
that the latency standard deviation more than doubles
for the WAN compared to the LAN.
The CPU usage for the WAN injection has already been
presented in Figure 4 with an average CPU load of
54.8%. The CPU usage for the LAN experiment shows
a highly varying CPU load but at a much lower 38.3%
average. We attribute most of these differences to the
increased connection times that require more processing
to perform flow control on the connections, more con-
text switches between longer lived sessions and more
memory pressure to maintain more session states and
descriptors simultaneously open. The exact root causes
of these variations in server resource usage between
LAN and WAN needs to be investigated further but we
think that BenchLab is an ideal testbed for the research
community to conduct such experiments.
5.4.2. Geographically	dispersed	load	injection	
We investigate the use of multiple data centers in the
cloud to perform a geographically dispersed load injec-
tion. We re-use the same 25 user Cloudstone workload
and distribute Web browsers in different Amazon data
centers as follows: 7 US East coast (N. Virginia), 6 US
West coast (California), 6 Europe (Ireland) and 6 Asia
(Singapore). Such a setup (25 distributed instances) can
be deployed for as little as $0.59/hour using Linux mi-
cro instances or $0.84/hour using Windows instances.
More powerful small instances cost $2.30/hour for
Linux and $3.00/hour for Windows. Figure 9 shows the
latency reported by all Web browsers color coded per
region (y axis is log scale).

Table 4. Average latency and standard deviation
observed in different geographic regions
 US East US West Europe Asia

Avg latency 920ms 1573ms 1720ms 3425ms
Std deviation 526 776 906 1670

As our Web application server is located in the US East
coast, the lowest latencies are consistently measured by
browsers physically located in the East coast data cen-
ter. Average latency almost doubles for requests origi-
nating from the West coast or Europe. Finally, as ex-
pected, the Asian data center experiences the longest
latencies. It is interesting to notice that the latency
standard deviation also increases with the distance from
the Web application server as summarized in Table 4.
The server average CPU usage is 74.3% which is slight-
ly less than when all browsers were located in the East
coast (77.7%).

Figure 9. Browser (Firefox) perceived latency in ms
(y axis is log scale) on a Cloudstone workload with
users distributed as follows: 7 US East coast, 6 US
West coast, 6 Europe and 6 Asia. Server location is

UMass Amherst (US East coast, Massachusetts).
5.5. Summary
We have shown that real modern Web applications
have complex interactions with Web browsers and that
the state size of the application can greatly affect the
application performance. Traditional trace replay tools
cannot reproduce the rich interactions of browsers or
match their optimized communication with Web appli-
cation servers. Therefore the load observed on applica-
tion servers varies greatly when the same workload is
injected through an emulated browser or a real Web
browser. This is further accentuated when JavaScript
code generates additional queries or performs error
checking that prevents erroneous inputs to reach the
server.
Finally, we have shown the influence of LAN vs WAN
load injection using real Web browsers deployed in a
public cloud. Not only the latency and its standard de-
viation increase with the distance but the load on the
server significantly differs between a LAN and a WAN
experiment using the exact same workload.
6. Related Work
Benchmarks such as RUBiS [13] and TPC-W [16] have
now become obsolete. BenchLab uses CloudStone [15]
and Wikibooks [20] as realistic Web 2.0 application
backends. The Rain [2] workload generation toolkit
separates the workload generation from execution to be
able to leverage existing tools such as httperf. Bench-
Lab uses the same concept to be able to replay real
workload traces from real applications such as Wiki-
books or Wikipedia [17] in Web browsers.
Browser automation frameworks have been developed
primarily for functional testing. BenchLab uses real
Web browsers for Web application benchmarking.
Commercial technologies like HP TruClient [6] or
Keynote Web performance testing tools [7] offer load
injection from modified versions of Firefox or Internet
Explorer. BrowserMob [4] provides a similar service

48 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

using Firefox and Selenium. However, these proprietary
products can only be used in private clouds or dedicated
test environments. BenchLab is fully open and can be
deployed on any device that has a Web browser. By
deploying browsers on home desktops or cell phones,
BenchLab can be used to analyze last mile latencies.
Server-side monitors and log analysis tools have been
used previously to try to model the dependencies be-
tween file accesses and predict the full page load times
observed by clients [10][18]. BenchLab’s use of real
Web browsers allows it to accurately capture the behav-
ior of loading Web pages composed of multiple files,
and could be used by Web service providers to monitor
the performance of their applications. When deployed
on a large number of machines (home desktops, cell
phones, cloud data centers…), BenchLab can be used to
reproduce large scale flash crowds. When client brows-
ers are geographically dispersed, BenchLab can be used
to evaluate Content Delivery Network (CDN) perfor-
mance or failover mechanisms for highly available Web
applications.
BenchLab is designed to be easily deployed across wide
geographic areas by utilizing public clouds. The impact
of wide area latency on Web application performance
has been studied in a number of scenarios [5]; Bench-
Lab provides a standardized architecture to allow appli-
cation developers and researchers to measure how their
systems perform in real WAN environments. We be-
lieve that BenchLab can be used to measure the effec-
tiveness of WAN accelerators (CDNs or proxy caches)
as well as validate distributions modeling WAN load
patterns.
7. Conclusion
We have demonstrated the need to capture the behavior
of real Web browsers to benchmark real Web 2.0 appli-
cations. We have presented BenchLab, an open testbed
for realistic benchmarking of modern Web applications
using real Web browsers. BenchLab employs a modular
architecture that is designed to support different
backend server applications. Our evaluation has illus-
trated the need for 1) updated Web applications with
realistically sized datasets to use as benchmarks, 2) real
browser based load injection tools that authentically
reproduce user interactions and 3) wide area benchmark
client deployments to match the network behavior seen
by real applications. We believe that BenchLab meets
these needs, and we hope that it will help the research
community improve the realism and accuracy of Web
application benchmarking. We are making all the
BenchLab software (runtime, tools, Web applica-
tions…) available to the community under an open
source license on our Web site [3].
8. Acknowledgement
The authors would like to thank the anonymous reviewers and
our shepherd Geoffrey Voelker for their valuable feeback. We

would also like to thank Fabien Mottet and Vivien Quema
from INRIA Rhône-Alpes, Guillaume Pierre from Vrije Uni-
versity and Vimal Mathew from UMass, for their contribu-
tions to BenchLab. This research was supported in part by
grants from Amazon AWS, UMass President’s Science &
Technology fund, and NSF grants CNS-0916972, CNS-
083243, CNS-0720616 and CNS-0855128.

9. References
[1] Apache HttpComponents – http://hc.apache.org/
[2] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox and D.

Patterson – Rain: A Workload Generation Toolkit for
Cloud Computing Applications – Technical Report
UCB/EECS-2010-14, February 10, 2010.

[3] BenchLab - http://lass.cs.umass.edu/projects/benchlab/
[4] BrowserMob - http://browsermob.com/performance-

testing
[5] S. Chen, K.R. Joshi, M.A. Hiltunen, W.H. Sanders and

R.D. Schlichting – Link Gradients: Predicting the Im-
pact of Network Latency on Multitier Applications – IN-
FOCOM 2009, pp.2258-2266, 19-25 April 2009.

[6] HP - TruClient technology: Accelerating the path to
testing modern applications – Business white paper,
4AA3-0172ENW, November 2010.

[7] R. Hughes and K. Vodicka – Why Real Browsers Matter
– Keynote white paper, http://www.keynote.com/docs/
whitepapers/why_real_browers_matter.pdf.

[8] D. Krishnamurthy, J. A. Rolia and Shikharesh Majumdar
– A Synthetic Workload Generation Technique for Stress
Testing Session-Based Systems – IEEE Transaction on
Software Engineering. 32, 11 - November 2006.

[9] HTTP Archive specification (HAR) v1.2 -
http://www.softwareishard.com/blog/har-12-spec/.

[10] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A.G. Greenberg, and
Y. Wang - WebProphet: Automating Performance
Prediction for Web Services – NSDI, 2010, pp.143-158.

[11] E. M. Nahum, M.C. Rosu, S. Seshan and J. Almeida –
The effects of wide-area conditions on WWW server
performance – SIGMETRICS 2001.

[12] Olio – http://incubator.apache.org/olio/
[13] RUBiS Web site – http://rubis.ow2.org.
[14] Selenium - http://seleniumhq.org/
[15] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,

H. Wong, A. Klepchukov, S. Patil, A. Fox and D. Patter-
son – Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for Web 2.0 – Cloud
Computing and its Applications CCA-08, 2008.

[16] TPC-W Benchmark, ObjectWeb implementation,
http://jmob.objectWeb.org/tpcw.html

[17] G. Urdaneta, G. Pierre and M. van Steen – Wikipedia
Workload Analysis for Decentralized Hosting – Elsevier
Computer Networks, vol.53, July 2009.

[18] J. Wei, C.Z. Xu - Measuring Client-Perceived Pageview
Response Time of Internet Services – IEEE Transactions
on Parallel and Distributed Systems, 2010.

[19] WikiBench - http://www.wikibench.eu/
[20] Wikibooks – http://www.wikibooks.org
[21] Wikipedia – http://www.wikipedia.org

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 49

Resource Provisioning of Web Applications in Heterogeneous Clouds

Jiang Dejun

VU University Amsterdam

Tsinghua University Beijing

Guillaume Pierre

VU University Amsterdam

Chi-Hung Chi

Tsinghua University Beijing

Abstract

Cloud computing platforms provide very little guar-

antees regarding the performance of seemingly iden-

tical virtual machine instances. Such instances have

been shown to exhibit significantly different performance

from each other. This heterogeneity creates two chal-

lenges when hosting multi-tier Web applications in the

Cloud. First, different machine instances have different

processing capacity so balancing equal amounts of load

to different instances leads to poor performance. Second,

when an application must be reprovisioned, depending

on the performance characteristics of the new machine

instance it may be more beneficial to add the instance to

one tier or another. This paper shows how we can effi-

ciently benchmark the individual performance profile of

each individual virtual machine instance when we obtain

it from the Cloud. These performance profiles allow us

to balance the request load more efficiently than standard

load balancers, leading to better performance at lower

costs. The performance profiles also allow us to pre-

dict the performance that the overall application would

have if the new machine instance would be added to any

of the application tiers, and therefore to decide how to

make best use of newly acquired machine instances. We

demonstrate the effectiveness of our techniques by provi-

sioning the TPC-W e-commerce benchmark in the Ama-

zon EC2 platform.

1 Introduction

Cloud computing is an attractive platform to host Web

applications. Besides the advantages of outsourcing ma-

chine ownership and system management, Clouds offer

the possibility to dynamically provision resources ac-

cording to an application’s workload — and to pay only

for the resources that are actually being used. Given a

service-level objective (SLO) which states the response

time guarantees an application provider wants to main-

tain, dynamic resource provisioning continuously adjusts

the number of computing resources used to host the ap-

plication. Additional capacity can be added dynamically

when the load of user requests increases, and later re-

leased when the extra power is no longer necessary.

Resource provisioning for Web applications in the

Cloud faces two important challenges. First, Web appli-

cations are not monolithic. At the very least a Web appli-

cation is composed of application servers and database

servers, which both can benefit from dynamic resource

provisioning. However, the effect of reprovisioning an

extra machine varies from tier to tier. When adding or

removing capacity, one needs to decide which tier must

be (de-)provisioned such that the performance remains

within the SLO at the lowest cost. Second, computing

resources in the Cloud are not homogeneous. This is

obvious when considering the many different instance

types in a platform such as Amazon’s EC2 [1]. However,

even an application which would decide to use a single

instance type would not experience homogeneous per-

formance. Figure 1(a) illustrates the performance of 30

’identical’ EC2 instances when running the same appli-

cation server or database server workloads [2]. Clearly,

some instances are more suitable than others for effi-

ciently running CPU-intensive application servers, but

are less suitable for I/O intensive workloads. Other in-

stances have faster I/O but slower CPU, and may be bet-

ter used as database servers. Finally, we have fast ma-

chines which can be used for either of both, and slow ma-

chines which should either be given a modest task such

as load balancing or de-provisioned altogether. On the

other hand, Figure 1(b) shows the response time of indi-

vidual instance running application server workload on

EC2 over a period of 24-hours, measured at a 1-minute

granularity [2]. Performance spikes occasionally occur

with an average duration of 1 to 3 minutes, but overall

the performance of individual instances is consistent over

time. The performance spikes of an individual instance

are presumably caused by the launch/shutdown opera-

50 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tions of the other virtual instances on the same physical

machine. The same experiments run in the Rackspace

Cloud show similar behavior. Similar observations are

also reported for different application fields and perfor-

mance metrics [8].

Efficient dynamic resource provisioning in these con-

ditions is very difficult. To provision a Web application

dynamically and efficiently, we need to predict the per-

formance the application would have if it was given a

new machine, such that one can choose the minimum

number of machines required to maintain the SLO. How-

ever, because of resource heterogeneity it is impossible

to predict the performance profile of a new machine in-

stance at the time we request it from the Cloud. We there-

fore cannot accurately predict the performance the appli-

cation would have if it was using this new machine in one

of its tiers. It is therefore necessary to profile the perfor-

mance of the new machine before deciding how we can

make the best use of it.

One simple profiling method would consist of sequen-

tially adding the new machine instance to each tier of the

application and measure the performance gain it can pro-

vide on each tier. However, this approach is extremely

inefficient and time-consuming as profiling requires lots

of time. For instance, adding a machine instance to a

database tier may cost tens of minutes or more, which is

not acceptable for dynamic resource provisioning.

In this paper we show how one can efficiently pro-

file new machines using real application workloads to

achieve accurate performance prediction in the hetero-

geneous Cloud. By studying the correlation of demands

that different tiers put on the same machine, we can de-

rive the performance that a given tier would have on a

new machine instance, without needing to actually run

this tier on this machine instance. This per-tier, per-

instance performance prediction is crucial to take two

important decisions. First, it allows us to balance the

request load between multiple heterogeneous instances

running the same tier so as to use each machine instance

according to its capabilities. Second, when the applica-

tion needs to expand its capacity it allows us to correctly

select which tier of the application should be reprovi-

sioned with a newly obtained instance.

We evaluate our provisioning algorithm in the Ama-

zon EC2 platform. We first demonstrate the impor-

tance of adaptive load balancing in Cloud to achieve ho-

mogeneous performance from heterogeneous instances.

We then use our performance prediction algorithm to

drive the dynamic resource provisioning of the TPC-W

e-commerce benchmark. We show that our system effec-

tively provisions TPC-W in the heterogeneous Cloud and

achieve higher throughput compared with current provi-

sion techniques.

 0

 30

 60

 90

 120

 150

 0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 t
im

e
 o

f
I/
O

−
in

te
n
s
iv

e

a
p
p
lic

a
ti
o
n
 (

m
s
)

Response time of CPU−intensive application (ms)

Slow CPU

Slow I/O

Slow CPU

Fast I/O
Fast I/O

Fast CPU

Fast CPU
Slow I/O

(a) EC2 Cloud performance heterogeneity

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Time (min)

Average response time per minute

(b) Consistent performance of individual instance over time

Figure 1: Heterogeneous Cloud performance

The rest of this paper is organized as follows: Sec-

tion 2 introduces research efforts related to our work.

Section 3 shows an example of scaling application on

EC2 to highlight the motivation of our work. Section 4

presents the design of our resource provisioning sys-

tem. Section 5 evaluates our system using both single-

tier and multi-tier Web applications. Finally, Section 6

concludes.

2 Related work

A number of research efforts address dynamic resource

provisioning of Web applications and model the inter-

actions between tiers of a multi-tier Web application

through analytical queueing models [9, 12, 13]. These

algorithms can drive the decision to reprovision one tier

rather than another for best performance. They also

incorporate the effect of provisioning techniques such

as caching and master-slave database replication into

their provisioning models. We previously extended these

works for the dynamic resource provisioning of multi-

service Web applications, where Web applications are

not only constructed as a sequence of tiers but can also

consist of multiple services interacting with each other

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 51

in a directed acyclic graph [3]. These works however as-

sume that the underlying provisioning machines are ho-

mogeneous. This is a reasonable assumption in medium-

scale environments such as cluster computers. However,

in Cloud computing platforms resources are heteroge-

neous so these systems do not apply.

A few research works address the problem of provi-

sioning Web applications in heterogeneous resource en-

vironments. Stewart et al. predict the performance of

Internet Services across various server platforms with

different hardware capacities such as processor speeds

and processor cache sizes [10]. Similarly, Marin et al.

use detailed hardware models to predict the performance

of scientific applications across heterogeneous architec-

tures [6]. These approaches rely on detailed hardware

metrics to parametrize the performance model. However,

in the Cloud such low-level metrics are hidden by the vir-

tualization layer. In addition, Cloud hardware resources

are typically shared by virtual instances, which makes

it much harder for hardware-based performance models

to capture the performance features of consolidated vir-

tual instances. These works therefore cannot be easily

extended to predict Web application performance in the

Cloud.

JustRunIt is a sandbox environment for profiling

new machines in heterogeneous environments using real

workloads and real system states [14]. When one needs

to decide on the usage of new machines, this work clones

an online system to new machines, and duplicate online

workload to them. This approach can effectively cap-

ture performance characteristics of new virtual instances

in the Cloud. However, it requires to clone online envi-

ronment to new instances at each adaptation, which can

be very time-consuming. On the other hand, our work

can predict the performance of new instances for running

Web applications without actually executing the applica-

tion on new instances.

Elnikety et al. address the problem of predicting repli-

cated database performance using standalone database

profiling [4]. This work inspired us to realize perfor-

mance prediction through online profiling techniques.

However, it addresses a different problem than ours: here

the problem is to predict the performance of different

database replication techniques rather than accounting

for the performance heterogeneity of the database servers

themselves. Our work focuses on the latter.

Finally, instead of predicting performance, Kaly-

vianaki et al. use control theory to allocate CPU re-

sources to multi-tier Web applications hosting across var-

ious virtual instances in a virtualized data center [5].

This work mainly focuses on the problem of hardware

resource assignment for composing different virtual in-

stances with different capabilities. It does not address

performance impact of resource heterogeneity caused by

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

SLO

Figure 2: Web application performance heterogeneity

under Auto-Scale on EC2

the virtualization. Nathuji et al. also focus on providing

Quality-of-Service guarantees to applications running in

the Cloud [7]. However, this work aims at dynamically

adapting the hardware resource allocation among con-

solidated virtual instances to mitigate performance inter-

ference of different applications, rather than making the

best possible use of heterogeneous machine instances.

3 Motivating example

The performance heterogeneity of Cloud resources de-

picted in Figure 1 has strong consequences on Web ap-

plication hosting. Figure 2 shows the response time of

a single-tier CPU-intensive Web application deployed

on four ’identical’ virtual instances in the Amazon

EC2 Cloud, using Amazon’s own Elastic Load Balancer

(which addresses equal numbers of requests to all in-

stances). As we can see, the four instances exhibit signif-

icantly different performance. The response time of the

first instance exceeds 300 ms around 17 req/s while the

fastest instances can sustain up to 28 req/s before violat-

ing the same SLO. As a result, it becomes necessary to

re-provision the application at 17 req/s, while the same

virtual instances could sustain a much higher workload

if they were load balanced according to their individual

capabilities.

As we shall see in the next sections, the problem be-

comes more difficult when considering multi-tier Web

applications. When re-provisioning a multi-tier Web ap-

plication, one must decide which tier a new virtual in-

stance should be added to, such that the overall appli-

cation performance is maximized. However, this choice

largely depends on the individual performance of the new

virtual instance: an instance with fast I/O is more likely

than another to be useful as a database replica, while an

instance with fast CPU may be better used as an extra

application server.

52 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

4 Dynamic resource provisioning

Dynamic resource provisioning for web applications in

the Cloud requires one to predict the performance that

heterogeneous machine instances would have when exe-

cuting a variety of tiers which all have different demands

for the machine instances. This performance prediction

allows us to choose which tier(s) should ideally benefit

from this instance for optimal performance gains of this

entire application.

4.1 Solution outline

We address the problem in four steps. First, when us-

ing multiple heterogeneous machines to run a single tier,

one must carefully balance the load between them to use

each machine according to its capacity such that each

provisioned instance features with equal response time.

We discuss Web application hosting techniques and load

balancing in section 4.2.

Second, we need to measure the individual perfor-

mance profile of new machine instances for running spe-

cific application tiers. Benchmarking a machine instance

for one tier does not generate a single measurement

value, but an estimation of the response time as a func-

tion of the request rate. Profiling a tier in a machine re-

quires some care when the tier is already used in pro-

duction: we need to measure the response time of the

tier under a number of specific request rates, but at the

same time we must be careful so that the instance does

not violate the application’s SLO. We discuss profiling

techniques in section 4.3.

Third, every time the application needs to provision

a new machine instance, it is very inefficient to succes-

sively profile each of the application tiers on the new in-

stance. Instead, we calibrate the respective hardware de-

mands of different tiers of the Web application using a

single ’calibration’ machine instance. We also include

two synthetic reference applications in the calibration.

After this step, each new instance is benchmarked us-

ing the reference applications only. Thanks to the initial

calibration, we can predict the performance that this par-

ticular machine instance would have if it was executing

any tier of the real Web application. We discuss perfor-

mance prediction in section 4.4.

Finally, knowing the performance that a new machine

instance would have if we added it to any tier of the ap-

plication, we can choose the tier where it would gener-

ate the greatest performance improvement for the over-

all application. We choose the targeted tier by modeling

the whole Web application as a queueing network where

each tier acts as a separate queue. We discuss the queue-

ing model for provisioning tiers in section 4.5.


















 







Figure 3: Web application hosting in the Cloud

4.2 Web application hosting

Figure 3 shows the typical hosting architecture of a sin-

gle tier of the Web application. The provisioned virtual

instances m1, m2 and m3 host either the replicated ap-

plication code if this is an application server tier, or a

database replica if this is a database tier. As the per-

formance of provisioned instances largely differs from

each other, it would be a bad idea to address the same

request rate to all instances. A much better option is

to carefully control the respective load of each instance

such that they all exhibit the same response time. In this

scenario, fast machine instances get to process more re-

quests than slower ones.

We control the workload by deploying a custom load

balancer in front of the provisioned instances. To guaran-

tee backend instances to serve with equal response time,

the load balancer calculates the weighted workload dis-

tribution according to their performance profiles by solv-

ing the following set of equations:















λ = λ1 + · · ·+ λn

r = perf (instance1, λ1)
. . .

r = perf (instancen, λn)

(1)

where λ is the total request rate seen by the load

balancer, λ1, . . . , λn are the request rates addressed to

each provisioned instance respectively and r is the uni-

form response time of all provisioned instances. The

perf () functions are typically defined as a set of mea-

sured points, with linear interpolation between each con-

secutive pair of points.

This set of n+1 equations can be easily solved to find

the values of r, λ1, . . . , λn. The load balancer uses these

values as weights of its weighted Round-Robin strategy.

When adding a new instance mnew into this tier, the

load balancer thus needs to know the performance profile

of this new instance such that it can balance the workload

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 53

accordingly. This is the goal of instance profiling that we

discuss in next.

4.3 Online profiling

Coming up with a machine instance’s own performance

profile when provisioning a given tier can be done in two

different ways: either we measure the actual profile using

real request traffic, or we derive the profile from other

measured profiles. This section discusses the former.

Profiling a machine instance with a given tier work-

load consists in deploying the tier service on the machine

instance, then addressing traffic with various load inten-

sities to measure the corresponding response times.

We approximate the actual profile of a new instance

by measuring performance at carefully selected work-

load intensities, and using linear interpolation between

each consecutive pair of measured points. The output of

the online profiling of a new instance is therefore a set

of n linear functions which cover consecutive workload

ranges as follows:

ri = ai × λi + bi (1 ≤ i ≤ n) (2)

where n is the total number of the consecutive work-

load ranges, and r, λ, a and b respectively represent av-

erage response time, request rate and linear parameters

within the workload range i.

Generating a performance profile for a synthetic ap-

plication is relatively easy: one only needs to deploy

the synthetic application on the tested machine, and use

a separate machine instance to generate a standardized

workload and measure the tested instance’s performance

profile.

Generating a similar performance profile for a real tier

of the Web application is harder. We want to address

traffic that is as realistic as possible to increase the ac-

curacy of the performance profile. Metrics which make

a traffic workload realistic include the respective propor-

tions of simple and complex requests, read/write ratio,

popularity distribution of different data items, and so on.

All these properties have a significant impact on perfor-

mance. Instead of trying to synthesize a realistic work-

load, we prefer to provision the new instance in the tier to

profile, and address real live traffic to it (which is realistic

by definition).

Profiling a machine instance using live traffic however

requires caution. First, we must make sure that profil-

ing this instance will not create an SLO violation for the

end users whose requests are processed by the profiled

machine instance. For instance, one could simply re-

place one of the current instances used in the tier with

the instance to profile. However, if the new instance is

slower than the previous one, the application may vio-

late its SLO. Second, we want to test specific workload

intensities regardless of the actual workload received by

the tier at the time of the profiling. Profiling a live tier

therefore requires careful load balancing where we con-

trol the request rate addressed to the profiled instance.

We first need a rough estimation of the variety of per-

formance profiles from one instance to another. Such

variety is specific to one Cloud provider, as it largely

depends on the consolidation strategies and virtualized

performance isolation that the Cloud implements. We

calculate the performance variety rate N as follows.

N =
Tmax

Tmin

(3)

where Tmax and Tmin respectively represent the

throughput of the fastest and slowest instances in the

Cloud when running a given Web application. We set

a SLO defining the maximum response time to this Web

application. We measure the throughput of this Web ap-

plication when it violates the SLO. The tested applica-

tion exhibits either CPU-intensive or I/O-intensive work-

load for estimating the CPU and IO performance variety

separately. For instance, in Amazon EC2 Cloud we ob-

served NCPU ≈ 4 for CPU-intensive tiers such as appli-

cation servers and NI/O ≈ 2 for I/O-intensive tiers such

as database servers [2]. Similarly, in Rackspace we ob-

served NCPU ≈ 1.5 and NI/O ≈ 4. In a new Cloud plat-

form, one would need to sample a sufficient number of

instances to evaluate these numbers.

Second, we carefully choose different workload in-

tensities to address to the new machine. One needs to

choose the key performance points (λ, r) that represent

significant features of the performance profile. For in-

stance, the performance profile of a new instance un-

der low workload can be approximated as a constant

value regardless of the load. We ideally want a number

of points varying from underload to overload situations,

preferably at the inflection points and close to the SLO.

The accuracy of the approximated curve increases with

the number of measured points. However, this also in-

creases the profiling time.

Figure 4 illustrates our strategy to select the request

rate for profiling the new instance. We first address the

new instance with request rate λ1 = λmax
N

, where λmax is

the current request rate of the fastest instance currently

used in this tier. Assuming our estimation of perfor-

mance variety N is correct, the profiled instance cannot

violate the SLO even if it happens to be very slow. This

gives us the first performance point (λ1, r1) as illustrated

in Figure 4(a)

Using this first measurement, we can use queueing

theory to generate a first estimate of the entire perfor-

mance profile of this instance. If we model the tier as

an M/M/n queue, then the instance’s service time can be

computed as:

54 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

(a) First measurement point selected such that

the instance will not violate its SLO

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

Expected performance profile

(b) First estimation of the instance’s profile

thanks to queueing theory

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

r2expected=160ms

Expected performance profile
SLO

0.8*SLO

(c) Selection of a second measurement point

close to the SLO

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

Expected performance profile
Fitted performance profile

SLO
0.8*SLO

(d) Fit performance profile of the new instance

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

λ1=2req/s, r1=70ms

λ2=9.7req/s, r2=138ms

λ3=4.3req/s, r3=78ms

Expected performance profile
Fitted performance profile

SLO
0.8*SLO

(e) Correction of the performance profile of the

new instance

Figure 4: Online profiling process

s =
r1

1 + λ1×r1
n

(4)

where n is the number of CPU cores of this machine

(as announced by the Cloud provider). The service time

is the response time of the instance under low workload

where the effects of request concurrency are negligible.

It indicates the capability of the instance to serve incom-

ing requests. We can then use this service time to derive

a first performance profile of the new instance as follows:

r(λ) =
s

1− λ×s
n

(5)

Figure 4(b) shows the first performance profile of the

new instance derived based on the calculated service

time. One should however note that this profile built out

of a single performance value is very approximate. For

a more precise profile, one needs to measure more data

points.

Using this profile, we can now calculate a second

workload intensity which should bring the instance close

to the SLO. We select an expected response time r2, then

derive the workload intensity which should produce this

response time.

r
expected
2

= 0.8× SLO (6)

λ2 =
n× (rexpected

2
− s)

r
expected
2

× s
(7)

Here we set the target response time to 80% of the

SLO to avoid violating the SLO of the profiled instance

even though the initial performance profile will feature

relatively large error margins. We can then address this

workload intensity to the new instance and measure its

real performance value (λ2, r2). As shown in Figure 4(c),

the real performance of the second point is somewhat dif-

ferent from the expected 80% of the SLO.

We apply linear regression between the two measured

points (λ1, r1), (λ2, r2) and get the fitted performance

profile of the new instance as shown in Figure 4(d). We

then let the load balancer calculate the weighted work-

load distribution between the provisioned instance and

the new one.

By addressing the weighted workload intensities to the

two instances, we can measure the real response time of

the new instance. However, as shown in Figure 4(e), the

real performance of the new instance differs slightly from

the expected one in Figure 4(d) due to the approximation

error of its initial profile. We then correct the perfor-

mance profile of the new instance by interpolating the

third performance point(λ3, r3). We show that the above

strategy is effective to profile heterogeneous virtual ma-

chines and provision single services in Section 5.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 55

Although expressing performance profiles as a func-

tion of request rate is useful for load balancing, for per-

formance prediction we need to express performance

profiles as a function of CPU utilization (for application

server tiers) or I/O utilization (for database server tiers).

When profiling a machine instance, we also measure the

relevant metrics of resource utilization, and use the ex-

act same technique to build performance profiles that are

suitable for performance prediction.

4.4 Performance prediction

To efficiently select the tier in which a new instance will

be most valuable to the application as a whole, we first

need to know the performance profile of this instance

when running each of the application’s tiers. A naive ap-

proach would be to successively measure this profile with

each tier one by one before taking a decision. However,

this strategy would be too slow to be of any practical use.

Indeed, profiling a new machine with a real application

tier requires to first replicate the hosted service to the new

machine. For instance, when profiling a new machine

for a database tier, one needs to first replicate the entire

database to the new machine before starting the profiling

process. Replicating a medium-sized database can easily

take tens of minutes, and this duration increases linearly

with the database size. We therefore need to be able to

quickly predict the performance profiles, without need-

ing to actually replicate the database.

We found that the most characteristic feature of a vir-

tual instance to predict the performance profile of a given

tier in this instance is its resource utilization. Although

the absolute response time of two different tiers in the

same machine under the same CPU or I/O utilization are

not identical, they are highly correlated.

We illustrate this in Figure 5. Each point in this graph

represents the response times of two different applica-

tion server tiers running in the same machine instance,

and having the same CPU utilization (respectively 15%,

25%, 65% and 80%). The request rates necessary to

reach a given CPU utilization varies from one applica-

tion to the next. We however observe that the points form

an almost perfect straight line. This allows us to derive

new performance profiles from already known ones. The

same observation is also true for database server tiers,

taking the disk I/O bandwidth consumption as the re-

source utilization metric.

Given the response time and resource utilization of

one tier in a given machine instance, we can infer the

response time of the second tier in the same machine in-

stance under the same resource utilization. Figure 6 illus-

trates the input and output of this prediction: we predict

the performance of tier 1 and tier 2 on a new machine by

 40

 50

 60

 70

 80

 90

 100

 110

 110 115 120 125 130 135 140R
e
fe

re
n
c
e
 a

p
p
lic

a
ti
o
n
 r

e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Tier service response time (ms)

CPU utilization = 15%

CPU utilization = 25%

CPU utilization = 65%

CPU utilization = 80%

Correlation of two performance profiles

Figure 5: Performance correlation between reference ap-

plication and tier service

Input:

perf (machinecalibration, appref) = f(load)

perf (machinecalibration, apptier1) = f(load)
perf (machinecalibration, apptier2) = f(load)
perf (machinenew, appref) = f(load)

Output:

perf (machinenew, apptier1) = f(load)
perf (machinenew, apptier2) = f(load)

Figure 6: Input and output of the performance profile

prediction

correlating their performance and the reference applica-

tion performance on a calibration machine.

First, we need to measure the application-specific de-

mands of each tier of the application. This has to be done

only once per application. This profiling should be done

on a single calibration machine, which can be any partic-

ular virtual instance in the Cloud. To predict the perfor-

mance of any particular tier on a new instance quickly,

we also benchmark the calibration machine using two

synthetic reference applications which respectively ex-

hibit CPU-intensive features characteristic of applica-

tion servers, and I/O-intensive features characteristic of

database servers. The Ref CPU application receives cus-

tomer names and generates detailed personal information

through CPU-intensive XML transformation. The Ref I/O

application searches for items related to a customer’s pre-

viously ordered items from a large set of items. The op-

erations of the reference applications introduce typical

CPU-intensive and disk I/O-intensive workloads. The

reference applications can be deployed very quickly on

any new machine instance, for example by including it

to the operating system image loaded by the virtual ma-

chine instances. We use Ref CPU as a reference point

to predict the performance profiles of application server

56 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tiers, and Ref I/O as a reference point to predict the per-

formance profiles of database tiers.

Profiling the same calibration machine instance with

one of the Web application’s tiers and the corresponding

reference application allows us to learn the relationship

between the demands that these two applications put on

the hardware:

perf (apptier, utilization) = α×perf (appref , utilization)+β

The same relationship between the response times of

the two applications, captured by the values of α and

β, remains true on other machine instances. Knowing

the performance profile of the reference application on a

newly obtained virtual machine instance from the cloud,

we can thus derive the predicted performance profile of

tier1 on the new instance, even though we never even

installed this particular tier on this particular instance.

4.5 Resource provisioning

When provisioning a multi-tier Web application, upon

a violation of the service-level objective, one needs to

decide which tier to re-provision within the whole ap-

plication. Once a new instance is acquired and profiled,

one needs to perform a simple what-if analysis to predict

the performance improvement that the whole application

would observe if this instance was added in one of the

tiers. For simplicity, in this paper we apply our Cloud

instance profiling methods to simple two-tier Web ap-

plications only. Other performance models of composite

Web applications can be used to extend this work to more

complex setups [3, 13].

The response time of a two-tier Web application can

be computed as follows.

Rapp = R1 +N1,2 ×R2 (8)

where Rapp is the response time of the whole applica-

tion, R1, R2 are response time of the application server

tier and the database tier respectively, N1,2 is the request

ratio that equals to the request number seen by the sec-

ond (database) tier caused by one request from the first

(application server) tier.

Given the performance profiles of the new instance

for each of the application’s tiers, we can issue a simple

“what-if” analysis: we first use the performance profiles

to compute the new application performance if the new

instance was added to the first tier, then if it was added

to the second tier. The best usage of the new instance

is defined as the one which maximizes the application’s

performance.

5 Experimental evaluation

In this section we evaluate the effectiveness and effi-

ciency of our resource provisioning algorithm for provi-

sioning Web applications on the Amazon EC2 platform.

5.1 Experiment setup

The bulk of our system implementation lies in our cus-

tom layer-4 load balancer. In addition to distributing re-

quests to backend servers, the load balancer also profiles

new machines when we obtain them from the cloud. By

deploying the load balancer in front of the tiers of Web

applications, our system can provision Web applications

over heterogeneous instances in the Cloud.

We evaluate our resource provisioning algorithm us-

ing three Web applications. The first two are the refer-

ence applications Ref CPU and Ref I/O. The last one is the

TPC-W Web application benchmark. This benchmark

is structured as a two-tiered application which models

an online bookshop like Amazon.com [11]. We run all

our experiments in Amazon EC2 platform using small

instances.

5.2 Importance of adaptive load balancing

We first demonstrate the importance of adaptive load bal-

ancing in Cloud using Ref CPU and Ref I/O. We deploy

each application on a single machine instance, and in-

crease the workload gradually. We set the SLO of the re-

sponse time of Ref CPU and Ref I/O to 300 ms and 500 ms

respectively. We run each experiment using two differ-

ent setups. First, we use Amazon’s Elastic Load Bal-

ancer to distribute the traffic between the instances, and

Amazon’s AutoScale to provision new virtual machine

instances when the SLO is violated. Second, we run the

same experiment using the exact same instances with our

system. Both applications are single-tiered, so here we

exercise only the capability of load balancing to adapt to

heterogeneous resources.

Figure 7 shows the response time per machine instance

running the Ref CPU application. When using the Elastic

Load Balancer (ELB), at 5 req/s the system violates the

SLO and therefore provisions a new instance. By coin-

cidence, the second instance has a performance profile

very close to the first one so they exhibit extremely sim-

ilar performance. However, after the second and third

adaptation we see that different instances exhibit differ-

ent performance. On the other hand, our system balances

the workload such that all instances always exhibit the

same performance. This has important consequences in

terms of resource usage: when using ELB, the one of

the application instances violates its SLO at 20.7 req/s,

triggering a request for a fourth instance. When using

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 57

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation 3rd adaptation

workload=20.7req/s

SLO

(a) Using Amazon’s Elastic Load Balancer

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation 3rd adaptation

workload=22.7req/s

SLO

(b) Using our system

Figure 7: Provisioning Ref CPU under increasing work-

load

our system, the third instance (a very fast one) is given a

higher workload than the others so the system requires a

fourth instance only above 22.7 req/s.

Figure 8 shows similar results for the Ref I/O applica-

tion. Here as well, our system balances traffic between

instances such that they exhibit identical performance,

whereas ELB creates significant performance differences

between the instances. Our system can sustain up to

9 req/s when using three instances, while ELB can sus-

tain only 7 req/s.

These results show that one should employ adaptive

load balancing to correctly assign weights to forwarding

instances when distributing traffics in Cloud. By doing

so, one can achieve homogeneous performance from het-

erogeneous instances and make more efficient usage of

these instances.

5.3 Effectiveness of Performance Predic-

tion and Resource Provisioning

We now demonstrate the effectiveness of our system to

provision multi-tier Web applications. In this scenario,

in addition to using our load balancer, we also need to

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation

SLO

(a) Using Amazon’s Elastic Load Balancer

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Request rate (req/s)

1st adaptation 2nd adaptation

SLO

(b) Using our system

Figure 8: Provisioning Ref I/O under increasing workload

predict the performance that each new machine would

have if it was added to the application server or database

server tiers to decide which tier a new instance should be

assigned to. The Amazon cloud does not have standard

automatic mechanisms for driving such choices so we

do not compare our approach with Amazon’s resource

provisioning service.

We use our system to provision the TPC-W e-

commerce benchmark using the “shopping mix” work-

load. This standard workload generates 80% of read-

only interactions, and 20% of read-write interactions.

We set the SLO of the response time of TPC-W to be

500 ms. We increase the workload by creating corre-

sponding numbers of Emulated Browsers (EBs). Each

EB simulates a single user who browses the application.

Whenever an EB leaves the application, a new EB is au-

tomatically create to maintain a constant load.

When the overall response time of the application vio-

lates the SLO, we request a new instance from the Cloud

and profile it using the reference application. Thanks to

the performance correlations between the tiers of TPC-

W and the reference application, we use the performance

profile of the new instance to predict the performance

of any tier of TPC-W if it was using the new instance.

58 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Table 1: Prediction accuracy during the first experiment run
Adapt at 90 EBs Adapt at 160 EBs Adapt at 210 EBs Adapt at 270 EBs

Real Predicted Error Real Predicted Error Real Predicted Error Real Predicted Error

Provision the AS tier 554.6 ms 596.7 ms +7.6% 578.3 ms 625.1 ms +8.1% 458.3 ms 490.1 ms +6.9% 232.5 ms 248.3 ms +6.8%

Provision the DB tier 165.4 ms 188.1 ms +13.7% 189.7 ms 203.4 ms +7.2% 156.2 ms 166.4 ms +6.5% 313.4 ms 329.1 ms +5.0%

Table 2: Prediction accuracy during the second experiment run
Adapt at 60 EBs Adapt at 130 EBs Adapt at 220 EBs Adapt at 300 EBs

Real Predicted Error Real Predicted Error Real Predicted Error Real Predicted Error

Provision the AS tier 511.7 ms 567.3 ms +10.9% 427.9 ms 453.7 ms +6.0% 177.5 ms 192.3 ms +6.9% 541.9 ms 579.2 ms +6.9%

Provision the DB tier 152.4 ms 168.2 ms +10.4% 218.2 ms 230.7 ms +5.7% 281.4 ms 302.7 ms +7.6% 151.2 ms 163.2 ms +7.9%

Finally, we compare the performance gains if the new

instance was assigned to different tiers of TPC-W and

select the tier which gives most performance benefit. We

run the entire experiment twice: our provisioning system

takes different decisions depending on the characteristics

of the machine instances it gets from the Cloud.

Figures 9(a) illustrates the response time of TPC-W

in the first run of the experiment. The application vio-

lates its SLO around a workload of 90 EBs. We request a

new instance from the Cloud, profile it, and predict that

it would be most useful if it was assigned to the database

tier. When we push the workload further, it adds another

database server at 160 EBs, then yet another database

server at 210 EBs, then finally an application server at

270 EBs.

Figure 9(b) shows that, if we run the exact same ex-

periment a second time, the machine instances we ob-

tain from the Cloud have different performances. This

leads the resource provisioning to take different deci-

sions. It adds two database servers respectively at 60 and

130 EBs, then an application server at 220 EBs, then an-

other database server at 300 EBs.

We can see here that SLO violations occur at differ-

ent workloads, depending on the performance of the ma-

chine instances running the application. We also see that

our resource provisioning effectively distinguishes dif-

ferent performance profiles, and takes provisioning deci-

sions accordingly. In particular, at the third adaptation,

the first run decides to use the new machine instance as

a database server while the second run decides to use its

own new machine instance as an application server.

At each adaptation point, the resource provisioning

system issues two predictions: it predicts what the new

response time of the overall application would be if we

assigned the new machine instance to be an application

server or a database server. At each adaptation point we

also tested the accuracy of these two predictions by de-

ploying each of the two tiers in the new instances and

measuring the actual application performance. Tables 1

and 2 show the measured and predicted response times of

the whole application at each adaptation point. We can

see that all predictions remain within 14% of the mea-

sured response times. This level of accuracy is sufficient

to take correct provisioning decisions: in this set of ex-

periments, the provisioning always identifies the best use

it can make of the new machine instance it received (writ-

ten in bold text in the table).

5.4 Comparison with other provision tech-

niques

So far we showed the effectiveness of our system to pro-

visioning TPC-W on EC2 by assigning heterogeneous

instances to the tier where it gives maximum perfor-

mance gain. We now demonstrate that our system can

improve the throughput of TPC-W running on EC2 com-

pared with two other provisioning techniques: “Homo-

geneous Provisioning” and “Worst-case Provisioning”.

“Homogeneous Provisioning” provisions instances as-

suming that the performance of these instances is ho-

mogeneous. “Homogeneous Provisioning” first profiles

the performance of the first two virtual instances hosting

TPC-W. At each adaptation, “Homogeneous Provision-

ing” predicts the performance gains of new instances at

each tier using the initial performance profiles, and as-

signs a new instance to the tier which receives maxi-

mum performance gain. “Homogeneous Provisioning”

dispatches requests between instances using the round-

robin policy. “Worst-case Provisioning” employs our al-

gorithm to first figure out the tier to which a new instance

should be assigned. However, “Worst-case Provisioning”

systematically adopts the worst possible option. For in-

stance, “Worst-case Provisioning” assigns a new instance

to the application server tier if our system decides to as-

sign this instance to the database tier. “Worst-case Provi-

sioning” employs the same load balancing in our system.

For comparison, we name our system as “Adaptive Pro-

visioning”.

We first use the three techniques to provision TPC-

W on EC2 with increasing workload separately. We set

the SLO to 500 ms and measure the maximum through-

put that a system configuration can sustain before violat-

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 59

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

EBs

Add a DB
 at 90EBs

Add a DB
 at 160EBs

Add a DB
 at 210EBs

Add an App
 at 270EBs

SLO

(a) First group

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

EBs

Add a DB
 at 60EBs

Add a DB
 at 130EBs

Add an App
 at 220EBs

Add a DB
 at 300EBs

SLO

(b) Second group

Figure 9: Provisioning TPC-W under increasing work-

load

ing the SLO. We also record the instance configurations

at each adaptation. Figure 10(a) shows the throughputs

achieved by each provisioning technique during a single

run of the system under increasing workload and the cor-

responding instance configurations at each adaptation.

The three provisioning systems use the exact same in-

stances in the same order so their respective performance

can be compared.

“Worst-case Provisioning” decides to provision the ap-

plication server tier at each adaptation and finally sup-

ports around 150 EBs with 5 instances. “Homogeneous

Provisioning” and “Adaptive Provisioning” both decide

to provision new instances to the database server tier at

the first and second adaptation. However, they achieve

different throughput at the first two adaptations. The

throughput difference is caused by the different load bal-

ancing capability of adapting to heterogeneous instances

used in each provision technique. At the third adaptation,

“Adaptive Provisioning” decides to assign the new in-

stance to the application server tier while “Homogeneous

Provisioning” decides to assign the same new instance

to the database server tier. After the third adaptation,

“Adaptive Provisioning” supports around 420 EBs while

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

(n
u
m

b
e
r

o
f

E
B

s
)

Number of instances

1AS+1DB 2AS+1DB

1AS+2DB

1AS+2DB

3AS+1DB

1AS+3DB

1AS+3DB

2AS+3DB

1AS+4DB

4AS+1DB

20% throughput gain

Adaptive Provisioning
Homogeneous Provisioning

Worst-case Provisioning

(a) Throughput comparison of single round

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(n

u
m

b
e

r
o
f

E
B

s
)

Number of instances

Adaptive Provisioning
Homogeneous Provisioning

Worst-case Provisioning

(b) Statistical comparison of throughput over multiple rounds

Figure 10: Throughput comparison of three provisioning

techniques

“Homogeneous Provisioning” supports around 350 EBs.

This represents a 20% gain in throughput.

We then run the same experiment 5 rounds, each with

a different set of EC2 small instances. Within each

round, we measure the throughput achieved by each pro-

visioning technique using a certain number of instances.

The throughputs achieved in different rounds are differ-

ent due to the performance heterogeneity of small in-

stances. Figure 10(b) shows the average and standard

deviation of the throughput achieved by each provision-

ing technique across multiple rounds. As previously,

the “Worst-case Provisioning” behaves as the statistical

lower bound of the achievable throughput of TPC-W on

EC2. When taking the first adaptation, “Adaptive Provi-

sioning” and “Homogeneous Provisioning” behave simi-

lar in terms of achieved throughput. However, when tak-

ing more adaptations, “Adaptive Provisioning” supports

17% higher throughput than “Homogeneous Provision-

ing”. This demonstrates that our system makes more

efficient use of heterogeneous instances in Cloud and

achieves higher throughput using the same resources.

60 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

6 Conclusion

Cloud computing provides Web application providers

with an attracting paradigm to dynamically vary the

number of resources used by their application accord-

ing to the current workload. However, Cloud computing

platforms also have important limitations. In particular,

dynamic resource provisioning is made difficult by the

fact that each virtual instance has its own individual per-

formance characteristics. Standard resource provision-

ing techniques provided by Cloud platforms do not take

this performance heterogeneity into account, and there-

fore end up wasting resources.

We demonstrated in this paper that taking performance

heterogeneity into account in a resource provisioning

system can be practical and bring significant resource

savings. One must first capture the performance relation-

ships between different tiers of an application. When the

application’s workload makes it necessary to provision

a new instance, we can efficiently capture its own per-

formance profile, and use this information to drive the

resource provisioning decisions: first, it allows us to de-

cide to which tier this new machine instance should be

assigned. Second, it allows us to adjust load balancing

to make better use of the processing resources of each

machine instance.

We hope that these results will allow the creation

of new Cloud products such as automated performance

monitoring and prediction as a service, and performance-

aware load balancers. Providing Cloud users with such

tools would allow them to make more efficient use of

Cloud resources, and would thereby further increase the

attractiveness of Cloud technologies for Web application

providers.

7 Acknowledgments

Chi-Hung Chi is supported by the National Natural Sci-

ence Foundation of China, Project Number 61033006.

References

[1] Amazon EC2: Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/.

[2] DEJUN, J., PIERRE, G., AND CHI-HUNG, C. EC2 performance

analysis for resource provisioning of service-oriented applica-

tions. In Proceedings of the 3rd Workshop on Non-Functional

Properties and SLA Management in Service-Oriented Computing

(Nov. 2009). LNCS 6275.

[3] DEJUN, J., PIERRE, G., AND CHI-HUNG, C. Autonomous re-

source provisioning for multi-service web applications. In Pro-

ceedings of the 19th Intl. World Wide Web Conference (Apr.

2010).

[4] ELNIKETY, S., DROPSHO, S., CECCHET, E., AND

ZWAENEPOEL, W. Predicting replicated database scalabil-

ity from standalone database profiling. In Proceedings of the 4th

EuroSys Conference (Apr. 2009).

[5] KALYVIANAKI, E., CHARALAMBOUS, T., AND HAND, S. Self-

adaptive and self-configured cpu resource provisioning for virtu-

alized servers using Kalman filters. In Proceedings of the ICAC

Conference (June 2009).

[6] MARIN, G., AND MELLOR-CRUMMEY, J. Cross-architecture

performance predictions for scientific applications using parame-

terized models. In Proceedings of the SIGMETRICS Conference

(June 2004).

[7] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-

Clouds: Managing performance interference effects for QoS-

aware clouds. In Proceedings of the 5th EuroSys conference (Apr.

2010).

[8] OSTERMANN, S., IOSUP, A., YIGITBASI, N., PRODAN, R.,

FAHRINGER, T., AND EPEMA, D. A performance analysis of

EC2 cloud computing services for scientific computing. In Pro-

ceedings of the CloudComp conference (Oct. 2010).

[9] SIVASUBRAMANIAN, S. Scalable hosting of web applications.

PhD thesis, Vrije Universiteit Amsterdam, the Netherlands, Apr.

2007.

[10] STEWART, C., KELLY, T., ZHANG, A., AND SHEN, K. A dol-

lar from 15 cents: Cross-platform management for internet ser-

vices. In Proceedings of the USENIX Annual Technical Confer-

ence (June 2008).

[11] TPC-W: A transactional web e-commerce benchmark.

http://www.tpc.org/tpcw.

[12] URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M.,

AND TANTAWI, A. An analytical model for multi-tier internet

services and its applications. In Proceedings of the SIGMETRICS

Conference (June 2005).

[13] URGAONKAR, B., PRASHANT, S., ABHISHEK, C., PAWAN, G.,

AND TIMOTHY, W. Agile dynamic provisioning of multi-tier

internet applications. ACM Transaction on Autonomous Adaptive

System (Mar. 2008).

[14] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J., SANTOS,

J. R., AND TURNER, Y. JustRunIt: Experiment-based manage-

ment of virtualized data centers. In Proceedings of the USENIX

Annual Technical Conference (June 2009).

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 61

C3: An Experimental, Extensible, Reconfigurable Platform for HTML-based
Applications

Benjamin S. Lerner Brian Burg
University of Washington

Herman Venter Wolfram Schulte
Microsoft Research

Abstract
The common conception of a (client-side) web applica-
tion is some collection of HTML, CSS and JavaScript
(JS) that is hosted within a web browser and that interacts
with the user in some non-trivial ways. The common
conception of a web browser is a monolithic program
that can render HTML, execute JS, and gives the user a
portal to navigate the web. Both of these are misconcep-
tions: nothing inherently confines webapps to a browser’s
page-navigation idiom, and browsers can do far more
than merely render content. Indeed, browsers and web
apps are converging in functionality, but their underlying
technologies are so far largely distinct.

We present C3, an implementation of the
HTML/CSS/JS platform designed for web-client
research and experimentation. C3’s typesafe, modular
architecture lowers the barrier to webapp and browser
research. Additionally, C3 explores the role of extensibil-
ity throughout the web platform for customization and
research efforts, by introducing novel extension points
and generalizing existing ones. We discuss and evaluate
C3’s design choices for flexibility, and provide examples
of various extensions that we and others have built.

1 Introduction

We spend vast amounts of time using web browsers: ca-
sual users view them as portals to the web, while power
users enjoy them as flexible, sophisticated tools with
countless uses. Researchers of all stripes view browsers
and the web itself as systems worthy of study: browsers
are a common thread for web-related research in fields
such as HCI, security, information retrieval, sociology,
software engineering, and systems research. Yet today’s
production-quality browsers are all monolithic, complex
systems that do not lend themselves to easy experimenta-
tion. Instead, researchers often must modify the source
code of the browsers—usually tightly-optimized, obscure,

and sprawling C/C++ code—and this requirement of deep
domain knowledge poses a high barrier to entry, correct-
ness, and adoption of research results.

Of course, this is a simplified depiction: browsers are
not entirely monolithic. Modern web browsers, such
as Internet Explorer, Firefox or Chrome, support exten-
sions, pieces of code—usually a mix of HTML, CSS and
JavaScript (JS)—that are written by third-party develop-
ers and downloaded by end users, that build on top of the
browser and customize it dynamically at runtime.1 To
date, such customizations focus primarily on modifying
the user interfaces of browsers. (Browsers also support
plug-ins, binary components that provide functionality,
such as playing new multimedia file types, not otherwise
available from the base browser. Unlike extensions, plug-
ins cannot interact directly with each other or extend each
other further.)

Extensions are widely popular among both users and
developers: millions of Firefox users have downloaded
thousands of different extensions over two billion times2.
Some research projects have used extensions to imple-
ment their ideas. But because current extension mecha-
nisms have limited power and flexibility, many research
projects still must resort to patching browser sources:

1. XML3D [14] defines new HTML tags and renders
them with a 3D ray-tracing engine—but neither
HTML nor the layout algorithm are extensible.

2. Maverick [12] permits writing device drivers in JS
and connecting the devices (e.g., webcams, USB
thumb drives, GPUs, etc.) to web pages—but JS
cannot send raw USB packets to the USB root hub.

3. RePriv [5] experiments with new ways to securely
expose and interact with private browsing informa-

1Opera supports widgets, which do not interact with the browser or
content, and Safari recently added small but slowly-growing support for
extensions in a manner similar to Chrome. We ignore these browsers in
the following discussions.

2https://addons.mozilla.org/en-US/statistics/

1

62 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

tion (e.g. topics inferred from browsing history) via
reference-monitored APIs—but neither plug-ins nor
JS extensions can guarantee the integrity or security
of the mined data as it flows through the browser.

These projects incur development and maintenance costs
well above the inherent complexity of their added func-
tionality. Moreover, patching browser sources makes
it difficult to update the projects for new versions of
the browsers. This overhead obscures the fact that such
research projects are essentially extensions to the web-
browsing experience, and would be much simpler to real-
ize on a flexible platform with more powerful extension
mechanisms. Though existing extension points in main-
stream browsers vary widely in both design and power,
none can support the research projects described above.

1.1 The extensible future of web browsers
Web browsers have evolved from their beginnings as mere
document viewers into web-application runtime platforms.
Applications such as Outlook Web Access or Google
Documents are sophisticated programs written in HTML,
CSS and JS that use the browser only for rendering and
execution and ignore everything else browsers provide
(bookmarks, navigation, tab management, etc.). Projects
like Mozilla Prism3 strip away all the browser “chrome”
while reusing the underlying HTML/CSS/JS implementa-
tion (in this case, Gecko), letting webapps run like native
apps, outside of the typical browser. Taken to an extreme,
“traditional” applications such as Firefox or Thunderbird
are written using Gecko’s HTML/CSS/JS engine, and
clearly are not themselves hosted within a browser.

While browsers and web apps are growing closer,
they are still mostly separate with no possibility of
tight, customizable integration between them. Blogging
clients such as WordPress, instant messaging clients such
as Gchat, and collaborative document editors such as
Mozilla Skywriter are three disjoint web applications, all
designed to create and share content. An author might be
using all three simultaneously, and searching for relevant
web resources to include as she writes. Yet the only way
to do so is to “escape the system”, copying and pasting
web content via the operating system.

1.2 Contributions
The time has come to reconsider browser architectures
with a focus on extensibility. We present C3: a reconfig-
urable, extensible implementation of HTML, CSS and
JS designed for web client research and experimentation.
C3 is written entirely in C# and takes advantage of .Net’s
libraries and type-safety. Similar to Firefox building atop

3http://prism.mozillalabs.com/

Gecko, we have built a prototype browser atop C3, using
only HTML, CSS and JS.

By reconfigurable, we mean that each of the modules
in our browser—Document Object Model (DOM) imple-
mentation, HTML parser, JS engine, etc.—is loosely cou-
pled by narrow, typesafe interfaces and can be replaced
with alternate implementations compiled separately from
C3 itself. By extensible, we mean that the default imple-
mentations of the modules support run-time extensions
that can be systematically introduced to

1. extend the syntax and implementation of HTML

2. transform the DOM when being parsed from HTML

3. extend the UI of the running browser

4. extend the environment for executing JS, and

5. transform and modify running JS code.

Compared to existing browsers, C3 introduces novel ex-
tension points (1) and (5), and generalizes existing exten-
sion points (2)–(4). These extension points are treated in
order in Section 3. We discuss their functionality and their
security implications with respect to the same-origin pol-
icy [13]. We also provide examples of various extensions
that we and others have built.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of C3’s architecture and high-
lights the software engineering choices made to further
our modularity and extensibility design goals. Section 3
presents the design rationale for our extension points and
discusses their implementation. Section 4 evaluates the
performance, expressiveness, and security implications
of our extension points. Section 5 describes future work.
Section 6 concludes.

2 C3 architecture and design choices

As a research platform, C3’s explicit design goals are
architectural modularity and flexibility where possible,
instead of raw performance. Supporting the various ex-
tension mechanisms above requires hooks at many levels
of the system. These goals are realized through careful
design and implementation choices. Since many require-
ments of an HTML platform are standardized, aspects of
our architecture are necessarily similar to other HTML
implementations. C3 lacks some of the features present in
mature implementations, but contains all of the essential
architectural details of an HTML platform.

C3’s clean-slate implementation presented an opportu-
nity to leverage modern software engineering tools and
practices. Using a managed language such as C# sidesteps
the headaches of memory management, buffer overruns,
and many of the common vulnerabilities in production

2

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 63

Event loop

DOM implementation

Node, Element, . . .

Default down-
load manager

JS Engine

Browser executable

UI WinForms
renderer

Layout

ILayoutListener

IRenderer

IHtmlParser
HtmlParser

CssParser
ICssParser

IDownloadManager

Assembly
Class
Interface
Communication
Implementation
Threads

Figure 1: C3’s modular architecture

browsers. Using a higher-level language better preserves
abstractions and simplifies many implementation details.
Code Contracts [4] are used throughout C3 to ensure
implementation-level invariants and safety properties—
something that is not feasible in existing browsers.

Below, we sketch C3’s module-level architecture, and
elaborate on several core design choices and resulting
customization opportunities. We also highlight features
that enable the extension points examined in Section 3.

2.1 Pieces of an HTML platform

The primary task of any web platform is to parse, ren-
der, and display an HTML document. For interactivity,
web applications additionally require the managing of
events such as user input, network connections, and script
evaluation. Many of these sub-tasks are independent; Fig-
ure 1 shows C3’s module-level decomposition of these
tasks. The HTML parser converts a text stream into an
object tree, while the CSS parser recognizes stylesheets.
The JS engine dispatches and executes event handlers.
The DOM implementation implements the API of DOM
nodes, and implements bindings to expose these methods
to JS scripts. The download manager handles actual net-
work communication and interactions with any on-disk
cache. The layout engine computes the visual structure
and appearance of a DOM tree given current CSS styles.
The renderer displays a computed layout. The browser’s
UI displays the output of the renderer on the screen, and
routes user input to the DOM.

2.2 Modularity

Unlike many modern browsers, C3’s design embraces
loose coupling between browser components. For ex-
ample, it is trivial to replace the HTML parser, renderer

frontend, or JS engine without modifying the DOM im-
plementation or layout algorithm. To make such drop-in
replacements feasible, C3 shares no data structures be-
tween modules when possible (i.e., each module is heap-
disjoint). This design decision also simplifies threading
disciplines, and is further discussed in Section 2.7.

Simple implementation-agnostic interfaces describe the
operations of the DOM implementation, HTML parser,
CSS parser, JS engine, layout engine, and front-end ren-
derer modules. Each module is implemented as a separate
.Net assembly, which prevents modules from breaking ab-
stractions and makes swapping implementations simple.
Parsers could be replaced with parallel [8] or speculative4

versions; layout might be replaced with a parallel [11] or
incrementalizing version, and so on. The default module
implementations are intended as straightforward, unopti-
mized reference implementations. This permits easy per-
module evaluations of alternate implementation choices.

2.3 DOM implementation

The DOM API is a large set of interfaces, methods and
properties for interacting with a document tree. We high-
light two key design choices in our implementation: what
the object graph for the tree looks like, and the bindings
of these interfaces to C# classes. Our choices aim to
minimize overhead and “boilerplate” coding burdens for
extension authors.

Object trees: The DOM APIs are used throughout the
browser: by the HTML parser (Section 2.4) to construct
the document tree, by JS scripts to manipulate that tree’s
structure and query its properties, and by the layout engine
to traverse and render the tree efficiently. These clients
use distinct but overlapping subsets of the APIs, which
means they must be exposed both to JS and to C#, which
in turn leads to the first design choice.

One natural choice is to maintain a tree of “imple-
mentation” objects in the C# heap separate from a set
of “wrapper” objects in the JS heap5 containing point-
ers to their C# counterparts: the JS objects are a “view”
of the underlying C# “model”. The JS objects contain
stubs for all the DOM APIs, while the C# objects contain
implementations and additional helper routines. This de-
sign incurs the overheads of extra pointer dereferences
(from the JS APIs to the C# helpers) and of keeping
the wrappers synchronized with the implementation tree.
However, it permits specializing both representations for
their respective usages, and the extra indirection enables

4http://hsivonen.iki.fi/speculative-html5-parsing/
5Expert readers will recognize that “objects in the JS heap” are

implemented by C# “backing” objects; we are distinguishing these from
C# objects that do not “back” any JS object.

3

64 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

multiple views of the model: This is essentially the tech-
nical basis of Chrome extensions’ “isolated worlds” [1],
where the indirection is used to ensure security proper-
ties about extensions’ JS access to the DOM. Firefox
also uses the split to improve JS memory locality with
“compartments” [15].

By contrast, C3 instead uses a single tree of objects
visible to both languages, with each DOM node being a
C# subclass of an ordinary JS object, and each DOM API
being a standard C# method that is exposed to JS. This de-
sign choice avoids both overheads mentioned above. Fur-
ther, Spur [3], the tracing JS engine currently used by C3,
can trace from JS into DOM code for better optimization
opportunities. To date, no other DOM implementation/JS
engine pair can support this optimization.

DOM language bindings: The second design choice
stems from our choice for the first: how to represent DOM
objects such that their properties are callable from both
C# and JS. This representation must be open: extensions
such as XML3D must be able to define new types of
DOM nodes that are instantiable from the parser (see
Section 3.1) and capable of supplying new DOM APIs to
both languages as well. Therefore any new DOM classes
must subclass our C# DOM class hierarchy easily, and
be able to use the same mechanisms as the built-in DOM
classes. Our chosen approach is a thin marshaling layer
around a C# implementation, as follows:

• All Spur JS objects are instances of C# classes de-
riving from ObjectInstance. Our DOM class hi-
erarchy derives from this too, and so DOM objects
are JS objects, as above.

• All JS objects are essentially property bags, or
key/value dictionaries, and “native” objects (e.g.
Math, Date) may contain properties that are im-
plemented by the JS runtime and have access to
runtime-internal state. All DOM objects are native,
and their properties (the DOM APIs) access the in-
ternal representation of the document.

• The JS dictionary is represented within Spur as a
TypeObject field of each ObjectInstance. To ex-
pose a native method on a JS object, the implemen-
tation simply adds a property to the TypeObject

mapping the (JS) name to the (C#) function that
implements it.6 This means that a single C# function
can be called from both languages, and need not be
implemented twice.

The ObjectInstance and TypeObject classes are pub-
lic Spur APIs, and so our DOM implementation is readily
extensible by new node types.

6Technically, to a C# function that unwraps the JS values into
strongly-typed C# values, then calls a second C# function with them.

2.4 The HTML parser

The HTML parser is concerned with transforming HTML
source into a DOM tree, just as a standard compiler’s
parser turns source into an AST. Extensible compilers’
parsers can recognize supersets of their original language
via extensions; similarly, C3’s default HTML parser sup-
ports extensions that add new HTML tags (which are im-
plemented by new C# DOM classes as described above;
see also Section 3.1).

An extensible HTML parser has only two dependen-
cies: a means for constructing a new node given a tag
name, and a factory method for creating a new node and
inserting it into a tree. This interface is far simpler than
that of any DOM node, and so exists as the separate
INode interface. The parser has no hard dependency on
a specific DOM implementation, and a minimal imple-
mentation of the INode interface can be used to test the
parser independently of the DOM implementation. The
default parser implementation is given a DOM node fac-
tory that can construct INodes for the built-in HTML tag
names. Extending the parser via this factory is discussed
in Section 3.1.

2.5 Computing visual structure

The layout engine takes a document and its stylesheets,
and produces as output a layout tree, an intermediate data
structure that contains sufficient information to display
a visual representation of the document. The renderer
then consults the layout tree to draw the document in a
platform- or toolkit-specific manner.

Computing a layout tree requires three steps: first,
DOM nodes are attributed with style information accord-
ing to any present stylesheets; second, the layout tree’s
structure is determined; and third, nodes of the layout tree
are annotated with concrete styles (placement and sizing,
fonts and colors, etc.) for the renderer to use. Each of
these steps admits a naı̈ve reference implementation, but
both more efficient and more extensible algorithms are
possible. We focus on the former here; layout extensibil-
ity is revisited in Section 3.3.

Assigning node styles The algorithm that decorates
DOM nodes with CSS styles does not depend on any
other parts of layout computation. Despite the top-down
implementation suggested by the name “cascading style
sheets”, several efficient strategies exist, including recent
and ongoing research in parallel approaches [11].

Our default style “cascading” algorithm is self-
contained, single-threaded and straightforward. It deco-
rates each DOM node with an immutable calculated style
object, which is then passed to the related layout tree

4

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 65

node during construction. This immutable style suffices
thereafter in determining visual appearance.

Determining layout tree structure The layout tree is
generated from the DOM tree in a single traversal. The
two trees are approximately the same shape; the layout
tree may omit nodes for invisible DOM elements (e.g.
〈script/〉), and may insert “synthetic” nodes to simplify
later layout invariants. For consistency, this transforma-
tion must be serialized between DOM mutations, and so
runs on the DOM thread (see Section 2.7). The layout tree
must preserve a mapping between DOM elements and
the layout nodes they engender, so that mouse movement
(which occurs in the renderer’s world of screen pixels and
layout tree nodes) can be routed to the correct target node
(i.e. a DOM element). A naı̈ve pointer-based solution
runs afoul of an important design decision: C3’s archi-
tectural goals of modularity require that the layout and
DOM trees share no pointers. Instead, all DOM nodes
are given unique numeric ids, which are preserved by the
DOM-to-layout tree transformation. Mouse targeting can
now be defined in terms of these ids while preserving
pointer-isolation of the DOM from layout.

Solving layout constraints The essence of any layout
algorithm is to solve constraints governing the placement
and appearance of document elements. In HTML, these
constraints are irregular and informally specified (if at
all). Consequently the constraints are typically solved
by a manual, multi-pass algorithm over the layout tree,
rather than a generic constraint-solver [11]. The manual
algorithms found in production HTML platforms are often
tightly optimized to eliminate some passes for efficiency.

C3’s architecture admits such optimized approaches,
too; our reference implementation keeps the steps separate
for clarity and ease of experimentation. Indeed, because
the layout tree interface does not assume a particular
implementation strategy, several layout algorithm variants
have been explored in C3 with minimal modifications to
the layout algorithm or components dependent on the
computed layout tree.

2.6 Accommodating Privileged UI
Both Firefox and Chrome implement some (or all) of
their user interface (e.g. address bar, tabs, etc.) in declar-
ative markup, rather than hard-coded native controls. In
both cases this gives the browsers increased flexibility; it
also enables Firefox’s extension ecosystem. The markup
used by these browsers is trusted, and can access inter-
nal APIs not available to web content. To distinguish
the two, trusted UI files are accessed via a different
URL scheme: e.g., Firefox’s main UI is loaded using
chrome://browser/content/browser.xul.

We chose to implement our prototype browser’s UI in
HTML for two reasons. First, we wanted to experiment
with writing sophisticated applications entirely within the
HTML/CSS/JS platform and experience first-hand what
challenges arose. Even in our prototype, such experi-
ence led to the two security-related changes described
below. Secondly, having our UI in HTML opens the
door to the extensions described in Section 3; the en-
tirety of a C3-based application is available for extension.
Like Firefox, our browser’s UI is available at a privi-
leged URL: launching C3 with a command-line argument
of chrome://browser/tabbrowser.html will display
the browser UI. Launching it with the URL of any web-
site will display that site without any surrounding browser
chrome. Currently, we only permit HTML file resources
bundled within the C3 assembly itself to be given privi-
leged chrome:// URLs.

Designing this prototype exposed deliberate limitations
in HTML when examining the navigation history of child
windows (popups or 〈iframe/〉s): the APIs restrict access
to same-origin sites only, and are write-only. A parent
window cannot see what site a child is on unless it is from
the same origin as the parent, and can never see what sites
a child has visited. A browser must avoid both of these
restrictions so that it can implement the address bar.

Rather than change API visibility, C3 extends the DOM
API in two ways. First, it gives privileged pages (i.e.,
from chrome:// URLs) a new childnavigated noti-
fication when their children are navigated, just before
the onbeforeunload events that the children already
receive. Second, it treats chrome:// URLs as trusted
origins that always pass same-origin checks. The trusted-
origin mechanism and the custom navigation event suffice
to implement our browser UI.

2.7 Threading architecture

One important point of flexibility is the mapping between
threads and the HTML platform components described
above. We do not impose any threading discipline be-
yond necessary serialization required by HTML and DOM
standards. This is made possible by our decision to pre-
vent data races by design: in our architecture, data is
either immutable, or it is not shared amongst multiple
components. Thus, it is possible to choose any thread-
ing discipline within a single component; a single thread
could be shared among all components for debugging, or
several threads could be used within each component to
implement worker queues.

Below, we describe the default allocation of threads
among components, as well as key concurrency concerns
for each component.

5

66 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

2.7.1 The DOM/JS thread(s)

The DOM event dispatch loop and JS execution are
single-threaded within a set of related web pages7. “Sep-
arate” pages that are unrelated8 can run entirely paral-
lel with each other. Thus, sessions with several tabs or
windows open simultaneously use multiple DOM event
dispatch loops.

In C3, each distinct event loop consists of two threads:
a mutator to run script and a watchdog to abort run-away
scripts. Our system maintains the invariant that all mu-
tator threads are heap-disjoint: JS code executing in a
task on one event loop can only access the DOM nodes of
documents sharing that event loop. This invariant, com-
bined with the single-threaded execution model of JS
(from the script’s point of view), means all DOM nodes
and synchronous DOM operations can be lock-free. (Op-
erations involving local storage are asynchronous and
must be protected by the storage mutex.) When a window
or 〈iframe/〉 is navigated, the relevant event loop may
change. An event loop manager is responsible for main-
taining the mappings between windows and event loops
to preserve the disjoint-heap invariant.

Every DOM manipulation (node creation, deletion, in-
sertion or removal; attribute creation or modification; etc.)
notifies any registered DOM listener via a straightforward
interface. One such listener is used to inform the layout
engine of all document manipulations; others could be
used for testing or various diagnostic purposes.

2.7.2 The layout thread(s)

Each top-level browser window is assigned a layout
thread, responsible for resolving layout constraints as
described in Section 2.5. Several browser windows might
be simultaneously visible on screen, so their layout com-
putations must proceed in parallel for each window to
quickly reflect mutations to the underlying documents.
Once the DOM thread computes a layout tree, it transfers
ownership of the tree to the layout thread, and begins
building a new tree. Any external resources necessary for
layout or display (such as image data), are also passed
to the layout thread as uninterpreted .Net streams. This
isolates the DOM thread from any computational errors
on the layout threads.

2.7.3 The UI thread

It is common for GUI toolkits to impose threading restric-
tions, such as only accessing UI widgets from their creat-
ing thread. These restrictions influence the platform inso-

7We ignore for now web-workers, which are an orthogonal concern.
8Defining when pages are actually separate is non-trivial, and is a

refinement of the same-origin policy, which in turn has been the subject
of considerable research [7, 2]

far as replaced elements (such as buttons or text boxes)
are implemented by toolkit widgets.

C3 is agnostic in choosing a particular toolkit, but
rather exposes abstract interfaces for the few widget prop-
erties actually needed by layout. Our prototype currently
uses the .Net WinForms toolkit, which designates one
thread as the “UI thread”, to which all input events are
dispatched and on which all widgets must be accessed.
When the DOM encounters a replaced element, an actual
WinForms widget must be constructed so that layout can
in turn set style properties on that widget. This requires
synchronous calls from the DOM and layout threads to
the UI thread. Note, however, that responding to events
(such as mouse clicks or key presses) is asynchronous,
due to the indirection introduced by numeric node ids: the
UI thread simply adds a message to the DOM event loop
with the relevant ids; the DOM thread will process that
message in due course.

3 C3 Extension points

The extension mechanisms we introduce into C3 stem
from a principled examination of the various semantics of
HTML. Our interactions with webapps tacitly rely on ma-
nipulating HTML in two distinct ways: we can interpret
it operationally via the DOM and JS programs, and we
can interpret it visually via CSS and its associated layout
algorithms. Teasing these interpretations apart leads to
the following two transformation pipelines:

• JS global object + HTML source1,2

HTML parsing−−−−−−−−−→ 3DOM subtrees4

onload−−−−→ DOM document5

JS events−−−−−−→ DOM document . . .

• DOM document + CSS source6

CSS parsing−−−−−−−−→ CSS content model7

layout−−−−→ CSS box model

The first pipeline distinguishes four phases of the docu-
ment lifecycle, from textual sources through to the event-
based running of JS: the initial onload event marks the
transition point after which the document is asserted to
be fully loaded; before this event fires, the page may
be inconsistent as critical resources in the page may not
yet have loaded, or scripts may still be writing into the
document stream.

Explicitly highlighting these pipeline stages leads to
designing extension points in a principled way: we can
extend the inputs accepted or the outputs produced by
each stage, as long as we produce outputs that are accept-
able inputs to the following stages. This is in contrast to

6

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 67

public interface IDOMTagFactory {

IEnumerable<Element> TagTemplates { get; }

}

public class HelloWorldTag : Element {

string TagName { get { return "HelloWorld"; } }

...

}

public class HelloWorldFactory : IDOMTagFactory {

IEnumerable<Element> TagTemplates { get {

yield return new HelloWorldTag();

} }

}

Figure 2: Factory and simple extension defining new tags

the extension models of existing browsers, which support
various extension points without relating them to other
possibilities or to the browser’s behavior as a whole. The
extension points engendered by the pipelines above are
(as numbered):

1. Before beginning HTML parsing, extensions may
provide new tag names and DOM-node implementa-
tions for the parser to support.

2. Before running any scripts, extensions may modify
the JS global scope by adding or removing bindings.

3. Before inserting subtrees into the document, exten-
sions may preprocess them using arbitrary C# code.

4. Before firing the onload event, extensions may
declaratively inject new content into the nearly-
complete tree using overlays.

5. Once the document is complete and events are run-
ning, extensions may modify existing event handlers
using aspects.

6. Before beginning CSS parsing, extensions may pro-
vide new CSS properties and values for the parser
to support.

7. Before computing layout, extensions may provide
new layout box types and implementations to affect
layout and rendering.

Some of these extension points are simpler than others
due to regularities in the input language, others are more
complicated, and others are as yet unimplemented. Points
(1) and (5) are novel to C3. C3 does not yet implement
points (6) or (7), though they are planned future work;
they are also novel. We explain points (1), (3) and (4) in
Section 3.1, points (2) and (5) in Section 3.2, and finally
points (6) and (7) in Section 3.3.

3.1 HTML parsing/document construction
Point (1): New tags and DOM nodes The HTML
parser recognizes concrete syntax resembling
〈tagName attrName=“val”/〉 and constructs new
DOM nodes for each tag. In most browsers, the choices
of which tag names to recognize, and what corresponding
objects to construct, are tightly coupled into the parser. In
C3, however, we abstract both of these decisions behind a
factory, whose interface is shown in the top of Figure 2.9

Besides simplifying our code’s internal structure, this
approach permits extensions to contribute factories too.

Our default implementation of this interface provides
one “template” element for each of the standard HTML
tag names; these templates inform the parser which tag
names are recognized, and are then cloned as needed
by the parser. Any unknown tag names fall back to re-
turning an HTMLUnknownElement object, as defined by
the HTML specification. However, if an extension con-
tributes another factory that provides additional templates,
the parser seamlessly can clone those instead of using the
fallback: effectively, this extends the language recognized
by the parser, as XML3D needed, for example. A trivial
example that adds support for a 〈HelloWorld/〉 tag is
shown in Figure 2. A more realistic example is used by
C3 to support overlays (see Figure 4 and below).

The factory abstraction also gives us the flexibility
to support additional experiments: rather than adding
new tags, a researcher might wish to modify existing tags.
Therefore, we permit factories to provide a new template
for existing tag names—and we require that at most one
extension does so per tag name. This permits extensions
to easily subclass the C3 DOM implementation, e.g. to
add instrumentation or auditing, or to modify existing
functionality. Together, these extensions yield a parser
that accepts a superset of the standard HTML tags and
still produces a DOM tree as output.

Point (3): Preprocessing subtrees The HTML 5 pars-
ing algorithm produces a document tree in a bottom-up
manner: nodes are created and then attached to parent
nodes, which eventually are attached to the root DOM
node. Compiler-authors have long known that it is use-
ful to support semantic actions, callbacks that examine
or preprocess subtrees as they are constructed. Indeed,
the HTML parsing algorithm itself specifies some behav-
iors that are essentially semantic actions, e.g., “when an
〈img/〉 is inserted into the document, download the ref-
erenced image file”. Extensions might use this ability to
collect statistics on the document, or to sanitize it dur-
ing construction. These actions typically are local—they
examine just the newly-inserted tree—and rarely mutate

9Firefox seems not to use a factory; Chrome uses one, but the choice
of factory is fixed at compile-time. C3 can load factories dynamically.

7

68 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

public interface IParserMutatorExtension {

IEnumerable<string> TagNamesOfInterest { get; }

void OnFinishedParsing(Element element);

}

Figure 3: The interface for HTML parser semantic actions

Base constructions
〈overlay/〉 Root node of extension document
〈insert

selector=“selector”
where=“before|after”/〉

Insert new content adjacent to all
nodes matched by CSS selector

〈replace
selector=“selector”/〉

Replace existing subtrees matching
selector with new content

〈self
attrName=“value”. . ./〉

Used within 〈replace/〉, refers to
node being replaced and permits
modifying its attributes

〈contents/〉 Used within 〈replace/〉, refers to
children of node being replaced

Syntactic sugar
〈before . . ./〉 〈insert where=“before”. . ./〉
〈after . . ./〉 〈insert where=“after”. . ./〉
〈modify selector=“sel”

where=“before”〉
〈self new attributes〉

new content
〈/self〉

〈/modify〉

〈replace selector=“sel”〉
〈self new attributes〉

new content
〈contents/〉

〈/self〉
〈/replace〉
and likewise for where=“after”

Figure 4: The overlay language for document construction
extensions. The bottom set of tags are syntactic sugar.

the surrounding document. (In HTML in particular, be-
cause inline scripts execute during the parsing phase, the
document may change arbitrarily between two successive
semantic-action callbacks, and so semantic actions will
be challenging to write if they are not local.)

Extensions in C3 can define custom semantic actions
using the interface shown in Figure 3. The interface sup-
plies a list of tag names, and a callback to be used when
tags of those names are constructed.

Point (4): Document construction Firefox pioneered
the ability to both define application UI and define ex-
tensions to that UI using a single declarative markup
language (XUL), an approach whose success is witnessed
by the variety and popularity of Firefox’s extensions. The
fundamental construction is the overlay, which behaves
like a “tree-shaped patch”: the children of the 〈overlay/〉
select nodes in a target document and define content to
be inserted into or modified within them, much as hunks
within a patch select lines in a target text file. C3 adapts
and generalizes this idea for HTML.

Our implementation adds eight new tags to HTML,

〈overlay〉
〈modify selector=“head” where=“after”〉

〈self〉
〈style〉
li > #bullet { color: blue; }

〈/style〉
〈/self〉

〈/modify〉
〈before selector=“li > *:first-child”〉

〈span class=“bullet”〉•〈/span〉
〈/before〉

〈/overlay〉

Figure 5: Simulating list bullets (in language of Fig. 4)

shown in Figure 4, to define overlays and the various ac-
tions they can perform. As they are a language extension
to HTML, we inform the parser of these new tags using
the IDOMTagFactory described above.10 Overlays can
〈insert/〉 or 〈replace/〉 elements, as matched by CSS
selectors. To support modifying content, we give over-
lays the ability to refer to the target node (〈self/〉) or its
〈contents/〉. Finally, we define syntactic sugar to make
overlays easier to write.

Figure 5 shows a simple but real example used dur-
ing development of our system, to simulate bulleted lists
while generated content support was not yet implemented.
It appends a 〈style/〉 element to the end of the 〈head/〉
subtree (and fails if no 〈head/〉 element exists), and in-
serts a 〈span/〉 element at the beginning of each 〈li/〉.

The subtlety of defining the semantics of overlays lies
in their interactions with scripts: when should overlays
be applied to the target document? Clearly overlays must
be applied after the document structure is present, so a
strawman approach would apply overlays “when pars-
ing finishes”. This exposes a potential inconsistency, as
scripts that run during parsing would see a partial, not-yet-
overlaid document, with nodes a and b adjacent, while
scripts that run after parsing would see an overlaid docu-
ment where a and b may no longer be adjacent. However,
the HTML specification offers a way out: the DOM raises
a particular event, onload, that indicates the document
has finished loading and is ready to begin execution. Prior
to that point, the document structure is in flux—and so
we choose to apply overlays as part of that flux, imme-
diately before the onload event is fired. This may break
poorly-coded sites, but in practice has not been an issue
with Firefox’s extensions.

10We apply the overlays using just one general-purpose callback
within our code. This callback could be factored as a standalone, ad-hoc
extension point, making overlays themselves truly an extension to C3.

8

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 69

3.2 JS execution

Point (2): Runtime environment Extensions such as
Maverick may wish to inject new properties into the
JS global object. This object is an input to all scripts,
and provides the initial set of functionality available
to pages. As an input, it must be constructed before
HTML parsing begins, as the constructed DOM nodes
should be consistent with the properties available from
the global object: e.g., document.body must be an in-
stance of window.HTMLBodyElement. This point in the
document’s execution is stable—no scripts have executed,
no nodes have been constructed—and so we permit ex-
tensions to manipulate the global object as they please.
(This could lead to inconsistencies, e.g. if they modify
window.HTMLBodyElement but do not replace the im-
plementation of 〈body/〉 tags using the prior extension
points. We ignore such buggy extensions for now.)

Point (5): Scripts themselves The extensions de-
scribed so far modify discrete pieces of implementation,
such as individual node types or the document structure,
because there exist ways to name each of these resources
statically: e.g., overlays can examine the HTML source
of a page and write CSS selectors to name parts of the
structure. The analogous extension to script code needs
to modify the sources of individual functions. Many JS
idioms have been developed to achieve this, but they all
suffer from JS’s dynamic nature: function names do not
exist statically, and scripts can create new functions or
alias existing ones at runtime; no static inspection of the
scripts’ sources can precisely identify these names. More-
over, the common idioms used by extensions today are
brittle and prone to silent failure.

C3 includes our prior work [10], which addresses this
disparity by modifying the JS compiler to support aspect
oriented programming using a dynamic weaving mecha-
nism to advise closures (rather than variables that point
to them). Only a dynamic approach can detect runtime-
evaluated functions, and this requires compiler support
to advise all aliases to a function (rather than individual
names). As a side benefit, aspects’ integration with the
compiler often improves the performance of the advice:
in the work cited, we successfully evaluated our approach
on the sources of twenty Firefox extensions, and showed
that they could express nearly all observed idioms with
shorter, clearer and often faster code.

3.3 CSS and layout

Discussion An extensible CSS engine permits incre-
mentally adding new features to layout in a modular, clean
way. The CSS 3 specifications themselves are a step in
this direction, breaking the tightly-coupled CSS 2.1 spec-

ification into smaller pieces. A true test of our proposed
extension points’ expressiveness would be to implement
new CSS 3 features, such as generated content or the
flex-box model, as extensions. An even harder test would
be to extricate older CSS 2 features, such as floats, and re-
implement them as compositional extensions. The benefit
to successfully implementing these extensions is clear: a
stronger understanding of the semantics of CSS features.

We discovered the possibility of these CSS extension
points quite recently, in exploring the consequences of
making each stage of the layout pipeline extensible “in the
same way” as the DOM/JS pipeline is. To our knowledge,
implementing the extension points below has not been
done before in any browser, and is planned future work.

Point (6): Parsing CSS values We can extend the
CSS language in four ways: 1) by adding new prop-
erty names and associated values, 2) by recognizing new
values for existing properties, 3) by extending the set of
selectors, or 4) by adding entirely new syntax outside of
style declaration blocks. The latter two are beyond the
scope of an extension, as they require more sweeping
changes to both the parser and to layout, and are better
suited to an alternate implementation of the CSS parser
altogether (i.e., a different configuration of C3).

Supporting even just the first two extension points is
nontrivial. Unlike HTML’s uniform tag syntax, nearly
every CSS attribute has its own idiosyncratic syntax:

font: italic bold 10pt/1.2em "Gentium", serif;

margin: 0 0 2em 3pt;

display: inline-block;

background-image: url(mypic.jpg);

...

However, a style declaration itself is very regular, being a
semicolon-separated list of colon-separated name/value
pairs. Moreover, the CSS parsing algorithm discards
any un-parsable attributes (up to the semicolon), and then
parse the rest of the style declaration normally.

Supporting the first extension point—new property
names—requires making the parser table-driven and reg-
istering value-parsing routines for each known property
name. Then, like HTML tag extensions, CSS property ex-
tensions can register new property names and callbacks to
parse the values. (Those values must never contain semi-
colons, or else the underlying parsing algorithm would
not be able to separate one attribute from another.)

Supporting the second extension point is subtler. Un-
like the HTML parser’s uniqueness constraint on tag
names, here multiple extensions might contribute new
values to an existing property; we must ensure that the
syntaxes of such new values do not overlap, or else pro-
vide some ranking to choose among them.

9

70 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Point (7): Composing layout The CSS layout algo-
rithm describes how to transform the document tree (the
content model) into a tree of boxes of varying types, ap-
pearances and positions. Some boxes represent lines of
text, while others represent checkboxes, for example. This
transformation is not obviously compositional: many
CSS properties interact with each other in non-trivial
ways to determine precisely which types of boxes to con-
struct. Rather than hard-code the interactions, the layout
transformation must become table-driven as well. Then
both types of extension above become easy: extensions
can create new box subtypes, and patch entries in the
transformation table to indicate when to create them.

4 Evaluation

The C3 platform is rapidly evolving, and only a few ex-
tensions have yet been written. To evaluate our platform,
we examine: the performance of our extension points,
ensuring that the benefits are not outweighed by huge
overheads; the expressiveness, both in the ease of “port-
ing” existing extensions to our model and in comparison
to other browsers’ models; and the security implications
of providing such pervasive customizations.

4.1 Performance
Any time spent running the extension manager or conflict
analyses slows down the perceived performance of the
browser. Fortunately, this process is very cheap: with one
extension of each supported type, it costs roughly 100ms
to run the extensions. This time includes: enumerating all
extensions (27ms), loading all extensions (4ms), and de-
tecting parser-tag conflicts (3ms), mutator conflicts (2ms),
and overlay conflicts (72ms). All but the last of these
tasks runs just once, at browser startup; overlay conflict
detection must run per-page. Enumerating all extensions
currently reads a directory, and so scales linearly with
the number of extensions. Parser and mutator conflict
detection scale linearly with the number of extensions
as well; overlay conflict detection is more expensive as
each overlay provides more interacting constraints than
other types of extensions do. If necessary, these costs
can be amortized further by caching the results of conflict
detection between browser executions.

4.2 Expressiveness
Figure 6 lists several examples of extensions available
for IE, Chrome, and Firefox, and the corresponding C3
extension points they would use if ported to C3. Many of
these extensions simply overlay the browser’s user inter-
face and require no additional support from the browser.
Some, such as Smooth Gestures or LastTab, add or revise

UI functionality. As our UI is entirely script-driven, we
support these via script extensions. Others, such as the
various Native Client libraries, are sandboxed programs
that are then exposed through JS objects; we support the
JS objects and .Net provides the sandboxing.

Figure 6 also shows some research projects that are not
implementable as extensions in any other browser except
C3. As described below, these projects extend the HTML
language, CSS layout, and JS environment to achieve
their functionality. Implementing these on C3 requires
no hacking of C3 , leading to a much lower learning
curve and fewer implementation pitfalls than modifying
existing browsers. We examine some examples, and how
they might look in C3, in more detail here.

4.2.1 XML3D: Extending HTML, CSS and layout

XML3D [14] is a recent project aiming to provide
3D scenes and real-time ray-traced graphics for web
pages, in a declarative form analogous to 〈svg/〉 for two-
dimensional content. This work uses XML namespaces to
define new scene-description tags and requires modifying
each browser to recognize them and construct special-
ized DOM nodes accordingly. To style the scenes, this
work must modify the CSS engine to recognize new style
attributes. Scripting the scenes and making them inter-
active requires constructing JS objects that expose the
customized properties of the new DOM nodes. It also
entails informing the browser of a new scripting language
(AnySL) tailored to animating 3D scenes.

Instead of modifying the browser to recognize new tag
names, we can use the new-tag extension point to define
them in an extension, and provide a subclassed 〈script/〉
implementation recognizing AnySL. Similarly, we can
provide new CSS values and new box subclasses for
layout to use. The full XML3D extension would consist
of these four extension hooks and the ray-tracer engine.

4.2.2 Maverick: Extensions to the global scope

Maverick [12] aims to connect devices such as webcams
or USB keys to web content, by writing device drivers in
JS and connecting them to the devices via Native Client
(NaCl) [17]. NaCl exposes a socket-like interface to web
JS over which all interactions with native modules are
multiplexed. To expose its API to JS, Maverick injects an
actual DOM 〈embed/〉 node into the document, stashing
state within it, and using JS properties on that object to
communicate with NaCl. This object can then transliterate
the image frames from the webcam into Base64-encoded
src URLs for other scripts’ use in 〈img/〉 tags, and so
reuse the browser’s image decoding libraries.

There are two main annoyances with Maverick’s im-
plementation that could be avoided in C3. First, NaCl

10

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 71

Extensions Available from C3-equivalent extension points used
IE:

Explorer bars (4) overlay the main browser UI
Context menu items (4) overlay the context menu in the browser UI
Accelerators (4) overlay the context menu
WebSlices (4) overlay browser UI

Chrome:
Gmail checkers https://chrome.google.com/

extensions/search?q=gmail

(4) overlay browser UI, (5) script advice

Skype http://go.skype.com/dc/

clicktocall

(4) overlay browser UI, (2) new JS objects, (5) script
advice

Smooth Gestures http://goo.gl/rN5Y (4) overlay browser UI, (5) script advice
Native Client libraries http://code.google.com/p/

nativeclient/

(2) new JS objects

Firefox:
TreeStyleTab https://addons.mozilla.org/

en-US/firefox/addon/5890/

(4) overlay tabbar in browser UI, inject CSS

LastTab https://addons.mozilla.org/

en-US/firefox/addon/112/

(5) script advice

Perspectives [16] (5) script extensions, (4) overlay error UI
Firebug http://getfirebug.com/ (4) overlays, (5) script extensions, (2) new JS objects

Research projects:
XML3D [14] (1) new HTML tags, (6) new CSS values, (7) new layouts
Maverick [12] (2) new JS objects
Fine [6] (1) HTML 〈script/〉 tag replacement
RePriv [5] (2) new JS objects

Figure 6: Example extensions in IE, Firefox, and Chrome, as well as research projects best implemented in C3, and the
C3 extension points that they might use

isolates native modules in a strong sandbox that prevents
direct communication with resources like devices; Maver-
ick could not be implemented in NaCl without modifying
the sandbox to expose a new system call and writing
untrusted glue code to connect it to JS; in C3, trusted
JS objects can be added without recompiling C3 itself.
Second, implementing Maverick’s exposed API requires
carefully managing low-level NPAPI routines that must
mimic JS’s name-based property dispatch; in C3, expos-
ing properties can simply reuse the JS property dispatch,
as in Section 2.3.

Ultimately, using a DOM node to expose a device is
not the right abstraction: it is not a node in the document
but rather a global JS object like XMLHttpRequest. And
while using Base64-encoded URLs is a convenient imple-
mentation trick, it would be far more natural to call the
image-decoding libraries directly, avoiding both overhead
and potential transcoding errors.

4.2.3 RePriv: Extensions hosting extensions

RePriv [5] runs in the background of the browser and
mines user browsing history to infer personal interests. It
carefully guards the release of that information to web-
sites, via APIs whose uses can be verified to avoid un-
wanted information leakage. At the same time, it offers its

own extension points for site-specific “interest miners” to
use to improve the quality of inferred information. These
miners are all scheduled to run during an onload event
handler registered by RePriv. Finally, extensions can be
written to use the collected information to reorganize web
pages at the client to match the user’s interests.

While this functionality is largely implementable as a
plug-in in other browsers, several factors make it much
easier to implement in C3. First and foremost, RePriv’s
security guarantees rely on C3 being entirely managed
code: we can remove the browser from RePriv’s trusted
computing base by isolating RePriv extensions in an App-
Domain and leveraging .Net’s freedom from common
exploits such as buffer overflows. Obtaining such a strong
security guarantee in other browsers is at best very chal-
lenging. Second, the document construction hook makes
it trivial for RePriv to install the onload event handler.
Third, AppDomains ensure the memory isolation of every
miner from each other and from the DOM of the doc-
ument, except as mediated by RePriv’s own APIs; this
makes proving the desired security properties much eas-
ier. Finally, RePriv uses Fine [6] for writing its interest
miners; since C3, RePriv and Fine target .Net, RePriv can
reuse .Net’s assembly-loading mechanisms.

11

72 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

4.3 Other extension models
4.3.1 Extensions to application UI

Internet Explorer 4.0 introduced two extension points per-
mitting customized toolbars (Explorer Bars) and context-
menu entries. These extensions were written in native C++
code, had full access to the browser’s internal DOM repre-
sentations, and could implement essentially any function-
ality they chose. Unsurprisingly, early extensions often
compromised the browser’s security and stability. IE 8
later introduced two new extension points that permit-
ted self-updating bookmarks of web-page snippets (Web
Slices) and context-menu items to speed access to repeti-
tive tasks (Accelerators), providing safer implementations
of common uses for Explorer Bars and context menus.

The majority of IE’s interface is not modifiable by ex-
tensions. By contrast, Firefox explored the possibility
that entire application interfaces could be implemented
in a markup language, and that a declarative extension
mechanism could overlay those UIs with new construc-
tions. Research projects such as Perspectives change the
way Firefox’s SSL connection errors are presented, while
others such as Xmarks or Weave synchronize bookmarks
and user settings between multiple browsers. The UI for
these extensions is written in precisely the same declar-
ative way as Firefox’s own UI, making it as simple to
extend Firefox’s browser UI as it is to design any website.

But the single most compelling feature of these ex-
tensions is also their greatest weakness: they permit im-
plementing features that were never anticipated by the
browser designers. End users can then install multiple
such extensions, thereby losing any assurance that the
composite browser is stable, or even that the extensions
are compatible with each other. Indeed, Chrome’s care-
fully curtailed extension model is largely a reaction to the
instabilities often seen with Firefox extensions. Chrome
permits extensions only minimal change to the browser’s
UI, and prevents interactions between extensions. For
comparison, Chrome directly implements bookmarks
and settings synchronization, and now permits extension
context-menu actions, but the Perspectives behavior re-
mains unimplementable by design.

Our design for overlays is based strongly on Firefox’s
declarative approach, but provides stronger semantics for
overlays so that we can detect and either prevent or correct
conflicts between multiple extensions. We also general-
ized several details of Firefox’s overlay mechanism for
greater convenience, without sacrificing its analyzability.

4.3.2 Extensions to scripts

In tandem with the UI extensions, almost the entirety
of Firefox’s UI behaviors are driven by JS, and again
extensions can manipulate those scripts to customize

those behaviors. A similar ability lets extensions modify
or inject scripts within web pages. Extensions such as
LastTab change the tab-switching order from cyclic to
most-recently-used, while others such as Ghostery block
so-called “web tracking bugs” from executing. Firefox
exposes a huge API, opening basically the entire plat-
form to extension scripts. This flexibility also poses a
problem: multiple extensions may attempt to modify the
same scripts, often leading to broken or partially-modified
scripts with unpredictable consequences.

Modern browser extension design, like Firefox’s Jet-
pack or Chrome’s extensions, are typically developed
using HTML, JS, and CSS. While Firefox “jetpacks” are
currently still fully-privileged, Chrome extensions run
in a sandboxed process. Chrome extensions cannot ac-
cess privileged information and cannot crash or hang the
browser. While these new guarantees are necessary for the
stability of a commercial system protecting valuable user
information, they also restrict the power of extensions.

One attempt to curtail these scripts’ interactions with
each other within web pages is the Fine project [6]. In-
stead of directly using JS, the authors use a dependently-
typed programming language to express the precise read-
and write-sets of extension scripts, and a security policy
constrains the information flow between them. Exten-
sions that satisfy the security policy are provably non-
conflicting. The Fine project can target C3 easily, either
by compiling its scripts to .Net assemblies and loading
them dynamically (by subclassing the 〈script/〉 tag), or
by statically compiling its scripts to JS and dynamically
injecting them into web content (via the JS global-object
hook). Guha et al. successfully ported twenty Chrome
extensions to Fine and compiled them to run on C3 with
minimal developer effort.

As mentioned earlier, C3 includes our prior work on
aspect-oriented programming for JS [10], permitting ex-
tensions clearer language mechanisms to express how
their modifications apply to existing code. Beyond the
performance gains and clarity improvements, by elimi-
nating the need for brittle mechanisms and exposing the
intent of the extension, compatibility analyses between
extensions become feasible.

4.4 Security considerations

Of the five implemented extension points, two are written
in .Net and have full access to our DOM internals. In
particular, new DOM nodes or new JS runtime objects
that subclass our implementation may use protected DOM
fields inappropriately and violate the same-origin policy.
We view this flexibility as both an asset and a liability:
it permits researchers to experiment with alternatives to
the SOP, or to prototype enhancements to HTML and
the DOM. At the same time, we do not advocate these

12

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 73

extensions for web-scale use. The remaining extension
points are either limited to safe, narrow .Net interfaces
or are written in HTML and JS and inherently subject to
the SOP. Sanitizing potentially unsafe .Net extensions to
preserve the SOP is itself an interesting research problem.
Possible approaches include using .Net AppDomains to
segregate extensions from the main DOM, or static analy-
ses to exclude unsafe accesses to DOM internals.

5 Future work

We have focused so far on the abilities extensions have
within our system. However, the more powerful exten-
sions become, the more likely they are to conflict with one
another. Certain extension points are easily amenable to
conflict detection; for example, two parser tag extensions
cannot both contribute the same new tag name. However,
in previous work we have shown that defining conflicts
precisely between overlay extensions, or between JS run-
time extensions, is a more challenging task [9] .

Assuming a suitable notion of extension conflict exists
for each extension type, it falls to the extension loading
mechanism to ensure that, whenever possible, conflicting
extensions are not loaded. In some ways this is very sim-
ilar to the job of a compile-time linker, ensuring that all
modules are compatible before producing the executable
image. Such load-time prevention gives users a much bet-
ter experience than in current browsers, where problems
never surface until runtime. However not all conflicts are
detectable statically, and so some runtime mechanism is
still needed to detect conflict, blame the offending exten-
sion, and prevent the conflict from recurring.

6 Conclusion

We presented C3, a platform implementing of HTML,
CSS and JS, and explored how its design was tuned for
easy reconfiguration and runtime extension. We presented
several motivating examples for each extension point,
and confirmed that our design is at least as expressive as
existing extension systems, supporting current extensions
as well as new ones not previously possible.

References
[1] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.

Protecting browsers from extension vulnerabilities. In NDSS
(2010).

[2] BARTH, A., WEINBERGER, J., AND SONG, D. Cross-origin
JavaScript capability leaks: Detection, exploitation, and defense.
In SSYM’09: Proceedings of the 18th conference on USENIX secu-
rity symposium (Berkeley, CA, USA, 2009), USENIX Association,
pp. 187–198.

[3] BEBENITA, M., BRANDNER, F., FAHNDRICH, M., LOGOZZO,
F., SCHULTE, W., TILLMANN, N., AND VENTER, H. SPUR:

A trace-based JIT compiler for CIL. In OOPSLA/SPLASH ’10:
Proceedings of the 25th ACM SIGPLAN conference on Object-
Oriented Programming Systems, Languages and Applications
(New York, NY, USA, 2010), ACM.

[4] FÄHNDRICH, M., BARNETT, M., AND LOGOZZO, F. Embedded
contract languages. In SAC ’10: Proceedings of the 2010 ACM
Symposium on Applied Computing (New York, NY, USA, 2010),
ACM, pp. 2103–2110.

[5] FREDRIKSON, M., AND LIVSHITS, B. RePriv: Re-envisioning
in-browser privacy. Tech. rep., Microsoft Research, Aug. 2010.

[6] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND SWAMY, N.
Verified security for browser extensions. MSR-TR to be available
11/01, September 2010.

[7] JACKSON, C., AND BARTH, A. Beware of finer-grained origins.
In In Web 2.0 Security and Privacy (W2SP 2008) (2008).

[8] JONES, C. G., LIU, R., MEYEROVICH, L., ASANOVIC, K.,
AND BODÍK, R. Parallelizing the Web Browser. In HotPar ’09:
Proceedings of the Workshop on Hot Topics in Parallelism (March
2009), USENIX.

[9] LERNER, B. S., AND GROSSMAN, D. Language support for
extensible web browsers. In APLWACA ’10: Proceedings of the
2010 Workshop on Analysis and Programming Languages for Web
Applications and Cloud Applications (New York, NY, USA, 2010),
ACM, pp. 39–43.

[10] LERNER, B. S., VENTER, H., AND GROSSMAN, D. Support-
ing dynamic, third-party code customizations in JavaScript using
aspects. In OOPSLA ’10: Companion of the 25th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (New York, NY, USA, 2010), ACM.

[11] MEYEROVICH, L. A., AND BODIK, R. Fast and parallel webpage
layout. In Proceedings of the 19th International Conference on
the World Wide Web (2010), WWW ’10, pp. 711–720.

[12] RICHARDSON, D. W., AND GRIBBLE, S. D. Maverick: Pro-
viding web applications with safe and flexible access to local
devices. In Proceedings of the 2011 USENIX Conference on Web
Application Development (June 2011), WebApps’11.

[13] RUDERMAN, J. Same origin policy for javascript, Oct. 2010.

[14] SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S.,
AND SLUSALLEK, P. XML3D: interactive 3d graphics for the
web. In Web3D ’10: Proceedings of the 15th International Confer-
ence on Web 3D Technology (New York, NY, USA, 2010), ACM,
pp. 175–184.

[15] WAGNER, G., GAL, A., WIMMER, C., EICH, B., AND FRANZ,
M. Compartmental memory management in a modern web
browser. In Proceedings of the International Symposium on Mem-
ory Management (June 2011), ACM. To appear.

[16] WENDLANDT, D., ANDERSEN, D. G., AND PERRIG, A. Per-
spectives: Improving ssh-style host authentication with multi-path
probing. In Proceedings of the USENIX Annual Technical Confer-
ence (Usenix ATC) (June 2008).

[17] YEE, B., SEHR, D., DARDYK, G., CHEN, J., MUTH, R., OR-
MANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR, N.
Native client: A sandbox for portable, untrusted x86 native code.
In Security and Privacy, 2009 30th IEEE Symposium on (May
2009), pp. 79 –93.

13

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 75

The Effectiveness of Application Permissions

Adrienne Porter Felt∗, Kate Greenwood, David Wagner
University of California, Berkeley
apf, kate eli, daw@cs.berkeley.edu

Abstract

Traditional user-based permission systems assign the
user’s full privileges to all applications. Modern plat-
forms are transitioning to a new model, in which each
application has a different set of permissions based on
its requirements. Application permissions offer several
advantages over traditional user-based permissions, but
these benefits rely on the assumption that applications
generally require less than full privileges. We explore
whether that assumption is realistic, which provides in-
sight into the value of application permissions.

We perform case studies on two platforms with appli-
cation permissions, the Google Chrome extension sys-
tem and the Android OS. We collect the permission re-
quirements of a large set of Google Chrome extensions
and Android applications. From this data, we evaluate
whether application permissions are effective at protect-
ing users. Our results indicate that application permis-
sions can have a positive impact on system security when
applications’ permission requirements are declared up-
front by the developer, but can be improved.

1 Introduction

Browsers and smartphone operating systems provide de-
velopment platforms that support thriving markets for
third-party applications. However, third-party code cre-
ates risks for the user. Some third-party authors are mali-
cious [3, 14], and third-party code can introduce vulner-
abilities because the authors of third-party applications
usually are not security experts [10, 19].

In order to protect users from the threats associated
with third-party code, modern platforms use application
permissions to control access to security- and privacy-
relevant parts of their APIs. Users decide whether to al-
low individual applications to access these sensitive re-
sources. Time-of-use systems prompt users to approve
permissions as needed by applications at runtime, and
install-time systems ask developers to declare their appli-

∗This material is based upon work supported under a National Sci-
ence Foundation Graduate Research Fellowship. Any opinions, find-
ings, conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

cations’ permission requirements up-front so that users
can grant them during installation.

Traditional user-based permission systems assign the
user’s full privileges to all of the user’s applications. In
the application permission model, however, each appli-
cation can have a customized set of permissions based
on its individual privilege requirements. If most applica-
tions can be satisfied with less than the user’s full priv-
ileges, then three advantages of application permissions
over the traditional user-based model are possible:

• User Consent: Security-conscious users may be
hesitant to grant access to dangerous permissions
without justification. For install-time systems, this
might alert some users to malware at installation;
for time-of-use systems, this can prevent an in-
stalled application from accessing sensitive content.

• Defense in Depth: For install-time systems, the im-
pact of a vulnerability in an application will be lim-
ited to the vulnerable application’s declared privi-
leges. This could also be true for a time-of-use sys-
tem in which developers declare their applications’
maximum possible permissions up-front.

• Review Triaging: Up-front application permission
declarations facilitate central review because secu-
rity reviewers can ignore low-privilege applications
and focus on applications with dangerous permis-
sions. This may decrease the average review time.

The real-world impact of these potential advantages de-
pends on low application permission requirements. We
evaluate the practical benefits of application permissions.
by performing a large-scale study of Google Chrome ex-
tensions and Android applications.

We perform a measurement study that quantifies the
permission use of 1000 Google Chrome extensions and
956 Android applications. Both platforms use install-
time permissions. Our study provides detailed data on
the permission requirements of applications in the wild.
From this data, we assess whether the platforms are real-
izing the potential benefits of application permissions.

We find that almost all applications ask for fewer than
maximum permissions. Only 14 of 1000 extensions re-
quest the most dangerous privileges, and the average An-
droid application requests fewer than 4 of 56 available

1

76 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

dangerous permissions. In comparison, all typical desk-
top applications receive the equivalent of all 56 Android
permissions. These results indicate that application per-
mission systems with up-front permission declarations
can decrease the impact of application vulnerabilities and
simplify review. This supports the adoption of install-
time permission systems. Current time-of-use platforms
do not require up-front permission declarations, which
means that they do not provide the same defense in depth
or review triaging benefits. However, time-of-use plat-
forms could gain these advantages by requiring devel-
opers to state the maximum set of permissions that the
application will require at runtime.

Although developers use fewer than full permissions,
Google Chrome and Android users are presented with at
least one dangerous permission request during the instal-
lation of almost every extension and application. Warn-
ing science literature indicates that frequent warnings de-
sensitize users, especially if most warnings do not lead to
negative consequences [15, 11]. Users are therefore not
likely to pay attention to or gain information from install-
time permission prompts in these systems. Changes to
these permission systems are necessary to reduce the
number of permission warnings shown to users.

We examine the effects of developer incentives, devel-
oper error, wildcard permissions, and permission granu-
larity on permission usage. We find that more than 10%
of applications request unneeded permissions. Our re-
sults show that developers are willing to make use of
fine-grained permissions, motivating a fine-grained per-
mission design. We suggest error detection tools and
other platform changes to reduce permission requests.

We view the Google Chrome and Android permission
systems as case studies for the future of application per-
missions. Our primary contribution is a large-scale study
that demonstrates the defense in depth and review triag-
ing benefits of application permissions with up-front dec-
larations. This motivates the addition of up-front devel-
oper permission declarations to time-of-use permission
systems. We also discuss tools and changes that would
improve the effectiveness of these systems. Our results
should guide the design of in-progress and future permis-
sion systems, and we also provide concrete suggestions
for Google Chrome and Android.

2 Background

Popular platforms with application permissions include
Apple iOS, the Safari extension system, and Facebook.
In-progress platforms with application permissions in-
clude Mozilla Jetpack, the W3C device API for web ap-
plications, and the Google installable web application
platform. In this paper, we focus on the Google Chr-
ome extension system and Android application platform,
which feature install-time permissions.

2.1 Google Chrome Extensions

Browser extension platforms allow third-party code to
run as part of the browser environment. Extensions
change the user’s browsing experience by editing web
sites and changing browser behavior. All extensions are
free from the official Google Chrome extension gallery.

Google Chrome extensions can have three types of
components: core extensions, content scripts, and plug-
ins. A core extension comprises the main, persistent
portion of an extension. Content scripts are injected
into web sites; when the page loads, the content script’s
JavaScript executes in the context of the site. A con-
tent script has full access to its host site’s page. Core
extensions and content scripts are written in JavaScript,
whereas plug-ins are native executables.

The extension gallery prompts the user with a warning
(e.g., Figure 1) that indicates what privileges the exten-
sion has requested:

Plug-ins. Plug-ins are native executables, so a plug-in
grants the extension full permissions to the user’s ma-
chine. The installation warning for an extension with a
plug-in says the extension “can access all data on your
computer.” Extensions with plug-ins are reviewed.

Browser managers. Core extensions can access the ex-
tension API, which is a set of browser managers. Each
manager is controlled with one permission. The man-
agers include history, bookmarks, and geolocation. The
browser warns that extensions with these permissions
can access “your browsing history,” “bookmarks,” and
“your physical location,” respectively. Non-security rel-
evant browser managers also exist, but their use does not
prompt a warning so we do not consider them.

Web access. The developer must specify web permis-
sions for content scripts and core extensions. Content
script web permissions determine which domains they
are installed on by default. A core extension can send
XMLHttpRequests (XHRs) and inject code into the
domains it has permissions for. Content script and core
extension domain permissions are listed separately.

All-domain access is the broadest web permission. If
either the content scripts or the core extension have all-
domain access, the browser warning states that the exten-

Figure 1: Google Chrome extension installation.

2

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 77

Figure 2: Android application installation.

sion “can access your data on all web sites.” Alternately,
a developer can list specific domains, using wildcards for
protocols or subdomains (e.g., *://*.bar.com). The
installation warning will list the requested domains.

2.2 Android Applications
The Android smartphone operating system supports
third-party Java applications, which can be installed by
users through the Android Market. Some third-party ap-
plications are free, and some are paid. Android applica-
tions do not need to be reviewed prior to inclusion in the
Android Market, although other phone vendors like RIM
and Apple maintain official review processes.

Android’s API provides access to phones’ cameras,
microphones, GPS, text messages, WiFi, Bluetooth, etc.
Most device access is controlled by permissions, al-
though large parts of the overall API are not protected
by permissions. Applications can define their own extra
permissions, but we only consider permissions defined
by the Android OS. There are 134 permissions in An-
droid 2.2. Permissions are categorized into threat levels:

Normal. API calls with annoying but not harmful conse-
quences are protected with Normal permissions. Exam-
ples include accessing information about available WiFi
networks, vibrating the phone, and setting the wallpaper.

Dangerous. API calls with potentially harmful con-
sequences are protected with Dangerous permissions.
These include actions that could cost the user money or
leak private information. Example permissions are the
ones used to protect opening a network socket, recording
audio, and using the camera.

Signature. The most sensitive operations are protected
with Signature permissions. These permissions are only
granted to applications that have been signed with the de-
vice manufacturer’s certificate. Market applications are
only eligible for Signature permissions if they are up-

dates to applications that were pre-installed and signed
by the device manufacturer. Requests for Signature per-
missions by other applications will be ignored. An ex-
ample is the ability to inject user events.

SignatureOrSystem. This category includes signed ap-
plications and applications that are installed into the
/system/app folder. Typically, this only includes pre-
installed applications. Advanced users who have rooted
their phones [9] can manually install applications into
this folder, but the official Market installation process
will not do so. Requests for SignatureOrSystem permis-
sions by other applications will be ignored. For example,
these permissions protect the ability to turn off the phone.

The Android Market displays a permission prompt to
the user during installation for Dangerous permissions
(e.g., Figure 2). Warnings for Dangerous permissions are
grouped into functionality categories. For example, all
Dangerous permissions related to location are displayed
as part of the same location warning. Normal permis-
sions can be viewed once the application is installed but
are hidden behind a collapsed drop-down menu. Signa-
ture/System permissions are not displayed to users at all.

3 Permission Prevalence

We examine the frequency of permission requests in
Google Chrome extensions and Android applications.
These results should be compared to traditional systems
that grant all applications full privileges.

3.1 Chrome Extensions
We study the 1000 “most popular” extensions, as ranked
in the official Google Chrome extension gallery1. Of
these, the 500 most popular extensions are relevant to
user consent and application vulnerabilities because they
comprise the majority of user downloads. The 500 less
popular extensions are installed in very few browsers, but
they are relevant to reviewers because reviewers would
need to examine all extensions in the directory. Table 1
provides an overview of our results.

3.1.1 Popular Extensions

Of the 500 most popular extensions, 91.4% ask for at
least one security-relevant permission. This indicates
that nearly every installation of an extension generates
at least one security warning2.

1We crawled the directory on August 27, 2010.
2We discovered that Google Chrome sometimes fails to generate a

warning for history access. The bug has been fixed for new versions [7].
Our analysis assumes that all requests for history access correctly gen-
erate a warning. The bug affects 5 of extensions in our set.

3

78 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Permission Popular Unpopular
Plug-ins 2.80 % 0.00 %
Web access 82.0 % 60.8 %

All domains 51.6 % 21.8 %
Specific domains 30.4 % 39.0 %

Browser manager(s) 74.8 % 43.4 %

Table 1: We measure the prevalence of permissions in 1000
Google Chrome extensions, split into the 500 most popular and
500 less popular. For web access, we report the highest permis-
sion of either the content script or core extension.

Plug-ins. Only 14 of the 500 extensions include plug-ins.

Browser managers. The majority of security warnings
are caused by the window manager, which is requested
by almost 75% of the 500 extensions. Requesting ac-
cess to the window manager generates a warning about
history access because history is indirectly available
through the window manager. The bookmark and ge-
olocation managers are requested infrequently: 44 times
and once, respectively.

All domains. Half of the 500 extensions request all-
domain access for either content scripts or the core ex-
tension. 52% request access to all http sites, and 42%
ask for all https sites.

Specific domains. One-third of extensions only request a
set of specific domains. This reduces the attack surface
and removes the possibility that an extension is snooping
on sensitive web data.

No warning. Only 43 of the 500 extensions do not re-
quest access to a security-relevant permission. 38 do not
ask for any permissions at all; they load normal web sites
into their extension windows or apply “themes” to the
user interface. The remainder use browser managers that
are not relevant to privacy or security.

3.1.2 Unpopular Extensions

Not all of the extensions listed in the “most popular” di-
rectory ranking are popular. After approximately the first
500 of 1000 popularity-ranked extensions, the number of
users per extension abruptly decreases, and applications
are no longer ranked solely according to the number of
users. (Although the ranking algorithm is private, we be-
lieve it incorporates time.) Figure 3 shows the transition.
16.2% of the bottom 500 extensions have fewer than ten
users. These 500 low-ranked extensions are of uneven
quality. E.g., two of them are unaltered versions of the
example extension on the developer web site.

Table 1 presents the results of our survey of the 500
less popular extensions. 71.6% of the less popular ex-
tensions have at least one security-relevant permission.
When compared to the top 500 extensions, the unpopu-

0

2000

4000

6000

8000

10000

12000

14000

16000

20
0

22
9

25
8

28
7

31
6

34
5

37
4

40
3

43
2

46
1

49
0

51
9

54
8

57
7

60
6

63
5

66
4

69
3

72
2

75
1

78
0

80
9

83
8

86
7

89
6

92
5

95
4

98
3

!
"#
$"
%

&'()*+$,-.%/+01%

Figure 3: Users per extension. We omit the first 200 for graph
clarity; the most popular extension has 1.3M users.

lar extensions request far fewer permissions than popular
extensions. We hypothesize that this is because less pop-
ular extensions offer less functionality. All of the differ-
ences are significant at a 1% significance level.

Unranked extensions are strictly less popular than the
unpopular extensions in our data set. If one were to re-
view the remaining 5, 696 unranked Google Chrome ex-
tensions, we expect their permission requirements would
be equivalent to or less than the permission requirements
of these 500 unpopular applications. We note with cau-
tion that future studies on permissions need to consider
the effect of popularity. E.g., a study that looks at the full
set of 6, 696 extensions to evaluate warning frequency
would would likely underestimate the number of warn-
ings that users see in practice by approximately 20%.

3.1.3 Evaluation

User Consent. Nearly all popular extensions (91% of the
top 500) generate at least one security warning, which
decreases the value of the warnings. History and all-
domain permissions are requested by more than half of
extensions; users have no reason to be suspicious of
extensions with these permissions because they are not
anomalous. However, warnings about plug-ins are rare
and therefore potentially notable.

Defense in Depth. This study shows that the permis-
sion system dramatically reduces the scope of potential
extension vulnerabilities. A negligible number of exten-
sions include plug-ins, which means that the typical ex-
tension vulnerability cannot yield access to the local ma-
chine. This is a significant improvement over the Firefox
and Internet Explorer extension systems, which provide
all extensions with access to the local file system. We
also find that all-domain access is frequent but not uni-
versal: 18% of popular extensions need no web access,
and 30.4% only need limited web access. This means
that the permission system prevents half of popular ex-
tensions from having unnecessary web privileges.

4

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 79

Review Triaging. Of the 1000 extensions in our study,
only 1.4% require review under current Google Chrome
review triaging procedures. (It should be noted, however,
that we do not know how many extensions requiring re-
view were submitted to the directory.) These results sug-
gest that the Firefox extension review process could be
significantly streamlined if Mozilla were to adopt a simi-
lar permission system. Reviewers could indisputably ig-
nore 28% of submitted extensions regardless of the exact
triaging criteria, based on the number of less-popular ex-
tensions with no security-relevant permissions.

3.2 Android Applications
We survey 100 paid and 856 free applications from the
Android Market3. For the paid applications, we selected
the 100 most popular. The free set is comprised of the
756 most popular and 100 most recently added applica-
tions. Unlike Google Chrome extensions, we observe no
differences between popular and recently added free ap-
plications, so we present them together. It is possible that
we do not see a popularity bias in Android applications
because of differences in the developer communities and
entrance barriers. We do not compare applications based
on their categories in the Android Market; the categories
are loosely defined and include a wide variety of different
functionality [1]. Although Android applications written
by the same developer could collude, we consider each
application’s permissions independently. Legitimate de-
velopers have no incentive to hide communication and
circumvent permission warnings.

3.2.1 Dangerous Permissions

We are primarily concerned with the prevalence of Dan-
gerous permissions, which are displayed as a warning to
users during installation and can have serious security
ramifications if abused. We find that 93% of free and
82% of paid applications have at least one Dangerous
permission, i.e., generate at least one permission prompt.

Android permissions are grouped into functionality
categories, and Table 1(a) shows how many applications
use at least one Dangerous permission from each given
category. This provides a relative measure of which parts
of the protected API are used by applications. All of the
permissions in a category display the same permission
prompt, so Table 1(a) also indicates how often users see
each type of permission request.

A small number of permissions are requested very fre-
quently. Table 1(b) shows the most popular Dangerous
permissions. In particular, the INTERNET permission is
heavily used. We find that 14% of free and 4% of paid
applications request INTERNET as their only Dangerous

3The applications were collected in October 2010.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 o

f A
pp

lic
at

io
ns

Number of Permissions

Figure 4: Percentage of paid and free applications with at least
the given number of Dangerous permissions.

permission. Barrera et al. hypothesize that free applica-
tions often need the INTERNET permission only to load
advertisements [1]. The disparity in INTERNET use be-
tween free and paid applications supports this hypothe-
sis, although it is still the most popular permission for
paid applications.

The prevalence of the INTERNET permission
means that most applications with access to per-
sonal information also have the ability to leak it.
For example, 97% of the 225 applications that
ask for ACCESS FINE LOCATION also request the
INTERNET permission. Similarly, 94% and 78% of the
respective applications that request READ CONTACTS
and READ CALENDAR also have the INTERNET per-
mission. We find that significantly more free than paid
applications request both Internet access and location
data, which possibly indicates widespread leakage of
location information to advertisers in free applications.
This corroborates a previous study that found that 20 of
30 randomly selected free applications send user infor-
mation to content or advertisement servers [5].

Although many applications ask for at least one Dan-
gerous permission, the number of permissions required
by an application is typically low. Even the most highly
privileged application in our set asks for 26 permissions,
which is less than half of the available 56 Dangerous per-
missions. Figure 4 shows the distribution of Dangerous
permission requests. Paid applications use an average of
3.99 Dangerous permissions, and free applications use
an average of 3.46 Dangerous permissions.

3.2.2 Signature and System Permissions

Applications can request Signature and SignatureOrSys-
tem permissions, but the operating system will not grant
the request unless the application has been signed by
the device manufacturer (Signature) or installed in the
/system/app folder (System). It is pointless for a typ-
ical application to request these permissions because the
permission requests will be ignored.

5

80 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

(a) Prevalence of Dangerous permissions, by category.

Category Free Paid
NETWORK** 87.3 % 66 %
SYSTEM TOOLS 39.7 % 50 %
STORAGE** 34.1 % 50 %
LOCATION** 38.9 % 25 %
PHONE CALLS 32.5 % 35 %
PERSONAL INFO 18.4 % 13 %
HARDWARE CONTROLS 12.5 % 17 %
COST MONEY 10.6 % 9 %
MESSAGES 3.7 % 5 %
ACCOUNTS 2.6 % 2 %
DEVELOPMENT TOOLS 0.35 % 0 %

(b) The most frequent Dangerous permissions and their categories.

Permission (Category) Free Paid
INTERNET** (NETWORK) 86.6 % 65 %
WRITE EXTERNAL STORAGE** (STORAGE) 34.1 % 50 %
ACCESS COARSE LOCATION** (LOCATION) 33.4 % 20 %
READ PHONE STATE (PHONE CALLS) 32.1 % 35 %
WAKE LOCK** (SYSTEM TOOLS) 24.2 % 40 %
ACCESS FINE LOCATION (LOCATION) 23.4 % 24 %
READ CONTACTS (PERSONAL INFO) 16.1 % 11 %
WRITE SETTINGS (SYSTEM TOOLS) 13.4 % 18 %
GET TASKS* (SYSTEM TOOLS) 4.4 % 11 %

Table 2: Survey of 856 free and 100 paid Android applications. We indicate significant difference between the free and paid
applications at 1% (**) and 5% (*) significance levels.

As far as we are aware, none of the paid applications
in our data set are signed or distributed by device man-
ufacturers. Three of the paid applications request Sig-
nature permissions, and five request SignatureOrSystem
permissions. Of the free applications, 25 request Sig-
nature permissions, 30 request SignatureOrSystem per-
missions, and four request both. We have found four
of the aforementioned free applications pre-installed on
phones; the remainder will not receive the permissions
on a typical device. Requests for unobtainable permis-
sions may be developer error or leftover from testing.

3.2.3 Evaluation

User Consent. Nearly all applications (93% of free and
82% of paid) ask for at least one Dangerous permis-
sion, which indicates that users are accustomed to in-
stalling applications with Dangerous permissions. The
INTERNET permission is so widely requested that users
cannot consider its warning anomalous. Security guide-
lines or anti-virus programs that warn against installing
applications with access to both the Internet and personal
information are likely to fail because almost all applica-
tions with personal information also have INTERNET.

Several important categories are requested relatively
infrequently, which is a positive finding. Permissions
in the PERSONAL INFO and COST MONEY categories
are only requested by a fifth and a tenth of applications,
respectively. The PERSONAL INFO category includes
permissions associated with the user’s contacts, calen-
dar, etc.; COST MONEY permissions let applications send
text messages or make phone calls without user confir-
mation4. Users have reason to be suspicious of applica-
tions that ask for permissions in these categories. How-
ever, users may not notice these rare warnings because
the overall rate is so high.

4The separate PHONE CALLS category contains permissions that
modify telephony state but do not cost the user money.

Defense in Depth. Given the prevalence of Dangerous
permissions, an application vulnerability is likely to oc-
cur in an application with at least one Dangerous permis-
sion. However, the average Android application is much
less privileged than a traditional operating system pro-
gram. Every desktop Windows application has full privi-
leges, whereas no Android application in our set requests
more than half of the available Dangerous permissions.
A majority of the Android applications ask for less than
seven, and only 10% have access to functionality that
costs the user money. This is a significant improvement
over the traditional full-privilege, user-based approach.

Review Triaging. A hypothetical review process could
exempt applications that do not have Dangerous permis-
sions. Unfortunately, this alone would not reduce re-
viewer workload much. Only 18% of paid and 7% of free
applications would be exempt from review. To improve
this, a review process could also exclude applications
whose only Dangerous permission is INTERNET. An
application with only the INTERNET permission cannot
leak sensitive personal information because reading user
data requires a second permission. This would increase
the number of exempt applications to 22% of paid and
21% of free applications.

4 Reducing Application Privileges

Our application survey indicates that up-front permission
declarations can promote defense in depth security and
provide moderate review triaging advantages. However,
a large number of applications still ask for dangerous
permissions. Decreasing the number of privileges that
applications require to function will improve the utility
of permissions. We investigate factors that influence per-
mission requirements and present corresponding sugges-
tions for reducing the frequency of permission usage.

6

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 81

4.1 Developer Incentives

Developer incentives can encourage or discourage per-
mission requests. Current incentives include the length
of the review process, how the automatic update system
treats additional permissions, and pressure from users.

Review Process. Formal review can delay an applica-
tion’s entrance into the directory. Developers are often
concerned about the length of the review process [13].
If dangerous permissions increase the review time (and
a lack of dangerous permissions decreases it), then de-
velopers have an incentive to use as few permissions as
necessary. Google Chrome extensions have to undergo
a review process if they include plug-ins, which incen-
tivizes developers to not use plug-ins. Other platforms
could adopt similar review systems or institute a timed
delay for applications with more permissions.

Pressure From Users. The ultimate goal of a developer
is to reach as many users as possible. If users are hesitant
to install applications with certain permissions, then de-
velopers are motivated to avoid those permissions. Users
can express their dislike of permission requests in appli-
cation comments and e-mails to the developer.

We read the user comments for 50 randomly selected
Google Chrome extensions with at least one permission.
Of the 50 extensions, 8 (15%) have at least one comment
questioning the extension’s use of permissions. The per-
centage of comments pertaining to permissions ranges
widely, from 1 of 2 to 5 of 984. A majority of the per-
mission comments refer to the extension’s ability to ac-
cess browsing history. Several commenters state that the
permission requests are preventing them from installing
an application, e.g., “Really would like to give it a try. ...
But why does it need access to my history? I hope you
got a plausible answer because I really would like to try
it out.” These comments indicate that a small number of
users are pressuring developers to use fewer permissions.

Additionally, developers of 3 of the 50 extensions de-
scriptions include an explanation of their permission us-
age. This indicates that these developers are concerned
about user reactions to permission requests.

Automatic Updates. Android and Google Chrome auto-
matically update applications as they become available,
according to user preferences. However, automatic up-
dates do not proceed for applications whose updates re-
quest more permissions. Instead, the user needs to manu-
ally install the update and approve the new permissions;
in Android, this amounts to several additional screens.
This incentivizes developers to request unnecessary per-
missions in in case later versions require the permissions.
If update UIs were improved to minimize the user effort
required to update applications with new permissions,
this disincentive might be eliminated.

4.2 Developer Error

Developers may ask for unnecessary permissions due to
confusion or forgetfulness. We explore the prevalence of
developer error. Tools that help developers select correct
permissions could reduce application privileges without
requiring any changes to the permission system itself.

4.2.1 Errors in Google Chrome Extensions

Browser Managers. We count the extensions that re-
quest browser managers but do not use them. About
half of the extensions in our set of 1000 “popular” ex-
tensions request access to security-relevant browser man-
agers. We search their source code (including remotely
sourced scripts) for references to their requested browser
managers. 14.7% of the 1000 extensions are overpriv-
ileged by this measure because they request access to
managers that they never use. It is possible for an ex-
tension to name a browser manager without explicitly in-
cluding the name as a string (e.g., "book"+"marks");
we examined a random sample of 15 overprivileged ex-
tensions and found no evidence of developers doing this.

Domains. We also review fifty randomly selected exten-
sions for excessive domain access (see Appendix A). For
each extension, we compare the permissions it requests
with the domains needed to implement its functionality,
which we determine by manually exercising the user in-
terface and consulting its source code when necessary.
We find that 41 of the 50 extensions request access to
web data, and 7 of those are overprivileged: 5 request
too many domain permissions for their core extensions,
and 2 install content scripts on unnecessary domains.

The reasons for overprivilege are diverse. One ex-
ample is “PBTweet+”, which requests web access for a
nonexistent core extension; other examples are “iBood”
and “Castle Age Autoplayer”, which request access to all
domains even though they only interact with iBOOD and
Facebook, respectively.

“Send using Gmail (no button)” demonstrates a com-
mon error, which is that developers sometimes request
access to all and specific domains in the same list.
We find that an additional 27 of the 1000 popularity-
ranked extensions also make this mistake. This is a
conservative measure of wildcard-induced error; sub-
domain wildcards can feature the same mistake, like
asking for both http://www.example.com and
http://*.example.com.

4.2.2 Errors in Android Applications

We manually review the top free and top paid application
from eighteen Android Market categories (see Appendix
A for a list). For each of the applications, we compare

7

82 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

its functionality to the permissions it requests. To de-
termine an application’s functionality requirements, we
exercise the user interface. Android’s permission doc-
umentation is incomplete; when we were unable to de-
termine whether functionality requires permissions, we
conservatively assumed it does.

Of the 36 applications, 4 are overprivileged. Un-
necessary INTERNET permissions account for three of
the overprivileged applications. One of the develop-
ers may have done this with the mistaken belief that
launching the browser requires the INTERNET permis-
sion, since that is how the application interacts with the
Internet. The fourth overprivileged application requests
ACCESS FINE LOCATION unnecessarily.

In addition to the four overprivileged applications, an-
other four could re-implement the same functionality
without the INTERNET permission. For example, “Doc-
sToGo” provides the ability to update the application
over the Internet even though that functionality is already
provided by the Android Market, and “Jesus Hates Zom-
bies” could store its small set of static resources locally.

4.2.3 Tools for Error Reduction

As far as we are aware, none of the prominent platforms
with install-time permissions provide developer tools to
detect unnecessary permissions. We recommend that fu-
ture platforms provide developers with tools to guide the
writing of permission declarations. Such a tool could
help reduce privileges by aiding developers in correct
permission selection. The tool could run whenever an ap-
plication is submitted to the directory, or it could be pro-
vided to developers as part of the development or pack-
aging process. If unnecessary permissions are found, the
developer could be prompted to remove them.

Our Google Chrome extension overprivilege detection
tool is simple but sufficient to find some types of errors.
As shown in Section 4.2.1, a JavaScript text search is
sufficient to remove unnecessary browser manager per-
missions from 147 of the 1000 popularity-ranked ex-
tensions. Our text search has a small number of false
positives; e.g., we found three extensions that only con-
tain references to browser managers in remotely sourced
scripts. However, a developer can disregard a warning
if she feels it is incorrect. Our tool also detects simple
redundant wildcard errors and asks the developer to re-
move the broad wildcard in favor of the more specific
domain. Detecting the larger problem of overly broad
domain requests is a challenging open problem for fu-
ture research in JavaScript program analysis.

A similar Android tool could analyze applications to
find all Android API calls, and from that deduce what
permissions the applications need. The tool could ask
the developer to discard permissions that are not required

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 21 31 41 51 101 201

Fr
eq

ue
nc

y

List Length

Figure 5: The number of content script specific domain lists
with at least a given length. Note the non-linear x-axis.

by any of the API calls. The tool cannot completely
replace developers; developers must still edit their per-
mission requirements if they want to include additional
permissions for inter-application interactions. (Applica-
tions can choose to only accept messages from applica-
tions with certain permissions.) Unfortunately, incom-
plete documentation currently prevents this tool from be-
ing built; the documentation does not completely state
which API calls require which permissions. Experimen-
tally determining the permission-API relationship is an
active area of future research.

4.3 Wildcards

Domain access in the Google Chrome extension system
relies on wildcards. A developer can write <all urls>
or *://*/* and gain access to all domains, or she can
define a list of specific domains. When it is not feasible
for a developer to list all possible subdomains, she can
use wildcards to capture multiple subdomains. However,
a developer might choose to use a wildcard even though
it includes more privileges than the application requires.

Compliance. To determine whether developers are
willing to write specific domain lists when they can
more easily request access to all domains, we evalu-
ate the prevalence of specific domain lists in the 1000
popularity-ranked extensions. Of the 714 extensions that
need access to web data, 428 use a specific domain list
for either a content script or core extension. This is a sur-
prising and positive finding: 60% of developers whose
extensions need web access choose to opt in to domain
restrictions for at least one component. However, 367
extensions also have at least one component that requests
full domain access. (An extension with multiple content
scripts might request full domain access for some scripts
but place restrictions on others.)

8

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 83

Developer Effort. We suspect that developers will de-
fault to requesting all-domain access if the number of
specific domains in the list grows too high. To exam-
ine this further, we consider the 237 content scripts that
use specific domain lists. The lists are short: only 31 are
longer than five. Figure 5 presents the distribution. This
indicates that most developers either request a very small
number of domains or opt to request full domain access,
with few in-between. However, six developers wrote
eight lists that are longer than fifty domains. These out-
liers result from developers internationalizing their ex-
tensions by repeating the same domains with different
suffixes; wildcards cannot be used to represent suffixes
because the domains may have different owners.

Noncompliance. Section 4.2 describes a manual analy-
sis of fifty extensions. Five of those extensions are over-
privileged due to improper wildcard use. Two of the de-
velopers choose to request all-domain access rather than
write specific domain lists, two write specific domain
lists but unnecessarily use wildcards for subdomains, and
one incorrectly requests all-domain access alongside spe-
cific domains. In other words, 10% of the extensions
with web access request excessive permissions because
their developers are unable or unwilling to write suffi-
ciently specific domain lists.

In summary, our findings are twofold. We show that
60% of extension developers write at least one specific
domain list. This demonstrates that the option to write
specific domain lists is a worthwhile part of a declarative
permission system. On the other hand, 40% of develop-
ers whose extensions need web access do not write any
specific domain lists. Furthermore, our manual analy-
sis indicates that 10% of extensions with web access use
wildcards improperly.

4.4 Permission Granularity

If a single permission protects a diverse set of API calls,
then an application seeking to use only a subset of that
functionality will be overprivileged. Separating a coarse
permission into multiple permissions can improve the
correlation between permissions and application require-
ments. On the other hand, excessively fine-grained per-
missions would burden developers with a large list of
permissions required to perform simple actions.

4.4.1 Google Chrome Browser Managers

At the time of our study, Google Chrome extension per-
missions were at the granularity of a browser manager:
one permission per entire browser manager. This posed a
problem for the window manager, which includes some
methods that provide indirect access to history via the

location property of loaded windows. Using the win-
dow manager generated history warnings, regardless of
whether the extension used any of the methods that pro-
vide access to the location property.

The fact that the window manager caused a history
warning was confusing to users and developers. Con-
sider this quote from the developer of Neat Bookmarks:

Installing this extension will ask for permis-
sion to access your browsing history, which is
totally useless, not used and not stored by the
extension at all. Not really sure why ‘History’
is part of ‘Bookmarks’ in the Chrome browser.

The developer is so confused by the history warning that
he or she believes it is caused by the extension’s use of
the bookmark manager, rather than the window manager.

Since the time of our study, the window manager has
been changed so that certain methods do not require
any permission. Consequently, developers can access
some non-history-related functionality without acquiring
a permission that shows users the history warning.

4.4.2 Fine-Grained Android Permissions

We evaluate whether Android’s fine-grained permissions
are an improvement over a coarser-grained alternative.

Categories. Android permission categories are high-
level functionality groups. Categories are comprised of
multiple permissions, which developers must request in-
dividually. A coarse-grained permission system might
simply have one permission per category, but Android
subdivides each category into multiple finer-grained per-
missions. We find that no application (out of 956) re-
quires all of the permissions in any category except
STORAGE, a category with only one permission. This
demonstrates that coarse-grained permissions at the cat-
egory level would overprivilege all extensions.

Read/Write. Android controls access to data with sep-
arate read and write permissions. For example, ac-
cess to contacts is governed by READ CONTACTS and
WRITE CONTACTS. We find that 149 applications re-
quest one of the contacts permissions, but none requests
both. 10 of 19 applications with calendar access request
both read and write permissions. Text messages are con-
trolled by three primary permissions; only 6 of the 53
applications with text message permissions request all
three. These results demonstrate that separate read and
write permissions reflect application requirements better
than coalesced permissions would.

Location. Location is separated into “fine” and “coarse”
permissions, referring to the precision of the loca-
tion measurement. ACCESS FINE LOCATION gov-
erns GPS location, and cell location is controlled

9

84 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

by ACCESS COARSE LOCATION. 358 applications re-
quest at least one of the location permissions; 133 request
only ACCESS COARSE LOCATION. This indicates that
37% of applications that need to know the user’s loca-
tion are satisfied with a “coarse” location metric, which
benefits user privacy.

Future permission systems should consider adopting
similar fine-grained permissions.

4.4.3 Coarse-Grained Android Permissions

Not all of Android’s permissions are fine-grained.
The INTERNET permission lets an application send
HTTP(S) requests to all domains, load any web site into
an embedded browser window (“WebView”), and con-
nect to arbitrary destinations and ports. The granular-
ity of the INTERNET permission is important because
86.6% of free and 65% of paid applications in our large-
scale study use it.

We find that 27 of the 36 Android applications in our
manual review (Section 4.2.2) have the INTERNET per-
mission. Of those, 13 only use the Internet to make
HTTP(S) requests to specific domains. These Android
applications rely on backend servers for content, much
like web applications. A fourteenth application addition-
ally uses the INTERNET permission to support Google
AdSense, which displays advertisements from a single
domain in a WebView.

These results indicate that many applications would
tolerate a limited Internet permission that only permits
HTTP(S) or WebView access to a specific list of do-
mains, similar to what Google Chrome offers extensions.
This hypothetical limited permission would be sufficient
for 52% of the 27 applications that use INTERNET.

5 Reducing User Prompts

Our study in Section 3 demonstrates that almost all ex-
tensions and applications trigger prompts for dangerous
permissions during installation. The high rate of per-
mission warnings makes it unlikely that even an alert,
security-conscious user would pay special attention to an
application with several dangerous privileges.

Possible solutions to this problem depend on the
intended role of permission prompts. If permission
prompts are only intended to inform the user and de-
crease platform liability, then perhaps their presentation
and frequency do not matter. If a prompt is supposed to
warn or alert the user, however, then increasing user at-
tention will improve its efficacy. In order to preserve the
significance of truly important warnings, one possibility
is to de-emphasize or remove lesser warnings.

5.1 Google Chrome

Google Chrome currently presents all permissions
equally. Critical extension privileges (e.g., including a
plug-in) should always be prominently displayed as part
of the installation process, but less significant permis-
sions (e.g., bookmarks) could be omitted from the instal-
lation warning and simply listed on the download page.

Not all Internet access needs to be displayed to users.
Web sites with private information (e.g., financial, com-
mercial, and e-mail sites) use TLS to protect users from
man-in-the-middle attacks. We assume that HTTP-only
sites are not concerned about eavesdropping. If Google
Chrome were to only show warnings for extensions with
access to HTTPS sites, 148 of the 500 most popular ex-
tensions would no longer trigger web access warnings.
102 extensions would no longer prompt a warning at
all, reducing the number of extensions with at least one
warning from 91.4% to 71% of the 500 most popular ex-
tensions. Users would be at risk of man-in-the-middle
attacks on HTTP-only sites, but they already are at risk
of this on their networks.

5.2 Android

Android ranks permissions by threat level, and only Dan-
gerous permissions are displayed to users. However,
there is still great variance within Dangerous permis-
sions. Dangerous permissions let an application perform
actions that cost the user money (e.g., send text mes-
sages), pertain to private information (e.g., location, con-
tacts, and the calendar), and eavesdrop on phone calls.
On the other hand, Dangerous permissions also guard the
ability to connect to paired Bluetooth devices, modify
audio settings, and get the list of currently running ap-
plications. Users may not care about Dangerous permis-
sions that cannot cause direct harm to the user or phone.
De-emphasizing the less-threatening Dangerous permis-
sions could reduce the number of user warnings.
WAKE LOCK and WRITE EXTERNAL STORAGE are

two of the most popular Dangerous permissions, and nei-
ther has a clear implication for users. The WAKE LOCK
permission lets an application perform actions that keep
the phone awake without user interaction. Playing music,
for example, requires this permission. Although the per-
mission could be used to slowly drain the battery, it does
not pose a serious privacy or security threat. 26% of the
956 applications have the WAKE LOCK permission. The
WRITE EXTERNAL STORAGE permission controls ac-
cess to the SD card, which could be used to access other
applications’ files that are on the SD card. However, the
user has no way of differentiating between legitimate and
illegitimate access to the SD card. It seems reasonable
for all applications to store data, and only the developer

10

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 85

knows whether to use internal or external storage. 35.7%
of the 956 applications have this Dangerous permission.
INTERNET is the most popular permission. The

higher prevalence of the INTERNET permission in free
applications and past work [5] indicate that free applica-
tions commonly use the Internet to contact advertisers.
Section 4.4.3 suggests enabling applications to request
access to a specific list of web domains. Accordingly,
the Android Market could display a less severe warning
for applications with limited Internet access than for ap-
plications with the full INTERNET. The warning could
further notify the user if a known advertising domain is
included in the specific domain list.

6 Related Work

Google Chrome Extensions. When Barth et al. intro-
duced the Google Chrome extension permission system,
they conducted a motivating analysis of 25 Google Chr-
ome extensions [2]. However, their sample set is too lim-
ited to be definitive. Google employees authored 9 of
the 25 extensions, and the extension platform had only
been public for a few weeks prior to their study. The re-
sults of our large-scale evaluation of Google Chrome ex-
tensions show that their small-scale study overestimated
the prevalence of extension privileges. Guha et al. [8]
performed a concurrent, short study of the permissions
used by Google Chrome extensions, although they do not
study the effect of popularity. We provide a significantly
more detailed discussion of extension privileges.

Android Applications. Barrera et al. [1] analyze the
permissions requested by 1, 100 free Android applica-
tions. They primarily focus on the structure of the per-
mission system; they group applications together using
a neural network and look for patterns in permission
group requests. They note that 62% of the applica-
tions collected in December 2009 use the INTERNET
permission. Significantly more applications in our data
set use the INTERNET permission, which is possibly
due to changes in applications over time. We also pro-
vide data that can be used to evaluate two of their pro-
posals for changes to Android permissions. First, they
suggest that applications should be able to simultane-
ously request multiple permissions with wildcards (e.g.,
android.permission.SMS.*). Our Google Chr-
ome survey shows that developers often use wildcards
to request excessive privileges, and our Android study
shows that the majority of applications do not need ac-
cess to all permissions in a group. Next, they propose
that the INTERNET permission should support specific
domain lists. A manual review finds that 14 of 27 appli-
cations with the INTERNET permission would indeed be
satisfied with access to a list of specific domains.

Researchers at SMobile present a survey of the per-
missions requested by 48, 694 Android applications [18].
They do not state whether their sample set is composed
of free applications, paid applications, or a combination.
They report that 68% of the applications in their sample
set request enough permissions to be considered “sus-
picious.” We similarly find that applications have high
privilege requests. They also report with alarm that 9
applications request access to the BRICK permission,
which can be used to make a phone non-operational.
However, this is a Signature permission; it is only avail-
able to a very small number of applications signed by the
device manufacturer. We find that a surprising number
of applications request Signature and SignatureOrSys-
tem permissions, given that most applications are unable
to actually use these permissions.

Kirin [6] is a tool that evaluates the security of an
Android application. It compares the application’s re-
quested permissions to a set of permission rules. They
propose several rules and test them against 311 appli-
cations. Their rules are specific enough to only flag a
small number of the applications in our set, but we did
not check to see whether the applications are malicious.

User Warnings. We consider whether installation warn-
ings are of value to security-conscious users. Other re-
searchers have examined the best way to visually display
installation permissions to users [17] but not examined
the frequency of prompts in install-time permission sys-
tems. Warning science literature indicates that frequent
exposure to specific warnings, especially if the warnings
do not lead to negative consequences, drastically reduce
the warnings’ effectiveness [11, 15]. Other researchers
have shown that browser warnings for phishing sites and
invalid SSL certificates are ignored by most users [4, 16];
it is possible that even infrequent permission installation
warnings will be ignored.

LUA. Windows users can reduce application privileges
by running Windows as a low-privileged user account
(LUA). While in LUA mode, all applications have re-
duced privileges. When an application wants to perform
a task that requires administrative privileges, Windows
presents the user with a prompt for approval. Unlike
the application permission model discussed in this paper,
only two security modes are available (user or adminis-
trative). Furthermore, in practice, users run in adminis-
trative mode all the time, thereby granting the system’s
full privileges to applications [12].

11

86 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

7 Conclusion

This study contributes evidence in support of application
permission systems. Our large-scale analysis of Google
Chrome extensions and Android applications finds that
real applications ask for significantly fewer than the max-
imum set of permissions. Only 14 of 1000 Google Chr-
ome extensions use native code, which is the most dan-
gerous privileges. Approximately 30% of extension de-
velopers restrict their extensions’ web access to a small
set of domains. All Android applications ask for less
than half of the available set of 56 Dangerous permis-
sions, and a majority request less than 4.

These findings indicate that permission systems with
up-front permission declarations have two advantages
over the traditional user permission model: the impact
of a potential third-party vulnerability is greatly reduced
when compared to a full-privilege system, and a num-
ber of applications could be eligible for expedited review.
These results can be extended to time-of-use permission
systems if the system requires developers to declare a set
of maximum permissions.

However, our study shows that users are frequently
presented with requests for dangerous permissions dur-
ing application installation in install-time systems. As
a consequence, installation security warnings may not be
an effective malware prevention tool, even for alert users.
Future work should identify which permission warnings
are useful to users and consider alternate methods of pre-
senting permissions to users.

References
[1] BARRERA, D., KAYACIK, H. G., VAN OORSCHOT, P. C.,

AND SOMAYAJI, A. A Methodology for Empirical Analysis
of Permission-Based Security Models and its Application to An-
droid. In ACM CCS (2010).

[2] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.
Protecting Browsers from Extension Vulnerabilities. In NDSS
(2010).

[3] CLULEY, G. Windows Mobile Terdial Trojan makes expensive
phone calls. http://www.sophos.com/
blogs/gc/g/2010/04/10/windows-mobile-terdial-trojan-
expensive-phone-calls/.

[4] EGELMAN, S., CRANOR, L. F., AND HONG, J. You’ve
Been Warned: An Empirical Study of the Effectiveness of Web
Browser Phishing Warnings. In CHI (2008).

[5] ENCK, W., GILBERT, P., CHUN, B., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In OSDI (2010).

[6] ENCK, W., ONGTANG, M., AND MCDANIEL, P. D. On
Lightweight Mobile Phone Application Certification. In ACM
CCS (2009).

[7] FELT, A. P. Issue 54006: Security: Extension
history permission does not generate a warning.
http://code.google.com/p/chromium/issues/
detail?id=54006, August 2010.

[8] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND SWAMY, N.
Verified Security for Browser Extensions. In IEEE Security and
Privacy (2011).

[9] IBRAHIM, S. Universal 1-Click Root App for Android De-
vices. http://androidspin.com/2010/08/10/ universal-1-click-root-
app-for-android-devices/, August 2010.

[10] LIVERANI, R. S., AND FREEMAN, N. Abusing Firefox Exten-
sions. Defcon17, July 2009.

[11] MAGAT, W., VISCUSI, W. K., AND HUBER, J. Consumer pro-
cessing of hazard warning information. Journal of Risk and Un-
certainty (1988).

[12] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows
Users Follow the Principle of Least Privilege? Investigating User
Account Control Practices. In SOUPS (2010).

[13] MOZILLA ADD-ONS BLOG. The Add-on Review Process and
You. http://blog.mozilla.com/addons/2010/02/ 15/the-add-on-
review-process-and-you.

[14] SERIOT, N. iPhone Privacy. Black Hat DC (2010).

[15] STEWART, D. W., AND MARTIN, I. M. Intended and Unin-
tended Consequences of Warning Messages: A Review and Syn-
thesis of Empirical Research. Journal of Public Policy Marketing
13, 1 (1994).

[16] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,
AND CRANOR, L. F. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In USENIX Security Symposium (2009).

[17] TAM, J., REEDER, R. W., AND SCHECHTER, S. I’m Allowing
What? Disclosing the authority applications demand of users as
a condition of installation. Tech. Rep. MSR-TR-2010-54, Mi-
crosoft Research, 2010.

[18] VENNON, T., AND STROOP, D. Threat Analysis of the Android
Market. Tech. rep., SMobile Systems, 2010.

[19] WILLISON, S. Understanding the Greasemonkey vulnerability.
http://simonwillison.net/2005/Jul/ 20/vulnerability/.

A Manual Review

Android Applications. Jesus Hates Zombies, Compass, Aquarium
Live Wallpaper, Movies, Mobile Banking, Calorie Counter by Fat-
Secret, Daily Horoscope, Pandora Radio, The Weather Channel, Ad-
vanced Task Killer, Google Sky Map, Barcode Scanner, Facebook for
Android, NFL Mobile Aquarium, Live Wallpaper, weird facts, Google
Maps Screen Crack, screen krack, twidroyd for twitter, touch to talk,
open home, pageonce pro, personal finance, baby esp, gentle alarm,
picsay pro, beautiful widgets, iQuran Pro, Grocery King, Touitor Pre-
mium, MLB.com at Bat 2010, myBackupPro, London Journey, Be-
yondPod Unlock Key, Text to Speech Extended, DocumentsToGo Full

Google Chrome Extensions. Orkut Chrome Extension, Google Sim-
ilar Pages beta (by Google), Proxy Switchy!, AutoPager Chrome,
Send using Gmail (no button), Blog this! (by Google), Fbsof, Di-
igo Web Highlighter and Bookmark, Woot!, Pendule, Inline Search
& Look Up, YouTube Middle-Click Extension, Send to Google Docs,
[Non-English Title], PBTweet+, Search Center, Yahoo Mail Widget for
Google Chrome, Google Reader Compact, Chromed Movilnet, Ubuntu
light-themes scrollbars, Persian Jalali Calender, Intersect, deviantART
Message Notifier, Expand, Castle Age Autoplayer Alpha Patched, Patr
Pats Flickr App, Better HN, Mark the visited links, Chrome Real-
time Search, Gtalk, SpeedyLinks, Slick RSS, Yahoo Avatar, Demo-
tivation.ru ads remover, [Non-English Title], PPTSearch Edu Sites,
Page2RSS, Good Habits, VeryDou, Wikidot Extender, Close Left,
iBood, Facebook Colored, eBay Espana (eBay.es) Busqueda avan-
zada, Keep Last Two Tabs, Google Transliteration Service, Ohio State
University Library Proxy Extension, Add to Google Calendar, Rocky,
Short Youtube

12

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 87

Experiences on a Design Approach for Interactive Web Applications
Janne Kuuskeri

Department of Software Systems
Tampere University of Technology

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
janne.kuuskeri@tut.fi

Abstract

Highly interactive web applications that offer a lot of
functionality are increasingly replacing their desktop
counterparts. However, the browser and the web itself
were originally designed for viewing and exchanging
documents and data and not for running applications.
Over the years, web pages have slowly been transformed
into web applications and as a result, they have been
forcefully fit into an unnatural mold for them. In this pa-
per we present a pattern for implementing web applica-
tions in a way that completes this transition and creates
a more natural environment for web applications to live
in. In the pattern, the full MVC stack is implemented
in the client while the server is completely decoupled
via a RESTful interface. We also present experiences
in building an industrial-scale application utilizing this
pattern.

1 Introduction
Over the recent years, web has become the most im-
portant platform for delivering and running applications.
With the ubiquitous web, these applications are easily
accessible regardless of place and time and without any
installation requirements, end users have begun to favor
web applications over traditional desktop applications.
On the other hand, the rapidly increasing mobile appli-
cation market has proven that web applications are not
always loaded on demand anymore but they are also be-
ing installed on devices.

The fast growth of the web as an application plat-
form has raised the standard for its inhabitants. Rich
and dynamic user interfaces with realtime collaborative
features have now become the norm. Moreover, with the
popularity of social networks, applications are expected
to link or embed information from other web applica-
tions. Finally, if the end user is not immediately satisfied
with the web site, she will simply enter a new URL and
start using another similar service. This has lead appli-
cation developers to push the limits of the browser and
the web standards.

Unfortunately, browsers and the standards of the web
have not quite been able to keep up with the pace. There-

fore, application developers have been forced to work
around the standards and to do whatever it takes to meet
end users’ demands. The application logic and the pre-
sentation have gotten mixed in the mayhem of HTML,
CSS, JavaScript and, some server-side scripting system,
say PHP. Within this technology rush, good software de-
velopment practices and patterns have been somewhat
forgotten. Without extra attention, code base gradually
loses clear separation of concerns and the responsibili-
ties of different components become unclear [11]. For
these reasons many web applications have become diffi-
cult to scale or even maintain.

In this paper, we describe a pattern for building web
applications for scalability both in terms of through-
put and in terms of provided functionality. The sug-
gested pattern advises breaking the application in two
autonomous parts: a RESTful web service and a sin-
gle page web application that utilizes it. Following this
pattern will contribute to having a clean and consistent
design throughout the application, thereby making the
end result easier to test and maintain in general. As a
side effect, the versatility of the application is greatly in-
creased by offering easier adoption for clients other than
browsers.

Neither RESTful interfaces nor single page web ap-
plications are new ideas by themselves. However, in
this paper we suggest using the RESTful API directly
from the JavaScript application using Ajax requests. The
main contributions of this paper are firstly, to describe
the pattern for implementing complex web applications
and secondly, to present experiences from utilizing this
pattern in a real world, large scale application. This
application is currently in production, and experiences
listed in the paper are based on actual feedback. By pro-
viding experiences and comparison we show the benefits
of the suggested pattern.

The rest of the paper is structured as follows. In Sec-
tion 2 we examine the main components of traditional
web applications and identify their weaknesses. Next, in
Section 3, we introduce our pattern for building complex
web applications. In Section 4 we present how to apply
the pattern in a real world application and give insight
as to what kind of design the application has. Section

88 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

5 discusses the pros and cons of the suggested approach
and Section 7 provides a review of future work. Section
8 concludes the paper with some final remarks.

2 Traditional Way of Building Web Appli-
cations

In this section, we illustrate the procedure that is en-
dorsed by most of the popular frameworks for building
and running web applications. We briefly describe each
relevant component of a web application from the view-
point of this article. This is done so that we are able to
review our approach in later sections and to show how it
differs from the approach presented here.

2.1 Building Blocks of Web Applications
Today, numerous web frameworks are based on the
MVC [9] pattern. Some frameworks call it something
else and many of them interpret it a bit differently but
at the high level, there are usually three main compo-
nents that comprise a web application: the model, the
view and the controller. Not all applications follow this
structure rigorously but usually these three components
are identifiable in one form or another. Sometimes appli-
cation logic is separated into its own module, sometimes
it is part of one of the other modules, and sometimes it
is scattered over multiple modules. In any case, it pro-
vides a good enough abstraction for us to describe the
components of web applications, and their supposed re-
sponsibilities.

2.1.1 The View
In this section, by view, we refer to what the browser
shows and executes. The main components of the view
are defined below.

HTML – Traditionally, the hierarchy and overall lay-
out of a web page is composed using HTML. In the
browser the HTML becomes part of the DOM tree of
the page. The DOM is what ultimately defines the hi-
erarchy of the page. The DOM is dynamic and may be
altered at runtime, thereby making web pages dynamic.

CSS – Cascading Style Sheets are used to define what
the page will look like after it has been rendered on the
screen. If no CSS rules are provided, the browser will
use a set of default rules. CSS has little to do with the
dynamicity of the page; pages with no CSS rules can still
be dynamic and provide client side functionality.

JavaScript – In order to create a web page that has
client side functionality, there must be a programming
language to implement that logic. If we leave out the
option of using any custom browser plugins, JavaScript
is the only choice for implementing any application logic
within the page.

2.1.2 The Controller
In web applications, the role of the controller varies
the most. What is common for all the different inter-
pretations however, is that controller is the component
that takes in all the HTTP requests coming in from the
browser. Many times the controller takes the role of the
dispatcher and forwards the request to appropriate han-
dler in the model and afterwards it finds the correct view
that is associated with the request. When the request
has been processed, controller functions return HTTP re-
sponse back to the browser. In some applications there
is a single centralized controller that handles all requests
while in others there is a controller function bound to
each URL that the web application exposes.

2.1.3 The Model
The model component refers to the database layer of the
application. This does not need to be an actual database,
but commonly web applications have some kind of per-
sistent storage, where objects of the application logic are
stored and retrieved. Many times an Object Relational
Mapper (ORM) such as Hibernate, SqlAlchemy or Ac-
tiveRecord is used to implement the mapping between
the domain objects and the persistent storage. Some-
times the model component is further divided into the
business logic layer and the data access layer.

2.2 Burden of Building Web Applications
As suggested by section 2.1 a typical web application
consists of many different types of resources. These
include (but are not limited to) HTML templates, CSS
files, JavaScript files, image files and the source code for
the server side implementation. The application logic
is usually implemented mainly by the server side but
depending on the application a fair bit of application
logic may also be in the JavaScript files and even in-
side HTML files, which usually incorporate some kind
of templating language. CSS and image files on the other
hand are purely static resources and only affect the ap-
pearance of the application.

When the application grows, a careful design needs
to be in place, not only for the application logic, but
also for the directory hierarchy and the responsibilities;
which part of the application should be responsible of
which functionality. Therefore, when building web ap-
plications with a lot of functionality and dynamic fea-
tures, it has become a common practice to use a set of
existing tools and frameworks to make the development
easier. Frameworks such as Spring [5], Django [1] and
Ruby on Rails [3] do a good job at making it easier for
the developers to implement and maintain their projects.
They even provide guidance on how to assign responsi-
bilities for different components but these guidelines are
not enforced in any way and in the end it is up to the

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 89

developer to figure out what works best for a particular
application.

This kind of approach to building web applications
also easily results in tightly coupled systems. Not only
do the server and the client become dependent on each
other but there is also coupling between different com-
ponents or technologies within the application. For ex-
ample, the server usually sends a complete HTML page
to the browser but on some occasions it may only send
parts of the page and rely on the client side JavaScript to
fetch the rest of the data (e.g. XML) using Ajax requests.
Also the application flow has to be agreed in advance be-
tween the client and the server. As a result it would be
very difficult to implement a completely different kind
of user interface for the application without making any
changes to server side components.

2.3 Burden of Running Web Applications

By its very nature, HTTP is a stateless protocol. There-
fore, each request occurs in complete isolation from any
other request. When user clicks on a link on a web page
and another page within the same application is pre-
sented, the browser has to load that new page completely
from the server and forget everything it knew about the
previous page. Thus, from the client’s perspective the
application is restarted each time a page is loaded. How-
ever, many applications require their internal state to be
maintained while the user is running the application and
new pages are loaded. That is why the client side of the
application depends on the server to maintain the appli-
cation state between page loads.

This kind of behavior is usually implemented as a
server side session. Each time the browser sends an
HTTP request, it sends a cookie with the request. Within
the cookie there is a unique identifier that identifies the
client’s session and the server then has to interpret all
the data in the session to see where – in the flow of the
application – the client was. Now the server can resume
the application state and continue into processing the re-
quest. In the following, we list common steps that the
server has to take when a page is requested:

1. Resume the application state by processing the re-
ceived cookie and recovering the associated ses-
sion.

2. Invoke appropriate controller function to execute
the application logic.

3. Use the model to retrive and update associated per-
sistent data.

4. Locate correct view and populate it with the data
from the model.

5. Update the session to reflect the new state of the
client’s application.

6. Return the populated HTML page to the browser.

It should be noted, that we have purposefully left out
things that are not relevant in the scope of this paper.

When the browser receives the newly composed
HTML page it has to parse and render it on the screen.
This includes fetching all the related resources that the
page uses, in essence, CSS, JavaScript and image files.
While some of these resources may come from the
cache, some of them do not. This laborious sequence of
events takes place every time the user performs a func-
tion that requires a new page to be loaded. There has
been a lot of research on how to make web sites faster
([16, 17]) and there are dozens of tricks that developers
need to know and implement in order to minimize the
overhead and latency during page loading.

3 The Partitioned Way of Building Web
Applications

Given the complexity of building, running and maintain-
ing web applications with a lot of functionality we argue
that these applications should be implemented in a sim-
pler way. This simplicity can be achieved by breaking
the application in parts and strictly defining their respon-
sibilities. In the following sections we describe this pro-
cess in more detail.

3.1 Breaking the Application in Two
Based on the fact that the web builds on top of HTTP, ap-
plications using it as their platform are distributed over
the network. Furthermore, as HTTP is a resource ori-
ented and stateless protocol, we argue that web appli-
cations should be broken into services provided by the
server and the client that uses these services to com-
pose a meaningful web application. From this separation
we draw the following set of rules that web applications
should adhere to:

1. Application state is stored in the application, not in
the server.

2. Client application is a self contained entity built on
top of services provided by single or multiple sites.

3. Services that are used for implementing the ap-
plication do not make any assumptions about the
clients using them.

The motivation and consequences of the rules are the
following:

1) As already mentioned, from the client’s perspec-
tive the application is restarted each time a new page is
loaded. Effectively this means that either the application
should be implemented as a so called single page web
application or it explicitly stores its state using services
provided by the server.

2) Making the client application a self contained en-
tity makes the responsibilities explicit and unambigu-
ous: the server decides which services it exposes and

90 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

the client is free to use them how it chooses. More-
over, clients become applications in their own right; they
are run (and possibly even started) completely inside the
browser, while using the services of the server only when
they need to. This approach is also utilized by many of
today’s HTML5 mobile applications.

3) When the server side of the application becomes
agnostic about its clients, it completely decouples the
server and the client. They can be developed and tested
independently. Furthermore, it allows any type of client
(not just browsers) to use the service.

Following this pattern, makes the browser a plat-
form for running JavaScript powered applications and
the server a datastore responsible for maintaining appli-
cation’s persistent data. A rough analogy to the world
of traditional desktop applications is that the browser
now becomes the operating system where applications
are run and the services provided by the server become
the remote database for the application. The main dif-
ference being that remote services may actually contain
complex operations as opposed to being a simple data
store.

3.2 Services
In the scope of this paper we are only interested in the
interface of a web service, not its implementation. It is
indeed the interface and its properties that enable clients
to utilize it into building fully working applications. To
support wide variety of clients and functionality, the in-
terface should be as accessible and as general as pos-
sible. Accessibility comes from adhering to widely ac-
cepted standards and picking a technology that is sup-
ported by most of the clients. Choosing the right level of
generality however, can be difficult. The interface must
cover all the requirements laid out for the applications
using it and at the same time, to support scalability, it
should not be needlessly restricted and specific to use
cases it implements.

By choosing the RESTful architectural style [14], the
service interface is able to support any client that im-
plements HTTP protocol. Given that web applications
already use the HTTP protocol, this is not really a re-
striction. In the following we describe how RESTful in-
terface is able to fulfill all the requirements presented
earlier.

Accessibility – The RESTful architectural style ad-
heres to the HTTP/1.1 protocol [8], which is supported
by virtually all clients using the web as their application
platform. Furthermore, REST does not mandate any for-
mat for the transferred data. The representations of the
resources exposed by the RESTful interface may use any
format or even support multiple formats. This makes
RESTful interfaces even more accessible: JavaScript
clients usually prefer JSON format, while some other

client may prefer XML.
Application State – REST makes very clear distinc-

tion between the application state and the state of the
resources. In REST, the server is only responsible for
storing the states of its resources. The state of the ap-
plication must be stored by the client application itself.
There should be no server side sessions: each request
made by the client happens in complete isolation from
any other request.

Generic Interface – The uniform interface of REST
brings with it a certain level of generality automatically.
When the interface is designed in terms of resources
instead of functions, it remains much more generic.
Clients can browse through the resources, apply stan-
dard HTTP operations on them and receive standard
HTTP response codes in return. In addition, REST pro-
motes the use of Hypermedia as the Engine of Applica-
tion State, which means that via the representations the
interface may provide options or guidance to the client
about the direction if should take during the application
flow. Granted, the resources and their representations
still need to be carefully designed to make the interface
more generic, but REST provides a good framework for
doing so.

Scalability – Because of its stateless nature and the
lack of server side sessions, RESTful interface is hor-
izontally scalable by definition. New servers can be
added behind the load balancer to handle the increased
demand. RESTful interfaces are also easy to scale in
terms of functionality because of their resource oriented
architecture (ROA) [14]. When all the relevant artifacts
of the system are modeled and exposed as resources with
the uniform interface, client developers have a lot of lee-
way to implement web applications with different kind
of functionality.

3.3 Clients
Clients of the web services defined above can range from
simple scripts to other web services or JavaScript UIs
running in the browser. Other examples would be nor-
mal desktop UIs, mobile applications or mashup appli-
cations utilizing multiple services. In this paper we are
mainly interested in the UIs that run in the browser, al-
though some of the following discussion will also hold
for other types of clients.

For applications with a lot of functionality and inter-
activity, we endorse creating single page web applica-
tions, where the whole application runs within a single
web page and no further page loads are necessary. This
approach has several benefits when compared to tradi-
tional web applications where the browser is used for
navigating from page to page. We will discuss these ben-
efits further in later on.

Single page web applications are loaded into browser

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 91

from a set of static bootstrapping files. These files in-
clude HTML, CSS and JavaScript files. Usually these
files are loaded from the server but they may also be
“pre-installed” onto the device. This is a common sit-
uation for mobile applications. After the application
is loaded into the browser, it behaves like a traditional
desktop application: UI components are shown and hid-
den from the screen dynamically and all user events are
handled by the JavaScript code running in the browser.
When new data is needed from the database, it is fetched
using Ajax requests to server side resources. Simi-
larly Ajax requests are used for creating, modifying, and
deleting resources of the RESTful interface.

With this approach the state of the client side appli-
cation always remains in the browser while the server is
responsible for the server side resources and their states.
This creates a strict and clear separation of concerns be-
tween the client and the server: the server exposes uni-
form interface for a set of resources without making any
assumptions about clients’ actions and the client is free
to use these resources as it sees fit while maintaining the
state of application flow.

The client becoming a “stand alone” application
which uses external resources only when it really needs
to, also has several benefits. The user interface be-
comes much more responsive since the client itself ful-
fills user’s actions as far as possible. This, for one, re-
duces the network traffic down to minimum; only the
data that is actually needed is queried from the server.
All the user interface components and resources only
need to be downloaded once. These advantages also in-
crease the robustness of the application because the use
of possibly unreliable network is decreased.

4 Case: Valvomo
To better illustrate the concept of single page applica-
tions and the partitioned way of implementing web ap-
plications we take a real world example. The applica-
tion is called Valvomo (Fin. control room) and its design
and implementation is joint work between us (the au-
thors) and StrataGen Systems. The application domain
sits in the field of paratransit. In short, paratransit is a
flexible form of passenger transportation. It offers ser-
vices that are not fixed (at least not strictly) to certain
stops or schedules. Services are usually run by taxis or
mini-buses. A typical use case is when a customer calls
into a call center telling where and when she wants to
be picked up and where she wants to go. The dispatcher
at the other end of the line then enters the order into the
system and tells the customer where and when exactly is
she going to be picked up. Orders made by different cus-
tomers may overlap and still be carried out by the same
vehicle. This way the service that the vehicle is driv-
ing becomes dynamic. The level of flexibility offered

to customers and vehicle operators varies considerably
between different system providers.

4.1 Overview of the User Interface
The purpose of the Valvomo application is to enable the
vehicle operators to control their fleet better. Operators
may track their vehicles in real time and see whether the
services are running on time and immediately be noti-
fied if a service is running late. Moreover, operators are
able to browse all the historical data that the vehicle has
sent. This includes for example routes it has driven, cus-
tomers picked up and dropped off, stops visited, breaks
taken and the vehicle’s operating hours. Figure 1 gives
an overview of the user interface of the Valvomo appli-
cation. It is a single page application with five accordion
panels on the left, a map view in the center and a col-
lapsible itinerary view on the right.

User may enter various search criteria using the input
fields in different accordion panels on the left. Vehicle’s
actions are visible as a color encoded polyline on the
map. By clicking either on the itinerary or on the nodes
of the polyline, user is presented with detailed informa-
tion about the corresponding vehicle event. The map
will contain different data about the vehicle based on
which accordion is active. The dockable itinerary panel
on the right hand side contains chronological summary
of the same data that is visible on the map.

Switching between accordions will cause the map and
the itinerary to be refreshed with data related to the ac-
tive accordion. The user interface was implemented so
that each accordion will remember its state and data
so the user is free to switch between accordions with-
out having to worry about losing data. To respect the
asynchronous and event driven programming model of
JavaScript in the browser, all the networking is carried
out with asynchronous Ajax request and the user inter-
face is updated incrementally as data becomes available.
For example when the user has requested a lot of data
(a vehicle can easily have over 1000 events per day) a
throbber icon is shown in the status bar and the user may
navigate to other accordions while waiting for that data.
When the user notices that the download has finished
she can go back to the corresponding accordion and the
data is visible on the map. We should point out that the
user can actually use browser’s back and forward buttons
when going back and forth the accordion panels. Usu-
ally this is a problem with single page applications but
we have taken special care that the application handles
the navigation buttons in order to provide more fluent
user experience.

4.2 Implementation of the User Interface
The user interface is a single page web application im-
plemented in JavaScript, HTML, and CSS. For all the

92 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Figure 1: Valvomo

data it uses RESTful API which in turn is connected to
the paratransit system. To obey the same origin pol-
icy [15] of browsers, the bootstrapping HTML and the
REST API are in the same domain but under differ-
ent paths. Overview of the different components in the
Valvomo web application is given in Figure 2. It follows
strictly the principles laid out in Section 3.

These kinds of highly dynamic user interfaces in
browsers have always been somewhat cumbersome to
implement. Main reasons for this include DOM,
CSS and JavaScript incompatibilities between browsers.
Also, the performance of the JavaScript interpreter and
the DOM tree incorporated in browsers has been quite
low. However, due to the intense competition in the
browser market during the past few years, the perfor-

mance of JavaScript interpreters has gotten significantly
better. This has allowed for bigger and more complex
JavaScript applications to be run in the browser.

The incompatibilities between browsers have made it
almost impossible to implement any kind of dynamic-
ity in web pages without the use of a JavaScript library
that hides these incompatibilities. There are dozens of
JavaScript libraries and toolkits to help developers make
better JavaScript applications for the browser. Some of
them focus on the language itself, some provide merely
UI widgets and effects and some are full blown UI toolk-
its that completely hide the DOM and CSS.

For the Valvomo application we chose the Ext JS (now
part of the Sencha [4] platform) toolkit mainly because
of its suitability for creating single page JavaScript only

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 93

Browser

Server

Valvomo

REST APIBootsrap
HTML

Load Ajax

Paratransit System

Figure 2: Valvomo Overview

applications that fill the whole browser viewport. Fur-
thermore, it is very mature and well documented. Ext
JS completely hides the CSS and HTML from the de-
veloper and allows application to be created solely in
JavaScript. The API for creating user interfaces reminds
one of many popular desktop UI toolkits such as Qt or
gtk.

In the implementation we followed the MVC pattern,
used a lot of JavaScript closures for information hid-
ing and put all Valvomo functions and objects under our
own namespace. Because the whole user interface is im-
plemented in JavaScript we were able to implement all
components of the MVC pattern into the client. Our in-
terpretation of the MVC pattern is depicted in Figure 3.
Due to the nature of the resource oriented architecture
of the server, this approach puts the server in the role
of a mere data storage. Therefore, it becomes natural to
wrap the networking code calling the RESTful interface,
inside the model in the JavaScript application.

View – The view consists solely of the declaration of
the user interface and its events. After the user inter-
face and its layout is defined, the events are bound to the
functions of the controller module. Ext JS offers a clean
approach for defining the user interface in terms of –
what Ext JS calls – pre-configured classes. What this
means is that the definition of the user interface is bro-
ken into smaller components whose properties are pre-
configured with suitable values. These components may

View
- UI layout
- bind UI events

events

update update

get data

data received

REST API

Controller

- Business logic

Model
- Ajax requests
- Data mapping
- Cache

Figure 3: The MVC implementation in Valvomo

then be reused and their properties possibly overridden
before rendering on the screen.

Controller – The controller handles all events com-
ing from the view and most of the events coming from
the model. For example, each time the user clicks on a
button, the controller handles the event and possibly uses
the model to perform the desired action.

Model – The model issues all the Ajax calls re-
quired by the Valvomo application. It also implements
automatic mappings between JSON representations of
the service interface and JavaScript objects used by the
Valvomo user interface. Usually, when the data is re-
ceived from the server, a function of the controller mod-
ule is registered to handle it. However some components
of the view module, like data grids and combo boxes, are
updated directly by the model.

4.3 The REST implementation
The RESTful interface on the server side is implemented
in Python using the Django framework. Python was cho-
sen over node.js, which is a very promising server side
JavaScript environment. In Python’s favor was its ma-
turity and the maturity of its frameworks and libraries.
For instance, the paratransit system uses Oracle database
and provides a custom TCP/IP protocol for external con-
nections. Python has a good support for connecting to
oracle databases and excellent event-driven networking
engine called Twisted. Moreover, the Django framework
has a lot to offer for building RESTful web services. It
provides a comprehensive set of plugins, flexible object
relational mapper (ORM) and good test suite.

94 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

On top of Django we are using a small library called
Piston, which streamlines the creation of RESTful web
services in Django. It provides utilities such as map-
ping database tables to resources with uniform interface,
mapping errors to proper HTTP response codes and se-
rialization of domain objects into JSON or XML. We
have also done some minor modifications to the library
in order to make it more extensive and suitable for our
use.

4.4 Characteristic of the REST interface
The definition of the Valvomo service interface bears no
surprises; it is a very typical RESTful interface. That ex-
actly is one of the benefits of REST and ROA. When the
whole system is expressed as a set of resources and ex-
posed via the uniform interface, the client developers can
find the interface familiar and intuitive. In the following
we briefly describe the relevant parts of the REST inter-
face.

The paratransit system we are connecting to is a very
mature application suite (15 years in production). There-
fore, the domain model is very stable and well known by
developers, managers, and, customers. Therefore, when
we chose to apply the Domain-driven design (DDD) [7],
we already had the ubiquitous language that all stake-
holders could understand. This also made the identifi-
cation of resources simpler because we were able to do
fairly straightforward mapping from domain entities into
RESTful resources.

URLs used in the interface adhere to the following
scheme:

/api/{version}/{namespace}/{resource}/

Because we expect the interface to grow to cover all
the resources of a fully functional paratransit system,
we used namespaces to collect resources into logical
groups. The resource maps to an entity collection
in the domain model. If the resource is followed by
/{id}/, the URL is mapped to a specific entity. For ex-
ample, to refer to a vehicle number 123 one would use
the URL.

/api/v1/fleet/vehicle/123/

Some of the resources also have subresources such as
fleet/vehicle/events/123/ which would con-
tain all the events that the vehicle has sent. Sometimes a
property of a resource is important enough that it makes
sense to make it explicit and expose it as its own subre-
source. An example would be a list of cancelled orders:

/api/v1/scheduling/order/cancelled/

When a valid order is POSTed into the
order/cancelled/ resource, the underlying

paratransit system performs the order cancellation
function.

As its default data representation format, the interface
uses JSON. XML is also supported and clients may use
it as an alternative. By default, all representations have
links to their related resources. For example, the repre-
sentation of order does not embed any passenger repre-
sentation but instead it contains a link to it. From the
following example we have left out most of the fields of
the order representation. Also the link is shortened to
make it fit better.

{
id: 345,
passenger: {
link: {
href: "scheduling/passenger/567/",
rel: "related"

}
}

}

Similarly the representation of vehicle contains links
to its events and operator. This way the server may assist
the client in finding new resources that may be of interest
to it.

5 Experiences
Despite the fact that the Valvomo is an application that is
still being actively developed, it has also been used suc-
cessfully in production over six months now. New fea-
tures are constantly being added to the user interface and
new resources are added to the REST API. Currently,
the Valvomo system is mainly being used in Finland but
an initial installation is already in place in UK as well.
When the application gets more mature and feature rich
it will become part of StrataGen’s US sites too.

In this section we discuss the experiences of building
a web application in two partitions: a single page web
application with a RESTful API on the server. We also
go into more detail about pros and cons of this approach
compared to a more traditional way of building web ap-
plications defined in Section 2. To gather the experi-
ences presented in this section we used our own expe-
rience and interviewed several employees of the Strata-
Gen Systems who have years of experience in creating
web applications.

5.1 Advantages
The most important benefit of the partitioned way of
building web applications is having the user interface
completely decoupled from the server side implementa-
tion. This division along with making the server agnostic
about its clients spawn several advantages.

1) Accessibility of the service interface. When the ser-
vice makes no assumptions about its clients, any client

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 95

that conforms to the interface is allowed to use it. For
example, this includes JavaScript code running in the
browser or in a mobile device as well as programmatic
clients such as other web services.

2) Reusable service interface. RESTful interface al-
lows resources with uniform interface to be used freely
to create new kinds of applications without any modifi-
cations to the server side implementation. When there
is no predefined application flow between the server and
the client, clients have much more control over how and
what kind of applications to implement.

For example, in the case of Valvomo, the RESTful
interface has been separated into its own product and re-
named to Transit API. At the time of writing this the
Transit API already has five other applications running
on top of it. Three of them are programmatic clients
written in C# and two of them are browser applications
written in JavaScript. Moreover, the three JavaScript ap-
plications share code through a common library that in-
terfaces with the Transit API. This kind of code reuse
would be extremely difficult, if not impossible, with the
traditional – tightly coupled – way of building web ap-
plications. In this scenario, there would have to be three
full stack web applications and at least one web service
API.

3) Reusable user interface. Not only does this ap-
proach allow different types of clients to exist but also
the user interface may be transferred on top of differ-
ent service as long as the service implements the same
RESTful interface. For example, in the near future, the
Valvomo application will be run on top of another para-
transit system and there the Transit API will be imple-
mented in C#. In addition, there are plans to implement
the Transit API in front of another logistical system that
is not paratransit at all and yet we are able to use the
same Valvomo user interface without any code modifi-
cations.

4) Responsibilities are easier to assign and enforce.
Traditionally, there has been a lot of confusion and
“gray areas” in assigning responsibilities in web appli-
cations: which tasks should be handled in the client and
which ones in the server? Furthermore, which technol-
ogy should be used: HTML template, JavaScript or the
server side implementation? However, when the client
is completely decoupled from the server the two can be
considered as two distinct products. This makes many
aspects in assigning responsibilities implicit and many
questions obvious. Following paragraphs give few ex-
amples.

Data validation – The server cannot trust any data
that it receives from the client; everything needs to be
validated. Granted, this is what should happen in tradi-
tional web applications too but inexperienced develop-
ers often get confused about this and believe that it is

“their own” HTML page that is sending validated data.
When implementing the server as stand alone RESTful
web service it is much clearer that the data may come
from any type of client and no assumptions can be made
about its validity.

Error handling – The client and the server are both
responsible for their own error handling. In between
there is only HTTP and its standard return codes. When
an error occurs in the server, it will return a correspond-
ing HTTP response code to the client. The client reads
the return code and acts accordingly. When there is
an error in the client, the client handles the error as it
sees best fit and the server never needs to know about
that. In the traditional model where pages are loaded
frequently the error handling is more complex. For ex-
ample, errors may occur with cookies, sessions or page
rendering. Careful design needs to be in place in order
to determine which errors should be handled by which
part of the application and what should be presented to
the user. When this is not the case, users end up seing
error pages like 404 Not Found, 500 Internal
Server Error or a server side stack trace.

Localization – When the server exposes a generic
RESTful interface, only the client needs to be localized.
Error messages, calendar widgets and button labels are
all localized in the client. Furthermore, when the whole
client is implemented in JavaScript, the localization does
not get fragmented over HTML, JavaScript and (for ex-
ample) Java. Of course, textual content such as prod-
uct descriptions need to have localized versions in the
server’s database but even then, the client asks for a spe-
cific version of the resource.

5) Application flow and state. According to REST
guidelines, the application state is stored in the client
and the states of all the resources are stored on the
server. This unambiguously specifies the responsibilities
of states between the client and the server. The client it-
self is responsible for maintaining the application flow
and the server is free from having to store and maintain
clients’ sessions. No more does the client need to send
the cookie to the server and the server does not have to
worry about cleaning up expired and unused sessions.

6) Lucid development model. Traditionally, the de-
velopment of complex web applications has been trou-
bled with fragmentation of application logic over many
technologies. Parts of the application logic are imple-
mented using a server side programming language while
other parts are implemented in say, HTML template lan-
guage or JavaScript. To add to this disarray, the DOM
is many times exploited to work around any limitations
or attempts to do information hiding. However, with the
partitioned way of implementation and a clear distinc-
tion of responsibilities both the client and the server can
be implemented separately both having their own inter-

96 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

nal design. Moreover, when the whole client application
is implemented in JavaScript only and using a program-
ming model that we are familiar with from the desktop,
it allows easy adoption of proven software patterns and
best practices.

7) Easier testing. Web applications are traditionally
difficult to test automatically. There are all kinds of tools
that do help this process but still they are far from writ-
ing simple unit tests for a code that does not have user
interface, let alone HTTP connection. The partitioned
way of implementing web applications does not itself
help in testing the user interface but testing the REST-
ful API can be very easy. Some frameworks – such as
Django – offer a way to write unit tests against the REST
API without even having to start a web server when the
tests are run. Even if the framework does not have such
support, automatic regression tests would still be fairly
easy to write using isolated HTTP request and checking
the response codes and possible contents.

8) Network traffic. When the user interface is imple-
mented within a single page, there is no need to down-
load any additional HTML or CSS files after the appli-
cation has been bootsrapped and running. Only the data
that is requested by the user is downloaded from the
server. Thus, there is no overhead in the network traf-
fic and from this follows that the user interface stays re-
sponsive at all times and therefore becomes more robust.
On the other hand, when the services on the server con-
form to the RESTful architectural style, the full caching
capabilities of the HTTP become available. In many of
the traditional web applications the payload data is em-
bedded within the downloaded HTML page. That makes
the data much more difficult – if not even impossible –
to cache efficiently.

5.2 Disadvantages
1) Framework support. Web frameworks offer a lot of
conventions, tools and code generators for building tra-
ditional web applications. While the RESTful service in-
terface can benefit from these tools, the single page user
interface gets no benefit. The level of guidance the de-
veloper gets for building the user interface is completely
dependent upon the chosen JavaScript toolkit.

2) Search engines. It is very difficult for the search
engines to crawl a single page web application. They
could crawl the RESTful service interface but the docu-
ments returned by the interface are without any context
and therefore difficult to rank.

3) Accessibility. For visually impaired, single page
web applications can be difficult to use. In traditional
web applications with more static pages the accessibility
is easier to take into account. While possible, it is much
more laborious to implement a web application that has
good support for accessibility.

4) Lack of HTML. One of the best features of HTML
and CSS is that web pages can be designed and even
written by graphical designers. In single page web ap-
plications, with heavy use of JavaScript, this becomes
impossible. The user interface must be implemented by
a software developer.

6 Related Work
As mentioned earlier, our approach embraces many of
the existing methods and patterns. We now briefly de-
scribe some of these existing approaches and underline
how our solution stands out among them.

6.1 MVC in Web Applications
While there are other approaches into building web ap-
plications – such as continuations [6, 13] – the MVC
pattern is the one adopted by most of the popular web
frameworks today. There has been a lot of research on
how to implement the MVC pattern in the realm of web
applications. Specifically, [12] defines and discusses all
the different scenarios of how the MVC pattern can be
implemented in web applications. The paper elaborates
on how the MVC pattern should be incorporated by Rich
Internet Applications (RIAs). It is also their conclusion
that while the components of MVC may be distributed
differently in different types of applications, for RIAs, it
is best to implement the full MVC stack in the browser.

Another paper [10] suggests a dynamic approach of
distributing the components of MVC between the client
and the server. This is accomplished through a method
called flexible web-application partitioning (fwap) and
it allows for different partitioning schemes without any
modifications to the code. For example, depending on
the use case it may be appropriate to sometimes deploy
controller on the server while at other times it is best to
have it in the browser.

However, for all the popular MVC web frameworks –
such as Struts, Rails or ASP .Net MVC – the term MVC
always refers to the traditional way of partitioning web
applications (as described in Section 2). In this model
the whole MVC stack is implemented in the server and
the view is transferred into the browser after being gen-
erated in the server. Of course, the view may have dy-
namic features through the use of JavaScript and CSS
but it does not affect how the components of the MVC
are laid out.

6.2 RESTful Web Services
For a web site that supports both browser based user
interface and programmable API, it is common to
have, indeed, two separate interfaces for these purposes.
Good examples are Netflix (http://www.netflix.com/)
and del.icio.us (http://del.icio.us/) which both have sepa-
rate interfaces for browser and other clients. Usually the

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 97

interface accessed by the browser is so tightly coupled
to the application flow that it would be very difficult for
programmatic clients to consume it. Therefore a sepa-
rate API interface is required. This API can then be a
pure RESTful API that is looking at the same data as the
browser interface.

There also seems to be confusion in the terminology
when REST is being discussed in the context of web ap-
plications. It is often assumed that a web application is
RESTful if the URLs in the browser’s address bar look
readable and intuitive. While this is a good thing, it does
not mean that the web application itself is being REST-
ful. Also it does not mean that interface would be easy
to consume by programmatic clients.

6.3 Mashup Applications
Mashups are fairly good good example of building web
applications according to the partitioned pattern de-
scribed in this paper. Mashup applications indeed de-
couple the user interface from the third party server side
implementations. They use services that are accessible
without predefined application flow to create new kinds
of applications: services are agnostic about their clients
and clients use services as they see best fit.

However, mashups fall into slightly different category
than what is the focus of this paper. Even though mashup
applications consume external service APIs, the applica-
tions themselves may be implemented in the traditional,
tightly coupled, way while only using external services
for some parts of the application. The focus of this pa-
per is to represent a pattern for building complex web
applications and provide experiences in doing so.

6.4 Comparing Our Approach
What differentiates our approach from these existing so-
lutions is that we clearly assign the whole MVC stack
into the browser. Moreover if the application does not
need any services provided by the server that becomes
the whole application. At the minimum however, there
is usually some kind of persistent data that the appli-
cation needs and for that it uses the RESTful service.
Of course, it depends on the application, how many and
what kind of services it consumes. In any case the state
of the application and even the application logic – as
much as possible – stays in the browser.

Another distinctive feature in our approach is provid-
ing a single interface for both applications running in
the browser and programmatic clients accessing the in-
terface from various environments. This explicitly de-
couples the application running in the browser from the
server side implementation because the same interface
must be consumable by other clients too. Therefore, in
the interface, there cannot be any customizations or as-
sumptions made about the browser side application.

7 Future Work
The most important part of future work is the design
and implementation of a unified and more coherent au-
thentication and authorization scheme. Currently, the
Valvomo service API supports traditional cookie based
authentication for browser clients and two legged OAuth
[2] for programmatic clients. The authorization, in turn,
is implemented somewhat specifically for each use case.
The next research topic for will be finding out what is
best way to implement authentication so that the same
method works for both the browser clients and the na-
tive clients. More importantly, this should be done with-
out cookies. As part of this investigation we also seek to
find a generic solution for implementing authorization
of resources. Right now, it seems that some kind of Role
Based Access Control that can be defined per resource
might be suitable.

Another subject for future work is implementing the
Valvomo service API using node.js or another server
side JavaScript framework that conforms to the Com-
monJS specification. Running JavaScript on both sides
of the application would provide a more uniform devel-
opment environment and enable better code reuse be-
cause we would be able to share code like domain ob-
jects, validators, utility libraries and test cases.

8 Conclusions
The high demand for feature rich web applications have
made them very complex to develop and eventually diffi-
cult to maintain. The gradual shift from static web pages
into dynamic web applications has created an unnatural
development environment for them. We need to rethink
how these complex web application should be developed
and run.

In this paper we have presented our experiences in
partitioned way of building complex and feature rich
web applications. This pattern advises into breaking
the application clearly in two parts: the client and the
server. To make the division unambiguous and explicit
the server interface should be implemented as a REST-
ful web service. Browser based clients on the other hand
should be implemented as single page web applications
to maximize interactivity and responsiveness of the user
interface.

To prove the usefulness of the suggested pattern we
have utilized it in a large scale industrial application.
The experiences of this undertaking are presented in sec-
tion 5.

References
[1] Django. http://www.djangoproject.com/, 2011.
[2] Oauth. http://oauth.net/, 2011.
[3] Ruby on rails. http://rubyonrails.org/, 2011.
[4] Sencha. http://www.sencha.com/, 2011.

98 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

[5] The spring framework. http://www.springsource.
org/, 2011.

[6] DUCASSE, S., LIENHARD, A., AND RENGGLI, L. Seaside:
A flexible environment for building dynamic web applications.
IEEE Softw. 24 (September 2007), 56–63.

[7] EVANS. Domain-Driven Design: Tacking Complexity In the
Heart of Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[8] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. Updated by RFC 2817.

[9] KRASNER, G., AND POPE, S. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object
Oriented Program. 1, 3 (1988), 26–49.

[10] LEFF, A., AND RAYFIELD, J. T. Web-application develop-
ment using the model/view/controller design pattern. Enterprise
Distributed Object Computing Conference, IEEE International 0
(2001), 0118.

[11] MIKKONEN, T., AND TAIVALSAARI, A. Web applications ?
spaghetti code for the 21st century. Software Engineering Re-
search, Management and Applications, ACIS International Con-
ference on 0 (2008), 319–328.

[12] MORALES-CHAPARRO, R., L. M. P. J. C., AND SÁNCHEZ-
FIGUEROA, F. Mvc web design patterns and rich internet appli-
cations. In Proceedings of the Conference on Engineering Soft-
ware and Databases (2007).

[13] QUEINNEC, C. Continuations and web servers. Higher Order
Symbol. Comput. 17 (December 2004), 277–295.

[14] RICHARDSON, L., AND RUBY, S. RESTful Web Services.
O’Reilly, 2007.

[15] RUDERMAN, J. The same origin policy, 2001.
[16] SOUDERS, S. High performance web sites, first ed. O’Reilly,

2007.
[17] SOUDERS, S. Even Faster Web Sites: Performance Best Prac-

tices for Web Developers, 1st ed. O’Reilly Media, Inc., 2009.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 99

Exploring the Relationship Between Web Application
Development Tools and Security

Matthew Finifter
University of California, Berkeley

finifter@cs.berkeley.edu

David Wagner
University of California, Berkeley

daw@cs.berkeley.edu

Abstract

How should software engineers choose which tools to
use to develop secure web applications? Different devel-
opers have different opinions regarding which language,
framework, or vulnerability-finding tool tends to yield
more secure software than another; some believe that
there is no difference at all between such tools. This pa-
per adds quantitative data to the discussion and debate.

We use manual source code review and an automated
black-box penetration testing tool to find security vul-
nerabilities in 9 implementations of the same web ap-
plication in 3 different programming languages. We ex-
plore the relationship between programming languages
and number of vulnerabilities, and between framework
support for security concerns and the number of vul-
nerabilities. We also compare the vulnerabilities found
by manual source code review and automated black-box
penetration testing.

Our findings are: (1) we do not find a relationship
between choice of programming language and applica-
tion security, (2) automatic framework protection mech-
anisms, such as for CSRF and session management, ap-
pear to be effective at precluding vulnerabilities, while
manual protection mechanisms provide little value, and
(3) manual source code review is more effective than au-
tomated black-box testing, but testing is complementary.

1 Introduction

The web has become the dominant platform for new soft-
ware applications. As a result, new web applications
are being developed all the time, causing the security
of such applications to become increasingly important.
Web applications manage users’ personal, confidential,
and financial data. Vulnerabilities in web applications
can prove costly for organizations; costs may include di-
rect financial losses, increases in required technical sup-
port, and tarnished image and brand.

Security strategies of an organization often include de-
veloping processes and choosing tools that reduce the
number of vulnerabilities present in live web applica-
tions. These software security measures are generally
focused on some combination of (1) building secure soft-
ware, and (2) finding and fixing security vulnerabilities
in software after it has been built.

How should managers and developers in charge of
these tasks decide which tools – languages, frameworks,
debuggers, etc. – to use to accomplish these goals? What
basis of comparison do they have for choosing one tool
over another? Common considerations for choosing
(e.g.,) one programming language over another include:

• How familiar staff developers are with the language.

• If new developers are going to be hired, the current
state of the market for developers with knowledge
of the language.

• Interoperability with and re-usability of existing in-
house and externally-developed components.

• Perceptions of security, scalability, reliability, and
maintainability of applications developed using that
language.

Similar considerations exist for deciding which web ap-
plication development framework to use and which pro-
cess to use for finding vulnerabilities.

This work begins an inquiry into how to improve one
part of the last of these criteria: the basis for evaluating
a tool’s inclination (or disinclination) to contribute to ap-
plication security.

Past research and experience reveal that different tools
can have different effects on application security. The
software engineering and software development commu-
nities have seen that an effective way to preclude buffer
overflow vulnerabilities when developing a new appli-
cation is to simply use a language that offers automatic
memory management. We have seen also that even if
other requirements dictate that the C language must be
used for development, using the safer strlcpy instead

100 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

of strcpy can preclude the introduction of many buffer
overflow vulnerabilities.

This research is an exploratory study into the security
properties of some of the tools and processes that orga-
nizations might choose to use during and after they build
their web applications. We seek to understand whether
the choice of language, web application development
framework, or vulnerability-finding process affects the
security of the applications built using these tools.

We study the questions by analyzing 9 independent
implementations of the same web application. We col-
lect data on (1) the number of vulnerabilities found in
these implementations using both a manual security re-
view and an automatic black-box penetration testing tool,
and (2) the level of security support offered by the frame-
works. We look in these data sets for patterns that might
indicate differences in application security between pro-
gramming languages, frameworks, or processes for find-
ing vulnerabilities. These patterns allow us to generate
and test hypotheses regarding the security implications
of the various tools we consider.

This paper’s main contributions are as follows:
• We develop a methodology for studying differences

in the effect on application security that differ-
ent web application development tools may have.
The tools we consider are programming languages,
web application development frameworks, and pro-
cesses for finding vulnerabilities.

• We generate and test hypotheses regarding the dif-
ferences in security implications of these tools.

• We develop a taxonomy for framework-level de-
fenses that ranges from always on framework sup-
port to no framework support.

• We find evidence that automatic framework-level
defenses work well to protect web applications, but
that even the best manual defenses will likely con-
tinue to fall short of their goals.

• We find evidence that manual source code analy-
sis and automated black-box penetration testing are
complementary.

2 Goals

Programming language. We want to measure the in-
fluence that programming language choice has on the
security of the software developed using that language.
If such an influence exists, software engineers (or their
managers) could take it into account when planning
which language to use for a given job. This informa-
tion could help reduce risk and allocate resources more
appropriately.

We have many reasons to believe that the features of
a programming language could cause differences in the

security of applications developed using that language.
For example, research has shown that type systems can
statically find (and therefore preclude, by halting compi-
lation) certain types of vulnerabilities [21, 20]. In gen-
eral, static typing can find bugs (any of which could be
a vulnerability) that may not have been found until the
time of exploitation in a dynamically-typed language.

Also, one language’s standard libraries might be more
usable, and therefore less prone to error, than another’s.
A modern exception handling mechanism might help de-
velopers identify and recover from dangerous scenarios.

But programming languages differ in many ways be-
yond the languages themselves. Each language has its
own community, and these often differ in their philoso-
phies and values. For example, the Perl community val-
ues TMTOWTDI (“There’s more than one way to do
it”) [4], but the Zen of Python [16] states, “[t]here should
be one – and preferably, only one – obvious way to do
it.” Clear documentation could play a role as well.

Therefore, we want to test whether the choice of lan-
guage measurably influences overall application security.
If so, it would be useful to know whether one language
fares better than another for any specific class of vulner-
ability. If this is the case, developers could focus their ef-
forts on classes for which their language is lacking good
support, and not worry so much about those classes in
which data show their language is strong.

Web application development framework. Web ap-
plication development frameworks provide a set of li-
braries and tools for performing tasks common in web
application development. We want to evaluate the role
that they play in the development of secure software.
This can help developers make more informed decisions
when choosing which technologies to use.

Recently, we have seen a trend of frameworks adding
security features over time. Many modern frameworks
take care of creating secure session identifiers (e.g.,
Zend, Ruby on Rails), and some have added support
for automatically avoiding cross-site scripting (XSS) or
cross-site request forgery (CSRF) vulnerabilities (e.g.,
Django, CodeIgniter). It is natural to wonder if frame-
works that are pro-active in developing security features
yield software with measurably better security, but up to
this point we have no data showing whether this is so.

Vulnerability-finding tool. Many organizations man-
age security risk by assessing the security of software
before they deploy or ship it. For web applications, two
prominent ways to do so are (1) black-box penetration
testing, using automated tools designed for this purpose,
and (2) manual source code analysis by an analyst knowl-
edgeable about security risks and common vulnerabili-
ties. The former has the advantage of being mostly au-
tomated and being cheaper; the latter has a reputation as

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 101

Team
Number

Language Frameworks used

1 Perl DBIx::DataModel, Catalyst, Tem-
plate Toolkit

2 Perl Mason, DBI
5 Perl Gantry, Bigtop, DBIx::Class
3 Java abaXX, JBoss, Hibernate
4 Java Spring, Spring Web Flow, Hiber-

nate, Acegi Security
9 Java Equinox, Jetty, RAP
6 PHP Zend Framework, OXID framework
7 PHP proprietary framework
8 PHP Zend Framework

Table 1: Set of frameworks used by each team.

more comprehensive but more expensive. However, we
are not aware of quantitative data to measure their rela-
tive effectiveness. We work toward addressing this prob-
lem by comparing the effectiveness of manual review to
that of automated black-box penetration testing. Solid
data on this question may help organizations make an in-
formed choice between these assessment methods.

3 Methodology

In order to address these questions, we analyze several
independent implementations of the same web applica-
tion specification, written using different programming
languages and different frameworks. We find vulnerabil-
ities in these applications using both manual source code
review and automated black-box penetration testing, and
we determine the level of framework support each im-
plementation has at its disposal to help it contend with
various classes of vulnerabilities. We look for associa-
tions between: (1) programming language and number
of vulnerabilities, (2) framework support and number of
vulnerabilities, and (3) number of vulnerabilities found
by manual source code analysis and by automated black-
box penetration testing.

We analyze data collected in a previous study called
Plat Forms [19]. In that work, the researchers devised
and executed a controlled experiment that gave 9 profes-
sional programming teams the same programming task
for a programming contest. Three of the teams used Perl,
three used PHP, and the remaining three used Java.

The contest rules stated that each team had 30 hours to
implement the specification of a web application called
People By Temperament [18]. Each team chose which
frameworks they were going to use. There was little
overlap in the set of frameworks used by teams using
the same programming language. Table 1 lists the set of
frameworks used by each team.

The researchers collected the 9 programs and analyzed
their properties. While they were primarily concerned

with metrics like performance, completeness, size, and
usability, we re-analyze their data to evaluate the security
properties of these 9 programs.

Each team submitted a complete source code package
and a virtual machine image. The VM image runs a web
server, which hosts their implementation of People by
Temperament. The source code packages were trimmed
to remove any code that was not developed specifically
for the contest, and these trimmed source code packages
were released under open source licenses.1

For our study, we used the set of virtual machine
images and the trimmed source code packages. The
Plat Forms study gathered a lot of other data (e.g., sam-
ples at regular intervals of the current action of each de-
veloper) that we did not need for the present study. The
data from our study are publicly available online.2

3.1 People by Temperament

We familiarized ourselves with the People by Tempera-
ment application before beginning our security analysis.
The application is described as follows:

PbT (People by Temperament) is a simple commu-
nity portal where members can find others with whom they
might like to get in contact: people register to become
members, take a personality test, and then search for others
based on criteria such as personality types, likes/dislikes,
etc. Members can then get in contact with one another if
both choose to do so. [18]

People by Temperament is a small but realistic web ap-
plication with a non-trivial attack surface. It has security
goals that are common amongst many web applications.
We list them here:

• Isolation between users. No user should be able
to gain access to another user’s account; that is,
all information input by a user should be integrity-
protected with respect to other users. No user
should be able to view another user’s confidential
information without approval. Confidential infor-
mation includes a user’s password, full name, email
address, answers to personality test questions, and
list of contacts. Two users are allowed to view each
other’s full name and email address once they have
agreed to be in contact with one another.

• Database confidentiality and integrity. No user
should be able to directly access the database, since
it contains other users’ information and it may con-
tain confidential web site usage information.

• Web site integrity. No user should be able to van-
dalize or otherwise modify the web site contents.

1http://www.plat-forms.org/sites/default/files/
platforms2007solutions.zip

2http://www.cs.berkeley.edu/˜finifter/datasets/

102 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Integer-valued

Stored XSS
Reflected XSS
SQL injection
Authentication or authorization bypass

Binary
CSRF
Broken session management
Insecure password storage

Table 2: The types of vulnerabilities we looked for. We distin-
guish binary and integer-valued vulnerability classes. Integer-
valued classes may occur more than once in an implementa-
tion. For example, an application may have several reflected
XSS vulnerabilities. The binary classes represent presence or
absence of an application-wide vulnerability. For example, in
all implementations in this study, CSRF protection was either
present throughout the application or not present at all.

Review
Number

Dev.
Team
Number

Lang. SLOC Review
Time
(min.)

Review
Rate
(SLOC/hr)

1 6 PHP 2,764 256 648
2 3 Java 3,686 229 966
3 1 Perl 1,057 210 302
4 4 Java 2,021 154 787
5 2 Perl 1,259 180 420
6 8 PHP 2,029 174 700
7 9 Java 2,301 100 1,381
8 7 PHP 2,649 99 1,605
9 5 Perl 3,403 161 1,268

Table 3: Time taken for manual source code reviews, and num-
ber of source lines of code for each implementation.

• System confidentiality and integrity. No user
should be able to gain access to anything on the
web application server outside of the scope of the
web application. No user should be able to execute
additional code on the server.

The classes of vulnerabilities that we consider are pre-
sented in Table 2. A vulnerability in any of these classes
violates at least one of the application’s security goals.

3.2 Vulnerability data

We gathered vulnerability data for each implementation
in two distinct phases. In the first phase, a reviewer per-
formed a manual source code review of the implementa-
tion. In the second phase, we subjected the implemen-
tation to the attacks from an automated black-box web
penetration testing tool called Burp Suite Pro [17].

We used both methods because we want to find as
many vulnerabilities as we can. We hope that any failings
of one method will be at least partially compensated by
the other. Although we have many static analysis tools at
our disposal, we chose not to include them in this study
because we are not aware of any that work equally well
for all language platforms. Using a static analysis tool
that performs better for one language than another would
have introduced systematic bias into our experiment.

3.2.1 Manual source code review

One reviewer (Finifter) reviewed all implementations.
This reviewer is knowledgeable about security and had
previously been involved in security reviews.

Using one reviewer for all implementations avoids the
problem of subjectivity between different reviewers that
would arise if the reviewers were to examine disjoint sets
of implementations. We note that having multiple re-
viewers would be beneficial if each reviewer was able
to review all implementations independently of all other
reviewers.

The reviewer followed the Flaw Hypothesis Method-
ology [6] for conducting the source code reviews. He
used the People by Temperament specification and
knowledge of flaws common to web applications to de-
velop a list of types of vulnerabilities to look for. He
performed two phases of review, first looking for spe-
cific types of flaws from the list, then comprehensively
reviewing the implementation. He confirmed each sus-
pected vulnerability by developing an exploit.

We randomly generated the order in which to perform
the manual source code reviews in order to mitigate any
biases that may have resulted from choosing any partic-
ular review order. Table 3 presents the order in which
the reviewer reviewed the implementations as well as the
amount of time spent on each review.

The reviewer spent as much time as he felt necessary
to perform a complete review. As shown in Table 3, the
number of source lines of code reviewed per hour varies
widely across implementations; the minimum is 302 and
the maximum is 1,605. Cohen [7] states that “[a]n ex-
pected value for a meticulous inspection would be 100-
200 LOC/hour; a normal inspection might be 200-500.”
It is unclear upon what data or experience these numbers
are based, but we expect the notion of “normal” to vary
across different types of software. For example, we ex-
pect a review of a kernel module to proceed much more
slowly than that of a web application. Additionally, we
note that the number of source lines of code includes both
static HTML content and auto-generated code, neither of
which tends to require rigorous security review.

To help gauge the validity of our data for manual
source code review, we test the following hypotheses:

• Later reviews take less time than earlier reviews.

• More vulnerabilities were found in later reviews.

• Slower reviews find more vulnerabilities.
If we find evidence in support of either of the first two

hypotheses, this may indicate that the reviewer gained
experience over the course of the reviews, which may
have biased the manual review data. A more experi-
enced reviewer can be expected to find a larger fraction
of the vulnerabilities in the code, and if this fraction in-
creases with each review, we expect our data to be biased

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 103

in showing those implementations reviewed earlier to be
more secure. Spearman’s rho for these two hypotheses is
ρ = 0.633 (p = 0.0671) and ρ = −0.0502 (p = 0.8979),
respectively, which means that we do not find evidence
in support of either of these hypotheses.

If we find evidence in support of the third of these
hypotheses, this may indicate that the reviewer did not
allow adequate time to complete one or more of the re-
views. This would bias the data to make it appear that
those implementations reviewed more quickly are more
secure than those for which the review proceeded more
slowly. The correlation coefficient between review rate
and number of vulnerabilities found using manual anal-
ysis is r = 0.0676 (p = 0.8627), which means we do
not find evidence in support of this hypothesis. The lack
of support for these hypotheses modestly increases our
confidence in the validity of our manual analysis data.

3.2.2 Black-box testing

We used Portswigger’s Burp Suite Professional version
1.3.08 [17] for black box testing of the implementations.
We chose this tool because a previous study has shown it
to be among the best of the black box testing tools [11]
and because it has a relatively low cost.

We manually spidered each implementation before
running Burp Suite’s automated attack mode (called
“scanner”). All vulnerabilities found by Burp Suite were
manually verified and de-duplicated (when necessary).

3.3 Framework support data

We devised a taxonomy to categorize the level of support
a framework provides for protecting against various vul-
nerability classes. We distinguish levels of framework
support as follows.

The strongest level of framework support is always on.
Once a developer decides to use a framework that offers
always-on protection for some vulnerability class, a vul-
nerability in that class cannot be introduced unless the
developer stops using the framework. An example of this
is the CSRF protection provided automatically by Spring
Web Flow [10], which Team 4 used in its implementa-
tion. Spring Web Flow introduces the notion of tokens,
which define flows through the UI of an application, and
these tokens double as CSRF tokens, a well-known pro-
tection mechanism for defending against CSRF vulner-
abilities. Since they are integral to the functionality the
framework provides, they cannot be removed or disabled
without ceasing to use the framework entirely.

The next strongest level of framework support is opt-
out support. This level of support provides protection
against a vulnerability class by default, but it can be dis-

abled by the developer if he so desires. Team 2’s custom
ORM framework provides opt-out support for SQL in-
jection. If the framework is used, SQL injection cannot
occur, but a developer can opt out by going around the
framework to directly issue SQL queries.

Opt-in support refers to a defense that is disabled by
default, but can be enabled by the developer to provide
protection throughout the application. Enabling the pro-
tection may involve changing a configuration variable
or calling into the framework code at initialization time.
Once enabled, opt-in support defends against all subse-
quent instances of that vulnerability class. Acegi Secu-
rity, used by Team 4, provides a PasswordEncoder
interface with several different implementations. We
consider this opt-in support because a developer can se-
lect an implementation that provides secure password
storage for his application.

Manual support is the weakest level of framework
support. This term applies if the framework provides
a useful routine to help protect against a vulnerability
class, but that routine must be utilized by the devel-
oper each time protection is desired. For example, many
frameworks provide XSS filters that can be applied to
untrusted data before it is included in the HTML page.
These filters spare a developer the burden of writing a
correct filter, but the developer must still remember to
invoke the filter every time untrusted data is output to
a user. Manual support is weak because a developer has
many opportunities to make an error of omission. Forget-
ting to call a routine (such as an XSS filter) even once is
enough to introduce a vulnerability. We use the term au-
tomatic support to contrast with manual support; it refers
to any level of support stronger than manual support.

For each implementation, we looked at the source
code to discover which frameworks were used. We read
through the documentation for each of the frameworks
to find out which protection mechanisms were offered
for each vulnerability class we consider. We defined the
implementation’s level of support for a particular vulner-
ability class to be the highest level of support offered by
any framework used by the implementation.

3.4 Individual vulnerability data

We gather data about each individual vulnerability to
deepen our understanding of the current framework
ecosystem, the reasons that developers introduce vul-
nerabilities, and the limitations of manual review. For
each vulnerability, we determine how far the developers
would have had to stray from their chosen frameworks in
order to find manual framework support that could have
prevented the vulnerability. Specifically, we label each
vulnerability with one of the following classifications:

104 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Java Perl PHP
Number of programmers 9 9 9
Mean age (years) 32 32 32
Mean experience (years) 7.1 8.7 9.8

Table 4: Statistics of the programmers.

1. Framework used. Framework support that could
have prevented this vulnerability exists in at least
one of the frameworks used by the implementation.

2. Newer version of framework used. Framework
support exists in a newer version of one of the
frameworks used by the implementation.

3. Another framework for language used. Frame-
work support exists in a different framework for the
same language used by the implementation.

4. Some framework for some language. Framework
support exists in some framework for some lan-
guage other than the one used by the implementa-
tion.

5. No known support. We cannot find framework
support in any framework for any language that
would have stopped the vulnerability.

We label each vulnerability with the lowest level at which
we are able to find framework support that could have
prevented the vulnerability. We do so using our aware-
ness and knowledge of state-of-the-art frameworks as
well as the documentation frameworks provide.

Similarly, for each vulnerability, we determine the
level at which the developers could have found automatic
(i.e., opt-in or better) framework support. We evaluate
this in the same manner as we did for manual support, but
with a focus only on automatic protection mechanisms.

3.5 Threats to validity

Experimental design. The Plat Forms data were gath-
ered in a non-randomized experiment. This means that
the programmers chose which language to use; the lan-
guage was not randomly assigned to them by the re-
searchers. This leaves the experiment open to selection
bias; it could be the case that more skilled programmers
tend to choose one language instead of another. As a re-
sult, any results we find represent what one might expect
when hiring new programmers who choose which lan-
guage to use, rather than having developers on staff and
telling them which language to use.

Programmer skill level. If the skill level of the pro-
grammers varies from team to team, then the results rep-
resent the skills of the programmers, not inherent proper-
ties of the technologies they use for development. Fortu-
nately, the teams had similar skills, as shown in Table 4.

Security awareness. Security was not explicitly men-
tioned to the developers, but all were familiar with secu-

rity practices because their jobs required them to be [23].
It may be that explicitly mentioning security or speci-
fying security requirements would have changed the de-
velopers’ focus and therefore the security of the imple-
mentations, but we believe that the lack of special men-
tion is realistic and representative of many programming
projects. In the worst case, this limits the external valid-
ity of our results to software projects in which security is
not explicitly highlighted as a requirement.

Small sample size. Due to the cost of gathering data of
this nature, the sample size is necessarily small. This is
a threat to external validity because it makes it difficult
to find statistically significant results. In the worst case,
we can consider this a case study that lets us generate
hypotheses to test in future research.

Generalization to other applications. People by
Temperament is one web application, and any findings
with respect to it may not hold true with respect to other
web applications, especially those with vastly different
requirements or of much larger scale. The teams had
only 30 hours to complete their implementation, which
is not representative of most real software development
projects. Despite these facts, the application does have
a significant amount of functionality and a large enough
attack surface to be worth examining.

Number of vulnerabilities. We would like to find the
total number of vulnerabilities present in each implemen-
tation, but each analysis (manual and black-box) finds
only some fraction of them. If the detection rate of our
manual analysis is better for one language or one imple-
mentation than it is for another, this is a possible threat
to validity. However, we have no reason to expect a sys-
tematic bias of this nature, as the reviewer’s level of ex-
perience in manual source code review is approximately
equivalent for all three languages. At no time did the
reviewer feel that any one review was easier or more dif-
ficult than any other.

Similarly, if the detection rate of our black-box tool
is better for one language or implementation than it is
for another, this could pose a threat to validity. We have
no reason to believe this is the case. Because black-box
testing examines only the input-output behavior of a web
application and not its implementation, it is inherently
language- and implementation-agnostic, which leads us
to expect that it has no bias for any one implementation
over any other.

Vulnerability severity. Our analysis does not take into
account any differences in vulnerability severity. Using
our analysis, an implementation with many low-severity
vulnerabilities would appear less secure than an imple-
mentation with only a few very high-severity vulnerabil-
ities, though in fact the latter system may be less secure
overall (e.g., expose more confidential customer data).

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 105

We have no reason to believe that average vulnerability
severity varies widely between implementations, but we
did not study this in detail.

Vulnerabilities introduced later in the product cycle.
Our study considers only those vulnerabilities introduced
during initial product development. Continued develop-
ment brings new challenges for developers that simply
were not present in this experiment. Our results do not
answer any questions about vulnerabilities introduced
during code maintenance or when features are added af-
ter initial product development.

Framework documentation. If a framework’s docu-
mentation is incomplete or incorrect, or if we misread
or misunderstood the documentation, we may have mis-
labeled the level of support offered by the framework.
However, the documentation represents the level of sup-
port a developer could reasonably be expected to know
about. If we were unable to find documentation for pro-
tection against a class of vulnerabilities, we expect that
developers would struggle as well.

Awareness of frameworks and levels of support.
There may exist frameworks that we are not aware of
that provide strong framework support for a vulnerabil-
ity class. If this is the case, our labeling of vulnerabilities
with the nearest level at which framework support exists
(Section 3.4) may be incorrect. We have made every ef-
fort to consider all frameworks with a significant user
base in order to mitigate this problem, and we have con-
sulted several lists of frameworks (e.g., [14]) in order to
make our search as thorough as reasonably possible.

4 Results

We look for patterns in the data and analyze it using sta-
tistical techniques. We note that we do not find many
statistically significant results due to the limited size of
our data set.

4.1 Total number of vulnerabilities

Figure 1 displays the total number of vulnerabilities
found in each implementation, including both integer-
valued and binary vulnerability classes (we count a bi-
nary vulnerability as one vulnerability in these aggregate
counts).

Every implementation had at least one vulnerability.
This suggests that building secure web applications is
difficult, even with a well-defined specification, and even
for a relatively small application.

0
10

20
30

40

Java 3 Java 4 Java 9 PHP 6 PHP 7 PHP 8 Perl 1 Perl 2 Perl 5

Total Number of Vulnerabilities

Manual Both
Black-box

Figure 1: The total number of vulnerabilities found in the 9
implementations of People by Temperament. The x-axis is la-
beled with the language and team number.

One of the Perl implementations has by far the most
vulnerabilities, primarily due to its complete lack of XSS
protection.3 This does not seem to be related to the fact
that Perl is the language used, however, since the other
two Perl implementations have only a handful of vulner-
abilities, and few XSS vulnerabilities.

The Java implementations have fewer vulnerabilities
than the PHP implementations. In fact, every Java imple-
mentation contains fewer vulnerabilities than each PHP
implementation.

A one-way ANOVA test reveals that the overall re-
lationship in our data set between language and total
number of vulnerabilities is not statistically significant
(F = 0.57, p = 0.592). Because this appears to be
largely due to the obvious lack of a difference between
Perl and each of the other two languages, we also per-
form a Student’s t-test for each pair of languages, using
the Bonferroni correction to correct for the fact that we
test 3 separate hypotheses. As expected, we do not find a
significant difference between PHP and Perl or between
Perl and Java. We find a statistically significant differ-
ence between PHP and Java (p = 0.033).

4.2 Vulnerability classes

Figure 2 breaks down the total number of vulnerabilities
into the separate integer-valued vulnerability classes, and
the shaded rows in Table 5 present the data for the binary
vulnerability classes.

XSS. A one-way ANOVA test reveals that the relation-
ship between language and number of stored XSS vul-
nerabilities is not statistically significant (F = 0.92, p =
0.4492). The same is true for reflected XSS (F = 0.43,
p = 0.6689).

3None of our conclusions would differ if we were to exclude this
apparent outlier.

106 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

CSRF Session Management Password Storage
Team
Number

Language Vulnerable? Framework
Support

Vulnerable? Framework
Support

Vulnerable? Framework
Support

1 Perl • none opt-in • opt-in
2 Perl • none • none • none
5 Perl • none • none opt-out
3 Java manual opt-out • none
4 Java always on opt-in • opt-in
9 Java • none opt-in none
6 PHP • none opt-out • opt-in
7 PHP • none opt-out • none
8 PHP • none opt-out • opt-in

Table 5: Presence or absence of binary vulnerability classes, and framework support for preventing them.

0
2

4
6

8
10

Java 3 Java 4 Java 9 PHP 6 PHP 7 PHP 8 Perl 1 Perl 2 Perl 5

Stored XSS

Manual Both
Black-box

0
5

10
15

20

Java 3 Java 4 Java 9 PHP 6 PHP 7 PHP 8 Perl 1 Perl 2 Perl 5

Reflected XSS

Manual Both
Black-box

0
1

2
3

Java 3 Java 4 Java 9 PHP 6 PHP 7 PHP 8 Perl 1 Perl 2 Perl 5

SQL Injection

Manual Both
Black-box

0
1

2

Java 3 Java 4 Java 9 PHP 6 PHP 7 PHP 8 Perl 1 Perl 2 Perl 5

Authentication/Authorization Bypass

Manual Both
Black-box

Figure 2: Vulnerabilities by vulnerability class.

SQL injection. Very few SQL injection vulnerabilities
were found. Only two implementations had any such
vulnerabilities, and only 4 were found in total. The dif-
ference between languages is not statistically significant
(F = 0.70, p = 0.5330).

Authentication and authorization bypass. No such
vulnerabilities were found in 5 of the 9 implementations.
Each of the other 4 had only 1 or 2 such vulnerabilities.
The difference between languages is not statistically sig-
nificant (F = 0.17, p = 0.8503).

CSRF. As seen in Table 5, all of the PHP and Perl
implementations, and 1 of 3 Java implementations were
vulnerable to CSRF attacks. Fisher’s exact test reveals
that the difference between languages is not statistically
significant (p = 0.25).

Session management. All implementations other than
2 of the 3 Perl implementations were found to implement
secure session management. That is, the Perl implemen-
tations were the only ones with vulnerable session man-
agement. Fisher’s exact test reveals that the difference is
not statistically significant (p = 0.25).

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 107

Vulnerabilities found by
Team
Number

Language Manual
only

Black-
box only

Both Total

1 Perl 4 1 0 5
2 Perl 3 1 0 4
5 Perl 12 3 18 33
3 Java 1 7 0 8
4 Java 2 2 0 4
9 Java 5 0 0 5
6 PHP 7 3 0 10
7 PHP 7 3 0 10
8 PHP 11 0 1 12

Table 6: Number of vulnerabilities found in the implementa-
tions of People by Temperament. The “Vulnerabilities found
by” columns display the number of vulnerabilities found only
by manual analysis, only by black-box testing, and by both
techniques, respectively. The final column displays the total
number of vulnerabilities found in each implementation.

Insecure password storage. Most of the implementa-
tions used some form of insecure password storage, rang-
ing from storing passwords in plaintext to not using a salt
before hashing the passwords. One Perl and one Java
implementation did not violate current best practices for
password storage. There does not, however, appear to be
any association between programming language and in-
secure password storage. Fisher’s exact test does not find
a statistically significant difference (p = 0.999).

4.3 Manual review vs. black-box testing

Table 6 and Figure 1 list how many vulnerabilities were
found only by manual analysis, only by black-box test-
ing, and by both techniques. All vulnerabilities in the bi-
nary vulnerability classes were found by manual review,
and none were found by black-box testing.

We observe that manual analysis fared better overall,
finding 71 vulnerabilities (including the binary vulner-
ability classes), while black-box testing found only 39.
We also observe that there is very little overlap between
the two techniques; the two techniques find different vul-
nerabilities. Out of a total of 91 vulnerabilities found by
either technique, only 19 were found by both techniques
(see Figure 3). This suggests that they are complemen-
tary, and that it may make sense for organizations to use
both.

Organizations commonly use only black-box testing.
These results suggest that on a smaller budget, this prac-
tice makes sense because either technique will find some
vulnerabilities that the other will miss. If, however, an or-
ganization can afford the cost of manual review, it should
supplement this with black-box testing. The cost is small
relative to that of review, and our results suggest that
black-box testing will find additional vulnerabilities.

Figure 2 reveals that the effectiveness of the two tech-
niques differs depending upon the vulnerability class.

20 19 52

Black-box Manual
Figure 3: Vulnerabilities found by manual analysis and black-
box penetration testing.

Manual review is the clear winner for authentication
and authorization bypass and stored XSS vulnerabilities,
while black-box testing finds more reflected XSS and
SQL injection vulnerabilities. This motivates the need
for further research and development of better black-box
penetration testing techniques for stored XSS and au-
thentication and authorization bypass vulnerabilities. We
note that recent research has made progress toward find-
ing authentication and authorization bypass vulnerabili-
ties [9, 13], but these are not black-box techniques.

Reviewer ability. We now discuss the 20 vulnerabil-
ities that were not found manually. Our analysis of
these vulnerabilities further supports our conclusion that
black-box testing complements manual review.

For 40% (8) of these, the reviewer found at least one
similar vulnerability in the same implementation. That
is, there is evidence that the reviewer had the skills and
knowledge required to identify these vulnerabilities, but
overlooked them. This suggests that we cannot expect a
reviewer to have the consistency of an automated tool.

For another 40%, the vulnerability detected by the tool
was in framework code, which was not analyzed by the
reviewer. An automated tool may find vulnerabilities that
reviewers are not even looking for.

The remaining 20% (4) represent vulnerabilities for
which no similar vulnerabilities were found by the re-
viewer in the same implementation. It is possible that
the reviewer lacked the necessary skills or knowledge to
find these vulnerabilities.

4.4 Framework support

We examine whether stronger framework support is as-
sociated with fewer vulnerabilities. Figure 4 displays the
relationship for each integer-valued vulnerability class
between the level of framework support for that class and
the number of vulnerabilities in that class. If for some
vulnerability class there were an association between the
level of framework support and the number of vulnerabil-

108 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

0
10

20
30

Nu
m

be
r o

f V
ul

ne
ra

bi
lit

ie
s

no support manual opt in opt out
Framework Support

XSS SQL Injection
Auth. Bypass

Number of Vulnerabilities vs. Framework Support

Figure 4: Level of framework support vs. number of vulnera-
bilities for integer-valued vulnerability classes. The area of a
mark scales with the number of observations at its center.

ities, we would expect most of the points to be clustered
around (or below) a line with a negative slope.

For each of the three4 classes, we performed a one-
way ANOVA test between framework support for the
vulnerability class and number of vulnerabilities in the
class. None of these results are statistically significant.

Our data set allows us to compare only frameworks
with no support to frameworks with manual support be-
cause the implementations in our data set do not use
frameworks with stronger support (with one exception).
We found no significant difference between these levels
of support. However, this data set does not allow us to
examine the effect of opt-in, opt-out, or always-on sup-
port on vulnerability rates. In future work, we would like
to analyze implementations that use frameworks with
stronger support for these vulnerability classes. Exam-
ple frameworks include CodeIgniter’s xss clean [1],
Google Ctemplate [3], and Django’s autoescape [2],
all of which provide opt-out support for preventing XSS
vulnerabilities. A more diverse data set might reveal re-
lationships that cannot be gleaned from our current data.

Table 5 displays the relationship between framework
support and vulnerability status for each of the binary
vulnerability classes.

There does not appear to be any relationship for pass-
word storage. Many of the implementations use frame-
works that provide opt-in support for secure password
storage, but they do not use this support and are therefore
vulnerable anyway. This highlights the fact that manual
framework support is only as good as developers’ aware-
ness of its existence.

Session management and CSRF do, on the other hand,
appear to be in such a relationship. Only the two im-
plementations that lack framework support for session

4The level of framework support for stored XSS and reflected XSS
is identical in each implementation, so we combined these two classes.

management have vulnerable session management. Sim-
ilarly, only the two implementations that have framework
support for CSRF were not found to be vulnerable to
CSRF attacks. Both results were found to be statistically
significant using Fisher’s exact test (p = 0.028 for each).

The difference in results between the integer-valued
and binary vulnerability classes suggests that manual
support does not provide much protection, while more
automated support is effective at preventing vulnerabil-
ities. During our manual source code review, we fre-
quently observed that developers were able to correctly
use manual support mechanisms in some places, but they
forgot or neglected to do so in other places.

Figure 5 presents the results from our identification of
the lowest level at which framework support exists that
could have prevented each individual vulnerability (as
described in Section 3.4).

It is rare for developers not to use available automatic
support (the darkest bars in Figure 5b show only 2 such
vulnerabilities), but they commonly fail to use existing
manual support (the darkest bars in Figure 5a, 37 vul-
nerabilities). In many cases (30 of the 91 vulnerabilities
found), the existing manual support was correctly used
elsewhere. This suggests that no matter how good man-
ual defenses are, they will never be good enough; devel-
opers can forget to use even the best manual framework
support, even when it is evident that they are aware of it
and know how to use it correctly.

For both manual and automatic support, the major-
ity of vulnerabilities could have been prevented by sup-
port from another framework for the same language that
the implementation used. That is, it appears that strong
framework support exists for most vulnerability classes
for each language in this study.

The annotations in Figure 5 point out particular
shortcomings of frameworks for different vulnerability
classes. We did not find any framework that provides
any level of support for sanitizing untrusted output in a
JavaScript context, which Team 3 failed to do repeatedly,
leading to 3 reflected XSS vulnerabilities. We were also
unable to find a PHP framework that offers automatic
support for secure password storage, though we were
able to find many tutorials on how to correctly (but man-
ually) salt and hash passwords in PHP. Finally, we are not
aware of any automatic framework support for prevent-
ing authorization bypass vulnerabilities. Unlike the other
vulnerability classes we consider, these require correct
policies; in this sense, this vulnerability class is funda-
mentally different, and harder to tackle, as acknowledged
by recent work [9, 13].

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 109

 0

 5

 10

 15

 20

 25

 30

 35

Java3 Java4 Java9 PHP6 PHP7 PHP8 Perl1 Perl2 Perl5

Where manual support exists to prevent vulnerabilities

No known framework
Some fwk. for some language
Diff. fwk. for language used
Newer version of fwk. used
Framework used

Reflected XSS in
JavaScript context

(a) Manual framework support

 0

 5

 10

 15

 20

 25

 30

 35

Java3 Java4 Java9 PHP6 PHP7 PHP8 Perl1 Perl2 Perl5

Where automatic support exists to prevent vulnerabilities

No known framework
Some fwk. for some language
Diff. fwk. for language used
Newer version of fwk. used
Framework used

Reflected XSS in
JavaScript context

Authorization
bypass

Authorization
bypass

Secure password storage

(b) Automatic framework support

Figure 5: For each vulnerability found, how far developers would have to stray from the technologies they used in order to find
framework support that could have prevented each vulnerability, either manually (left) or automatically (right).

4.5 Limitations of statistical analysis

We caution the reader against drawing strong, general-
izable conclusions from our statistical analysis, and we
view even our strongest results as merely suggestive but
not conclusive. Although we entered this study with spe-
cific goals and hypotheses (as described in Section 2),
results that appear statistically significant may not in fact
be valid – they could be due to random chance.

When testing 20 hypotheses at a 0.05 significance
level, we expect one of them to appear significant purely
by chance. We tested 19 hypotheses in this study, and
3 of them appeared to be significant. Therefore, we
should not be surprised if one or two of these seemingly-
significant associations are in fact spurious and due
solely to chance. We believe more powerful studies with
larger data sets are needed to convincingly confirm the
apparent associations we have found.

5 Related work

In this section, we survey related work, which falls
into 3 categories: (1) studies of the relationship be-
tween programming languages and application secu-
rity, (2) comparisons of the effectiveness of different
automated black-box web application penetration test-
ing tools, and (3) comparisons of different bug- and
vulnerability-finding techniques.

Programming languages and security. The 9th edi-
tion of the WhiteHat Website Security Statistic Re-
port [26] offers what we believe is the best insight to
date regarding the relationship between programming
language and application security. Their data set, which
includes over 1,500 web applications and over 20,000
vulnerabilities, was gathered from the penetration-testing
service WhiteHat performs for its clients.

Their report found differences between languages in
the prevalence of different vulnerability classes as well as

the average number of “serious” vulnerabilities over the
lifetime of the applications. For example, in their sample
of applications, 57% of the vulnerabilities in JSP appli-
cations were XSS vulnerabilities, while only 52% of the
vulnerabilities in Perl applications were XSS vulnerabil-
ities. Another finding was that PHP applications were
found to have an average of 26.6 vulnerabilities over their
lifetime, while Perl applications had 44.8 and JSP appli-
cations had 25.8. The report makes no mention of statis-
tical significance, but given the size of their data set, one
can expect all of their findings to be statistically signifi-
cant (though not necessarily practically significant).

Walden et al. [25] measured the vulnerability density
of the source code of 14 PHP and 11 Java applications,
using different static analysis tools for each set. They
found that the Java applications had lower vulnerability
density than the PHP applications, but the result was not
statistically significant.

While these analyses sample across distinct applica-
tions, ours samples across implementations of the same
application. Our data set is smaller, but its collection was
more controlled. The first study focused on fixed combi-
nations of programming language and framework (e.g.,
Java JSP), and the second did not include a framework
comparison. Our study focuses separately on language
and framework.

Dwarampudi et al. [12] compiled a fairly comprehen-
sive list of pros and cons of the offerings of several dif-
ferent programming languages with respect to many lan-
guage features, including security. No experiment or data
analysis were performed as a part of this effort.

Finally, the Plat Forms [19] study (from which the
present study acquired its data) performed a shallow se-
curity analysis of the data set. They ran simple black-box
tests against the implementations in order to find indica-
tions of errors or vulnerabilities, and they found minor
differences. We greatly extended their study using both
white- and black-box techniques to find vulnerabilities.

110 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Automated black-box penetration testing. We are
aware of three separate efforts to compare the effective-
ness of different automated black-box web application
security scanners. Suto [22] tested each scanner against
the demonstration site of each other scanner and found
differences in the effectiveness of the different tools. His
report lists detailed pros and cons of using each tool
based on his experience. Bau et al. [5] tested 8 differ-
ent scanners in an effort to identify ways in which the
state of the art of black box scanning could be improved.
They found that the scanners tended to perform well on
reflected XSS and (first-order) SQL injection vulnera-
bilities, but poorly on second-order vulnerabilities (e.g.,
stored XSS). We augment this finding with the result that
manual analysis performs better for stored XSS, authen-
tication and authorization bypass, CSRF, insecure ses-
sion management, and insecure password storage, and
black-box testing performs better for reflected XSS and
SQL injection.

Doupé et al. [11] evaluated 11 scanners against a
web application custom-designed to have many different
crawling challenges and types of vulnerabilities. They
found that the scanners were generally poor at crawling
the site, they performed poorly against “logic” vulner-
abilities (e.g., application-specific vulnerabilities, which
often include authorization bypass vulnerabilities), and
that they required their operators to have a lot of knowl-
edge and training to be able to use them effectively.

While these studies compare several black-box tools
to one another, we compare the effectiveness of a sin-
gle black-box tool to that of manual source code anal-
ysis. Our choice regarding which black-box scanner to
use was based in part on these studies.

Bug- and vulnerability-finding techniques. Wagner
et al. [24] performed a case study against 5 applications
in which they analyzed the true- and false-positive rates
of three static bug-finding tools and compared manual
source code review to static analysis for one of the 5 ap-
plications. This study focused on defects of any type,
making no specific mention of security vulnerabilities.
They found that all defects the static analysis tools dis-
covered were also found by the manual review. Our study
focuses specifically on security vulnerabilities in web ap-
plications, and we use a different type of tool in our study
than they use in theirs.

Two short articles [8, 15] discuss differences between
various tools one might consider using to find vulnera-
bilities in an application. The first lists constraints, pros,
and cons of several tools, including source code analysis,
dynamic analysis, and black-box scanners. The second
article discusses differences between white- and black-
box approaches to finding vulnerabilities.

6 Conclusion and future work

We have analyzed a data set of 9 implementations of the
same web application to look for security differences as-
sociated with programming language, framework, and
method of finding vulnerabilities. Each implementation
had at least one vulnerability, which indicates that it is
difficult to build a secure web application – even a small,
well-defined one.

Our results provide little evidence that programming
language plays a role in application security, but they
do suggest that the level of framework support for secu-
rity may influence application security, at least for some
classes of vulnerabilities. Even the best manual support
is likely not good enough; frameworks should provide
automatic defenses if possible.

In future work, we would like to evaluate more mod-
ern frameworks that offer stronger support for prevent-
ing vulnerabilities. We are aware of several frameworks
that provide automatic support for avoiding many types
of XSS vulnerabilities.

We have found evidence that manual code review is
more effective than black-box testing, but combining the
two techniques is more effective than using either one by
itself. We found that the two techniques fared differently
for different classes of vulnerabilities. Black-box testing
performed better for reflected XSS and SQL injection,
while manual review performed better for stored XSS,
authentication and authorization bypass, session man-
agement, CSRF, and insecure password storage. We be-
lieve these findings warrant future research with a larger
data set, more reviewers, and more black-box tools.

We believe it will be valuable for future research to test
the following hypotheses, which were generated from
this exploratory study.

• H1: The practical significance of the difference in
security between applications that use different pro-
gramming languages is negligible. If true, pro-
grammers need not concern themselves with secu-
rity when choosing which language to use (subject
to the support offered by frameworks available for
that language).

• H2: Stronger, more automatic, framework support
for vulnerabilities is associated with fewer vulnera-
bilities. If true, recent advances in framework sup-
port for security have been beneficial, and research
into more framework-provided protections should
be pursued.

• H3: Black-box penetration testing tools and manual
source code review tend to find different sets of vul-
nerabilities. If true, organizations can make more
informed decisions regarding their strategy for vul-
nerability remediation.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 111

We see no reason to limit ourselves to exploring these
hypotheses in the context of web applications; they are
equally interesting in the context of mobile applications,
desktop applications, and network services.

Finally, we note that future work in this area may ben-
efit from additional data sources, such as source code
repositories. These rich data sets may help us answer
questions about (e.g.,) developers’ intentions or misun-
derstandings when introducing vulnerabilities and how
vulnerabilities are introduced into applications over time.
A deeper understanding of such issues will aid us in de-
signing new tools and processes that will help developers
write more secure software.

Acknowledgments

We thank Adrienne Felt, Erika Chin, and the anony-
mous reviewers for their thoughtful comments on earlier
drafts of this paper. We also thank the Plat Forms team
for their hard work in putting together the Plat Forms
contest. This research was partially supported by Na-
tional Science Foundation grants CNS-1018924 and
CCF-0424422. Matthew Finifter was also supported by
a National Science Graduate Research Fellowship. Any
opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Sci-
ence Foundation.

References

[1] CodeIgniter User Guide Version 1.7.3: Input Class. http:
//codeigniter.com/user_guide/libraries/
input.html.

[2] django: Built-in template tags and filters. http:
//docs.djangoproject.com/en/dev/ref/
templates/builtins.

[3] google-ctemplate. http://code.google.com/p/
google-ctemplate/.

[4] perl.org glossary. http://faq.perl.org/glossary.
html#TMTOWTDI.

[5] BAU, J., BURSZTEIN, E., GUPTA, D., AND MITCHELL, J.
State of the art: Automated black-box web application vulnera-
bility testing. In 2010 IEEE Symposium on Security and Privacy
(2010), IEEE, pp. 332–345.

[6] BISHOP, M. Computer Security: Art and Science. Addison-
Wesley Professional, Boston, MA, 2003.

[7] COHEN, J. Best Kept Secrets of Peer Code Review. Smart Bear,
Inc., Austin, TX, 2006, p. 117.

[8] CURPHEY, M., AND ARAUJO, R. Web application security as-
sessment tools. IEEE Security and Privacy 4 (2006), 32–41.

[9] DALTON, M., KOZYRAKIS, C., AND ZELDOVICH, N. Nemesis:
Preventing authentication & access control vulnerabilities in web
applications. In USENIX Security Symposium (2009), USENIX
Association, pp. 267–282.

[10] DONALD, K., VERVAET, E., AND STOYANCHEV, R. Spring
Web Flow: Reference Documentation, October 2007. http:
//static.springsource.org/spring-webflow/
docs/1.0.x/reference/index.html.

[11] DOUPÉ, A., COVA, M., AND VIGNA, G. Why Johnny Can’t
Pentest: An Analysis of Black-box Web Vulnerability Scanners.
In Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) (Bonn, Ger-
many, July 2010).

[12] DWARAMPUDI, V., DHILLON, S. S., SHAH, J., SEBASTIAN,
N. J., AND KANIGICHARLA, N. S. Comparative study of the
Pros and Cons of Programming languages: Java, Scala, C++,
Haskell, VB.NET, AspectJ, Perl, Ruby, PHP & Scheme. http:
//arxiv.org/pdf/1008.3431.

[13] FELMETSGER, V., CAVEDON, L., KRUEGEL, C., AND VIGNA,
G. Toward Automated Detection of Logic Vulnerabilities in Web
Applications. In Proceedings of the USENIX Security Symposium
(Washington, DC, August 2010).

[14] JASPAL. The best web development frameworks,
June 2010. http://www.webdesignish.com/
the-best-web-development-frameworks.html.

[15] MCGRAW, G., AND POTTER, B. Software security testing. IEEE
Security and Privacy 2 (2004), 81–85.

[16] PETERS, T. PEP 20 – The Zen of Python. http://www.
python.org/dev/peps/pep-0020/.

[17] PORTSWIGGER LTD. Burp Suite Professional. http://www.
portswigger.net/burp/editions.html.

[18] PRECHELT, L. Plat Forms 2007 task: PbT. Tech. Rep. TR-B-
07-10, Freie Universität Berlin, Institut für Informatik, Germany,
January 2007.

[19] PRECHELT, L. Plat Forms: A Web Development Platform Com-
parison by an Exploratory Experiment Searching for Emergent
Platform Properties. IEEE Transactions on Software Engineer-
ing 99 (2010).

[20] ROBERTSON, W., AND VIGNA, G. Static Enforcement of Web
Application Integrity Through Strong Typing. In Proceedings
of the USENIX Security Symposium (Montreal, Canada, August
2009).

[21] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER,
D. Detecting Format String Vulnerabilities with Type Qualifiers.
In Proceedings of the 10th USENIX Security Symposium (2001),
pp. 201–220.

[22] SUTO, L. Analyzing the Accuracy and Time Costs
of Web Application Security Scanners, February 2010.
http://www.ntobjectives.com/files/Accuracy_
and_Time_Costs_of_Web_App_Scanners.pdf.

[23] THIEL, F. Personal Communication, November 2009.

[24] WAGNER, S., JRJENS, J., KOLLER, C., TRISCHBERGER, P.,
AND MNCHEN, T. U. Comparing bug finding tools with reviews
and tests. In In Proc. 17th International Conference on Testing
of Communicating Systems (TestCom05), volume 3502 of LNCS
(2005), Springer, pp. 40–55.

[25] WALDEN, J., DOYLE, M., LENHOF, R., AND MURRAY, J. Java
vs. PHP: Security Implications of Language Choice for Web Ap-
plications. In International Symposium on Engineering Secure
Software and Systems (ESSoS) (February 2010).

[26] WHITEHAT SECURITY. WhiteHat Website Security Statistic Re-
port: 9th Edition, May 2010. http://www.whitehatsec.
com/home/resource/stats.html.

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 113

Integrating Long Polling with an MVC Web Framework

Eric Stratmann, John Ousterhout, and Sameer Madan
Department of Computer Science

Stanford University
{estrat,ouster,sameer27}@cs.stanford.edu

Abstract
Long polling is a technique that simulates server push
using Ajax requests, allowing Web pages to be up-
dated quickly in response to server events. Unfortu-
nately, existing long poll approaches are difficult to
use, do not work well with server-side frameworks
based on the Model-View-Controller (MVC) pattern,
and are not scalable. Vault is an architecture for long
polling that integrates cleanly with MVC frameworks
and scales for clustered environments of hundreds of ap-
plication servers. Vault lets developers focus on writing
application-specific code without worrying about the de-
tails of how long polling is implemented. We have im-
plemented Vault in two different Web frameworks.

1 Introduction

In its earliest days the Web supported only static con-
tent, but over the years it has evolved to support a variety
of dynamic effects that allow Web pages to interact with
users and update themselves incrementally on the fly. In
the past most of these updates have been user-driven:
they occurred in response to user interactions such as
mouse clicks and keystrokes. However, in recent years
more and more applications require server push, where
Web pages update without any user involvement in re-
sponse to events occurring remotely on a Web server or
even other browsers. Server push is particularly impor-
tant for collaboration applications where users want to be
notified immediately when other users perform actions
such as typing messages or modifying a shared docu-
ment. Server push is also useful for a variety of moni-
toring applications.

The most common way to implement server push to-
day is with a mechanism called long polling. Unfortu-
nately, long polling is not easy to use. Existing imple-
mentations tend to be special-purpose and application-
specific. They do not integrate well with Model-View-

Controller (MVC) Web frameworks that are commonly
used to build Web applications, often requiring separate
servers just for long polling. Finally, it is challenging to
create a long polling system that scales to handle large
Web applications.

In this paper we describe an architecture for long
polling called Vault, along with its implementation.
Vault has three attractive properties:

• It integrates with MVC frameworks in a natural and
simple fashion using a new construct called a feed,
which is an extension of the model concept from
MVC.

• It generalizes to support a variety of long polling
applications (using different kinds of feeds), and to
support multiple uses of long polling within a single
Web page.

• It includes a scalable notification system that allows
Vault to be used even for very large applications and
that spares Web developers from having to worry
about issues of distributed notification. There are
two interesting architecture decisions in the design
of the notification system. The first is that Vault sep-
arates notification from data storage, which makes
it easy to create a scalable notifier and to incorpo-
rate a variety of data storage mechanisms into long
polling. The second is that extraneous notifications
are allowed in Vault, which helps simplify the im-
plementation of the system and crash recovery.

Overall, Vault improves on existing work by making it
easier to create Web applications that use long polling.

We have implemented Vault in two Web frameworks.
We first built Vault in Fiz [10], a research framework,
and then ported it to Django [3] to demonstrate the gen-
eral applicability of Vault in MVC frameworks. This pa-
per uses the Django implementation for examples, but
the concepts and techniques could be used in most other
MVC frameworks.

1

114 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

The remainder of this paper is organized as follows.
We present background information on long polling and
the problems it introduces in Section 2. Section 3 de-
scribes the major components of Vault and how they
work together to implement long polling. Section 4
presents a few examples of feeds. Section 5 addresses
the issue of long polling in a clustered environment with
potentially thousands of application servers. Section 6
analyzes the performance of the Vault notification mech-
anism. We discuss integrating Vault with Web frame-
works in Section 7. Section 8 describes the limitations
of Vault, and Section 9 compares Vault with other ap-
proaches to long polling. Finally, Section 10 concludes.

2 Background

2.1 Long polling
The goal of long polling is to allow a Web server to ini-
tiate updates to existing Web pages at any time. The up-
dates will reflect events occurring on the server, such as
the arrival of a chat message, a change to a shared docu-
ment, or a change in an instrument reading.

Unfortunately, the Web contains no mechanism for
servers to initiate communication with browsers. All
communication in the Web must be initiated by browsers:
for example, a browser issues an HTTP request for a new
Web page when the user clicks on a link, and Javascript
running within a Web page can issue a request for addi-
tional information to update that page using mechanisms
such as Ajax [8]. Web servers are generally stateless:
once a server finishes processing a browser request it
discards (almost) all information about that request. Al-
though a server may retain a small amount of information
about each active client (using session objects) the server
typically doesn’t retain the addresses of all its clients;
even if it did there is no way for it to initiate a connec-
tion with the browser. A Web server can only respond to
requests initiated by the browser.

Thus Web servers cannot update Web page content
without browser assistance. A simple approach used by
many early applications is polling: once a Web page is
loaded, it issues Ajax requests to the server at regular in-
tervals to check for updates. When an interesting event
happens on the server it cannot immediately notify the
browser; it must save information about the event until
the next poll, at which point the Web page gets updated.
Although polling can provide an appearance to the user
much like true server push, it requires a trade-off between
fidelity and efficiency. A short interval for polling pro-
vides high fidelity (events are reflected quickly on the
browser) but wastes server resources and bandwidth re-
sponding to poll requests. A long interval for polling
reduces overhead but may result in long delays before an







Figure 1: The Model-View-Controller pattern for Web
applications. Each HTTP request is handled by a con-
troller, which fetches data for the request from models
and then invokes one or more views to render the Web
page.

event is reflected in the browser.
Long polling, also known as Comet [14] or reverse

Ajax, is a variation on the polling approach that improves
both fidelity and efficiency. The browser polls the server
as described above, but if no updates are available the
server does not complete the request. Instead it holds the
Ajax request open for a period of time (typically tens of
seconds). If an event occurs during this time then the
server completes the request immediately and returns in-
formation about the event. If no event occurs for a long
period of time the server eventually ends the request (or
the browser times out the request). When this happens
the browser immediately initiates a new long poll re-
quest. With long polling there is almost always an Ajax
request active on the server, so events can be reflected
rapidly to the browser. Since requests are held on the
server for long periods of time, the overhead for initiat-
ing and completing requests is minimized.
However, long polling still has inefficiencies and com-

plexities. It results in one open Ajax connection on the
server for every active client, which can result in large
numbers of open connections. Browsers typically limit
the number of outstanding HTTP connections from a
given page, which can complicate Web pages that wish
to use long polling for several different elements. But the
most challenging problem for long polling is that it does
not integrate well with modern Web frameworks; these
problems are introduced in the next section, and solving
them is the topic of the rest of the paper.

2.2 Model-View-Controller Frameworks
Most of today’s popular server-side Web frameworks
are based on the Model-View-Controller (MVC) pat-
tern [12] [13]. MVC divides Web applications into three
kinds of components (see Figure 1): models, which man-
age the application’s data; views, which render data into
HTML and other forms required by the browser; and
controllers, which provide glue between the other com-
ponents as well as miscellaneous functions such as en-
suring that users are logged in. When a request arrives at

2

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 115

the Web server, the framework dispatches it to a method
in a controller based on the URL. For example, a request
for the URL /students/display/47might be dis-
patched to the display method in the Student con-
troller. The controller fetches appropriate data from one
or more models (e.g., data for the student whose id is 47),
then invokes a view to render an HTML Web page that
incorporates the data.

Unfortunately, MVC frameworks were not designed
with long polling in mind. As a result, it is difficult to
use long polling in Web applications today. Most frame-
works assume that requests finish quickly so they bind
a request tightly to a thread: the thread is occupied un-
til the request completes. Some frameworks have only a
single thread, which means there can be only one active
request at a time; this can result in deadlock, since an
active long poll request can prevent the server from han-
dling another request that would generate the event to
complete the long poll. If a framework is multi-threaded,
it can use one thread for each active long poll request
while processing other requests with additional threads.
However, the presence of large numbers of threads can
lead to performance problems. Fortunately, some frame-
works (such as Tomcat 7.0) have recently added mech-
anisms for detaching a request from its thread, so that
long poll requests can be put to sleep efficiently without
occupying threads.

Another problem with MVC frameworks is that they
were not designed for the flow of control that occurs in
long polling. In traditional Web applications requests are
relatively independent: some requests read information
and pass it to the browser while other requests use infor-
mation from the browser to update data, but there is no
direct interaction between requests. With long polling,
requests interact: one request may cause an event that is
of interest to one or more active long polls; the frame-
work must provide a mechanism for managing these
events and moving information between requests. Notifi-
cations become even more complicated in clustered Web
servers where an action on one Web server may impact
long poll requests on other servers in the cluster.

Because of these problems, applications that need long
polling typically use special-purpose solutions today. In
many cases long polling is handled by different Web
servers than the main application, with a special (non-
MVC) framework used for the long poll servers (see Sec-
tion 9.3). The internal mechanisms used for long polling
are often application-specific, so that each long polling
application must be built from scratch. For example,
some implementations of long polling tie the notification
mechanism to a particular data model such as message
channels, which requires the notification mechanism to
be reimplemented if a different data model is used.

Our goal for Vault was to create an architecture for







 

Figure 2: The architecture of Vault. Vault is similar to
an MVC framework except models have been replaced
with feeds and two new components have been added
(the notifier and the dispatcher).

long polling that integrates naturally with existing MVC
frameworks, generalizes to support a variety of long
polling applications and encourage code reuse, and pro-
vides reusable solutions for many of the problems shared
across long polling applications such as managing the
long poll protocol and creating a scalable notification
system.

3 The Vault Architecture

Figure 2 shows the overall architecture of Vault. Vault
extends an MVC framework with three additional ele-
ments: feeds, a notifier, and a dispatcher. A feed is sim-
ilar to a model in a traditional MVC framework except
that it provides extra capabilities for long polling. As
with traditional models, a feed is responsible for manag-
ing a particular kind of data, such as a table in a database,
a queue of messages, or an instrument reading. A tra-
ditional model answers the question what is the current
state of the data? and also provides methods to modify
the model’s data, validate data using business logic, etc.
A feed provides these same facilities, but in addition it
contains methods to answer questions of the form how
has the data changed since the last time I asked?. The
new methods make it easy to create long polling applica-
tions. One of our goals for Vault is to make it as simple
as possible to convert a model to a feed; we will illustrate
this in Section 3.3.

One of the key issues for a long polling system is noti-
fication: when there is a change in the state of data (e.g. a
value in a database is modified, or an instrument reading
changes) there may be pending long poll requests that
are interested in the change. The notifier is responsible
for keeping track of long poll requests and waking them
up when interesting events occur. Feeds tell the notifier
which events are relevant for each long poll request, and
they also tell the notifier when events have occurred; the
notifier is responsible for matching interests with events.

3

116 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

logs.py

1 def show(request):
2 logs = Logs.get_new_instances()
3 return render_to_response("show.html", {"logs": logs})
4

5 def get_latest_logs(request):
6 logs = Logs.get_new_instances()
7 if logs.count() == 0:
8 return
9 return append_to_element("logs-div", "log-entries.html", {"logs": logs})

show.html
1 ...
2 <% add_long_poll "logs/get_latest_logs" %>
3 <div id="logs-div">
4 <% include "log-entries.html" %>
5 </div>
6 ...

log-entries.html

1 <% for log in logs %>
2 <p><%= log.type %>: <%= log.message %></p>
3 <% endfor %>

Figure 3: A simple application that uses Django and Vault to display a list of log entries. logs.py is a controller; the
show method displays the overall page and get latest logs updates the page with new log entries during long-poll
requests. show.html is a template that renders the main page, and log-entries.html is the template for rendering
a list of log entries.

Vault notifications do not contain any data, they simply
say that a change has occurred; it is up to feeds to verify
exactly what data changed. The Vault notifier is scalable,
in that it can support Web applications spanning many
application servers: if a feed on one server announces
an event to its local notifier, the notifier will propagate
information about the event to all other servers that are
interested in it. The notifier API is discussed in Section
3.2 and a scalable implementation is described in Section
5.

The third component of Vault is the long poll dis-
patcher. The dispatcher provides glue between Javascript
running on Web pages, controllers, and the notifier.
Among other things, it receives long poll requests and
invokes controller methods at the right time(s) to com-
plete those requests. Its behavior will be explained in
Section 3.4.

Of these three components, feeds are the primary com-
ponent visible to Web application developers. The dis-
patcher is almost completely invisible to developers, and
the notifier is visible only to developers who create new
feeds.

3.1 A Simple Example
This section illustrates how the Vault mechanism is used
by a Web application developer (using Django as the
framework), assuming that an appropriate feed already

exists. Writing an application with Vault is similar to
writing an application using MVC. Developers write
controller methods that fetch data and use it to render
a view. Although they must indicate to Vault that they
would like to use long polling to update a page, most of
the details of the long poll mechanism are handled invis-
ibly by Vault.

The example page (see Figure 3) displays a list of log
entries and uses long polling to update the page whenever
a new log entry is added to a database. New log entries
appear to be added to the page instantaneously. A user
who opens the page will initially see a list of existing log
entries, and new ones will show up when they are cre-
ated. Log entries are assumed to be generated elsewhere.

The page (URL /logs/show) is generated by the
show method. show has the same structure as normal
MVC controller methods: it retrieves data from a model
and then invokes a view to render a Web page using that
data.

The page differs from traditional MVC pages in
two ways. First, show invokes a new feed method
called get new instances to retrieve its data;
get new instances returns all of the current rows
in the table and also makes arrangements for future noti-
fications. Second, to arrange for automatic page updates,
the view calls add long poll. This causes Vault to
enable long polling for the page, and it indicates that

4

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 117

all() => [Record]
filter(condition) => [Record]
save() => void
get_new_instances(request) => [Record]

Figure 4: A few of the methods provided by
DatabaseFeed. get new instances is the only
method that would not be found in a regular model.
[Record] indicates that the method returns an array
of database records. The request object represents
the state of the HTTP request currently being processed.

the method logs/get new logs should be invoked
to update the page.

Vault arranges for the page to issue long-poll requests,
and it invokes get latest logs during the requests.
The purpose of this method is to update the page if new
log entries have been created. get latest logs is
similar to a method in an MVC framework for handling
an Ajax request: it fetches data from a model, invokes
a view to render that data, and returns it to the browser
(append to element is a helper method that gener-
ates Javascript to append HTML rendered from a tem-
plate to an element). However, it must ensure that it gen-
erates no output if there are no new log entries. This sig-
nals to Vault that the request is not complete yet. Vault
then waits and invokes this method again when it thinks
there may be new log entries.

The DatabaseFeed (see Figure 4) is used to de-
termine if any new log entries have been created. Its
get new instances method returns any new log en-
tries that have been created since the last time the method
was invoked for the current page, or an empty array if
there are none. The first time it is invoked, it returns all
existing log entries, as in the show method. All feeds
have methods analogous to get new instances:
these methods either return the latest data, if it has
changed recently, or an indication that the data has not
changed. Aside from this method, DatabaseFeed
also has ordinary model methods such as all and
filter, which return subsets of the data, and save,
which writes new data to the database.

Vault automatically handles many of the details of
long polling so that application developers do not have
to deal with them. For example, the dispatcher automati-
cally includes Javascript in the page to issue long-poll re-
quests, the feed and notifier work together to determine
when to invoke methods such as get latest logs,
and the feed keeps track of which log entries have al-
ready been seen by the current page. These mechanisms
will be described in upcoming sections.

create_interest(request, interest) => boolean
remove_interest(request, interest) => void
notify(interest) => void

Figure 5: The methods provided by the Vault notifier.

3.2 The Notifier
One of the most important elements of a long polling
system is its notification mechanism, which allows long
poll requests to find out when interesting events have
occurred (such as a new row being added to a table).
Most libraries for long polling combine notification with
data storage, for example by building the long polling
mechanism around a message-passing system. In con-
trast, Vault separates these two functions, with data stor-
age managed by feeds and notification implemented by
a separate notifier. This separation has several advan-
tages. First, it allows a single notifier implementation
to be shared by many feeds, which simplifies the devel-
opment of new feeds. Second, it allows existing data
storage mechanisms, such as relational databases, to be
used in a long polling framework. Third, it allows the
construction of a scalable notifier (described in Section
5) without having to build a scalable storage system as
well.
The Vault notifier provides a general-purpose mech-

anism for keeping track of which long poll requests
are interested in which events and notifying the dis-
patcher when those events occur (see Figure 5). Each
event is described by a string called an interest. The
create interest method associates an interest with
a particular HttpRequest (which represents the state of
an HTTP request being processed by the server, usually
a long poll request); the remove interest method
breaks the association, if one exists. The notify
method will call the dispatcher to wake up all requests
that have expressed interest in a particular event. As will
be seen in Section 3.3, feeds are responsible for calling
create interest and notify. Interest names are
chosen by feeds; they do not need to be unique, but the
system will operate more efficiently if they are.

For Web applications that exist entirely on a single
server machine the notifier implementation is quite sim-
ple, consisting of little more than a hash table to store
all of the active interests. However, its implementation
becomes more interesting for large Web sites where the
sender and receiver of a notification may be on different
server machines. Section 5 describes how a scalable dis-
tributed notifier can be implemented with the same API
described by Figure 5.
Extraneous notifications are acceptable in Vault; they

affect only the performance of the system, not its cor-
rectness. Extraneous notifications can happen in sev-

5

118 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

1 class DatabaseFeed:
2 def get_new_instances(self, request):
3 interest = "DB-" + self.model.name
4 possibly_ready = Notifier.create_interest(interest, request)
5 if not possibly_ready:
6 return []
7

8 old_largest_key = PageProperties.get(request, interest)
9 if old_largest_key == None:
10 old_largest_key = 0
11 current_largest_key = self.get_largest_primary_key()
12

13 PageProperties.set(request, interest, current_largest_key)
14

15 if current_largest_key > old_largest_key:
16 latest = self.filter(primary_key__greater_than=old_largest_key)
17 return latest
18 else:
19 return []
20

21 def on_db_save(table_name, instance, is_new_instance):
22 if is_new_instance:
23 Notifier.notify("DB-" + table_name)

Figure 6: A partial implementation of DatabaseFeed, showing the code necessary to implement the
get new instances method. get new instances records the largest primary key seen for each distinct Web page
and uses that information in future calls to determine whether new rows have been added to the table since the page was
last updated. For brevity, code for the other feed methods is not shown and a few minor liberties have been taken with the
Django API, such as the arguments to on db save.

eral ways. First, it is possible for different feeds to
choose the same string for their interests. As a result,
an event in either feed will end up notifying both in-
terests. In addition, extraneous notifications can hap-
pen when recovering from crashes in the cluster noti-
fier (see Section 5). If an extraneous notification hap-
pens in the example of Section 3.1 it will cause the
controller method get latest logs to be invoked
again, even though no new rows have been created. The
get new instancesmethod will return an empty ar-
ray in, so get latest logs will generate no output
and the dispatcher will delay for another notification.

Vault interests are similar to condition variables as
used in monitor-style synchronization [9]: a notifica-
tion means “the event you were waiting for probably oc-
curred, but you should check to be certain”. Vault inter-
ests can be thought of as a scalable and distributed im-
plementation of condition variables, where each interest
string corresponds to a distinct condition variable.

3.3 Implementing Feeds
A feed is a superset of a traditional MVC model, with
two additional features. First, it must maintain enough
state so that it can tell exactly which data has changed
(if any) since the last time it was invoked. Second,
it must work with the Notifier to make sure that long
poll requests are reawakened when relevant events oc-

cur (such as the addition of a row to a database) . The
paragraphs below discuss these issues in detail, using the
get new instances method of DatabaseFeed
for illustration (see Figure 6).

In order to detect data changes, feeds must maintain
state about the data they have already seen. For exam-
ple, get new instances does this by keeping track
of the largest primary key that has been seen so far
(old largest key). In each call, it compares the
largest key seen so far with the largest primary key in
the database (lines 8-11). If the latter is larger, the feed
returns all the new rows; otherwise it returns an empty
array. The type of state will very from feed to feed, but a
few possibilities are a primary key of a table, the contents
of a row, or a timestamp.

Because a user many have several pages open, state
such as the largest key seen must be page specific. For
example, a user might have the same URL opened in two
different browser tabs; they must each update when new
rows are created. Vault accomplishes this through the
use of page properties, which are key-value pairs stored
on the server but associated with a particular Web page.
Page properties can be thought of as session data at the
page level instead of the user or browser level. If a
page property is set during one request associated with
a particular page (such as when get new instances
is invoked by the show method of Figure 3 during the
initial page rendering), it will be visible and modifiable

6

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 119

in any future requests associated with the same page
(such as when get new instances is invoked by
get latest logs during a subsequent long poll re-
quest). The DatabaseFeed uses page properties to
store the largest primary key seen by the current page.
For details on how page properties are implemented,
see [11]. The Fiz implementation of Vault uses an exist-
ing page property mechanism provided by Fiz; Django
does not include page properties, so we implemented
page properties as part of Vault.

The second major responsibility for feeds is to com-
municate with the notifier. This involves two ac-
tions: notification and expressing interest. Notifica-
tion occurs whenever any operation that modifies data
is performed, such as creating a new row or modi-
fying an existing row. For example, on db save,
which is invoked by Django after any row in the table
has been modified, calls Notifier.notify (line 23)
to wake up requests interested in additions to the ta-
ble. Expressing an interest occurs whenever any feed
method is invoked. get new instances invokes
Notifier.create interest to arrange for notifi-
cation if/when new rows are added to the table. The inter-
est must be created at the beginning of the method, before
checking to see whether there are any new instances: if
the interest were created afterward, there would be a race
condition where a new row could be added by a different
thread after the check but before the interest was created,
in which case the notification would be missed.

The DatabaseFeed uses interests of the form
“DB-ttt”, where ttt is the name of the table. This en-
sures that only requests interested in that table are noti-
fied when the new rows are added to the table.

Note that Notifier.remove interest is not
invoked in Figure 6. The feed intentionally allows the
interest to persist across long poll requests, so that notifi-
cations occurring between requests will be noticed. Old
interests are eventually garbage collected by the notifier.

Feeds can take advantage of an additional feature of
the notification mechanism in order to eliminate unnec-
essary work. In many cases the notifier has enough in-
formation to tell the feed that there is no chance that the
feed’s data has changed (e.g., if the interest has existed
since the last call to the feed and there has been no inter-
vening notification). In this case create interest
returns false and get new instances can return im-
mediately without even checking its data. This optimiza-
tion often prevents a costly operation, such as reading
from disk or querying a remote server. Furthermore,
most of the time when the feed is invoked there will have
been no change (for example, the first check for each
long poll request is likely to fail).

All feeds have methods with the same general struc-
ture as get new instances. In each case the method

must first create one or more interests, then check to see
if relevant information has changed. The exact checks
may vary from feed to feed, but they will all record infor-
mation using page properties in order to detect when the
information on the page becomes out of date. For exam-
ple, a feed that implements messages with serial numbers
might store the serial number of the last message seen by
this page and compare it with the serial number of the
most recent message.

3.4 The Dispatcher

The Vault dispatcher hides the details of the long poll
protocol and supervises the execution of long poll re-
quests. The dispatcher is invisible to Web application de-
velopers except for its add long poll method, which
is invoked by views to include long polling in a Web page
(see Figure 3). When add long poll is invoked the
dispatcher adds Javascript for long polling to the cur-
rent Web page. This Javascript will start up as soon as
the page has loaded and initiate an Ajax request for long
polling back to the server. When the long poll request
completes the Javascript will process its results and then
immediately initiate another long poll request. Only one
long poll request is outstanding at a time, no matter how
many long poll methods have been declared for the page.

Vault arranges for long poll requests to be handled by
the dispatcher when they arrive on the Web server. In the
Django implementation this is done by running Vault as
middleware that checks each request for a special long
poll URL, and if present sends the request to the dis-
patcher. The dispatcher finds all of the long poll meth-
ods for the current Web page (add long poll records
this information using the page property mechanism de-
scribed in Section 3.3) and invokes all of them in turn.
If output was generated by any of the long poll methods
then the dispatcher returns the output to the browser and
completes the request. If none of the methods generated
any output then the dispatcher puts the request to sleep
until it receives a notification for this request from the
notifier. Once a notification is received the dispatcher in-
vokes all of the long poll methods again; once again, it
either returns (if output has been generated) or puts the
request to sleep.
In normal use it is unlikely that the first invocation of

the long poll methods during a request will generate any
output, since only a short time has elapsed since the last
invocation of those methods. However, it is important to
invoke all of the methods, which in turn invoke feeds, in
order to ensure that interests have been created for all of
the relevant events.

7

120 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

create_channel(channel_name) => void
create_user(user_name) => void
get_new_messages(request, user_name) => [Message]
subscribe(user_name, channel_name) => void
post_message(channel_name, message) => void

Figure 7: The methods provided by our example Messaging feed .

4 Feed examples

In order to evaluate the architecture of Vault we have
implemented two feeds; these feeds illustrate the ap-
proaches that we think will be most common in actual
Web applications.
The first feed is the DatabaseFeed dis-

cussed earlier in 3. We implemented two
feed methods, get new instances and
get modified instance, and designed a third,
get attribute changes.
get new instances has been discussed earlier

in Section 3.1. Briefly, get new instances re-
turns new rows from a database. It uses interests of
the form DB-ttt, where ttt is the name of the table.
get new instances detects new rows by saving the
highest primary key seen in the past for any row in the
table and comparing this with the current highest key in
future calls (it assumes that primary keys are chosen in
ascending order).
get modified instance allows a Web page to

observe changes to a particular row; it returns the latest
value of the row, or None if the row has not changed
since the last call for this row on the current Web page.
It uses interests of the form DB-ttt-rrr, where ttt is the
name of the table and rrr is the primary key of the row
under observation; all methods in the model that mod-
ify existing rows must notify the interest for that row.
The implementation of get modified instance is
similar to that of get new instances in Figure 6: it
records the last value of the row seen by the current Web
page and compares this against the current contents of
the row in future calls.

Although these two methods are simple to implement,
one can imagine more complicated methods that are not
as easy to implement in Vault. One example is a method
to monitor changes to a column (or attribute in model
terminology), called get attribute changes. If
any values in the column have changed since the last in-
vocation for this table in the current Web page the pri-
mary keys for the affected rows are returned. It is dif-
ficult for the feed to tell whether a column has changed
recently unless it records a copy of the entire column,
which would be impractical for large tables. One solu-
tion is to create an auxiliary data structure to keep track
of changes. A new table can be added to the database

with each row representing one change to the given col-
umn: the auxiliary row contains the primary key of the
row in the main table that changed. This table will need
to be updated any time the model modifies a field in
the column under observation: once the auxiliary table
exists, an approach similar to get new instances
can be used to implementget attribute changes.
The method stores the largest primary key (of the auxil-
iary table) used by previous method calls and queries the
table for all rows with a larger primary key.

The DatabaseFeed described above introduces
overhead to notify various interests when relevant
changes occur in the database; in some cases a sin-
gle modification to the database might require notifica-
tion of several different interests (e.g., modifying a row
would notify both that the row was modified and any col-
umn changes). However, as will be seen in Section 6,
notifying an interest is considerably faster than typical
database operations. Thus we think a variety of inter-
esting database feeds can be implemented with minimal
overhead.

Our second feed implements a publish-subscribe mes-
saging protocol (see Figure 7) somewhat like Bayeux [1]
(see Section 9.1). It contains a collection of chan-
nels on which text messages can be posted, and
each user can subscribe to channels that are of in-
terest to that user. The message feed provides a
method receive messages that is analogous to
get new instances in DatabaseFeed: it returns
all the messages that have arrived for a given user since
the last call to this method for the current Web page. The
feed uses a separate interest for each user with names of
the form message-uuu, where uuu is an identifier for a
particular user. receive messages creates an inter-
est for the current user, and post message notifies all
of the users that have subscribed to the channel on which
the message is posted. In order to tell whether there are
new messages for a user, the feed serializes all of the
messages for each user and records the serial number of
the most recent message that has been delivered to each
Web page.

We have created a simple application using the mes-
sage feed that provides Web pages for posting messages,
subscribing to channels, and observing incoming traffic
for a particular user.

We believe that many feed implementations are

8

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 121




























Figure 8: Cluster architecture. Notifications must go
through notification servers where they are relayed to
servers with matching interests.

likely to be similar to the ones above where
they either (a) observe one or more individual
values (or rows) like get new instances and
get modified instance, (b) observe a sequence
of messages or changes like receive messages and
get new instances, or (c) make more complex ob-
servations like get attribute changes, in which
case they will create an auxiliary data structure in the
form of a sequence.

5 Cluster Support and Scalability

Large-scale Web applications must use clusters of appli-
cation servers to handle the required load; the cluster size
can vary from a few servers to thousands. Typically, any
application server is capable of handling any client re-
quest (though the networking infrastructure is often con-
figured to deliver requests for a particular browser to the
same server whenever possible); the data for the appli-
cation is kept in storage that is shared among all of the
servers, such as a database server.

Introducing long polling to a cluster environment com-
plicates the notification mechanism because events orig-
inating on one server may need to propagate to other ap-
plication servers. Many events will be of interest to only
a single server (or may have no interests at all), while
other events may be of interest to nearly every server.
One possible solution would be to broadcast all notifi-

cations to all application servers. This approach behaves
correctly but does not scale well since every application
server must process every notification: the notification
workload of each server will increase as the total number
of servers increases and the system will eventually reach
a point where the servers are spending all of their time
handling irrelevant notifications.

For Vault we implemented a more scalable solution

using a separate notification server (see Figure 8). When
an interest is created on a particular application server,
that information gets forwarded to the notification server
so that it knows which application servers care about
which interests. When an interest is notified on a par-
ticular application server, the notification is forwarded to
the notification server, which in turn notifies any other
application servers that care about the interest. With this
approach only the application servers that care about a
particular interest are involved when that interest is no-
tified. The notification server is it similar to the local
notifier, but it works with interested servers, not inter-
ested requests. In particular, both have the same basic
API (create interest, remove interest, and notify).

For large Web applications it may not be possible for
a single notification server to handle all of the notifica-
tion traffic. In this case multiple notification servers can
be used, with each notification server handling a subset
of all the interests. Local notifiers can use a consistent
hash function [15] on each interest to determine which
notification server to send it to.

One of the advantages of the API we have chosen for
notification is that it distributes naturally as described
above. Furthermore, the decision to allow extraneous
notifications simplifies crash recovery and several other
management issues for notification servers.

Crash recovery is simple in Vault due to these proper-
ties. If a notification server crashes, a new notification
server can be started as its replacement. Each of the ap-
plication servers can deal with the crash by first recreat-
ing all of its local interests on the new server and then
notifying all of those interests locally (just in case a no-
tification occurred while the original server was down).
Most of the notifications will be extraneous but the feeds
will detect that nothing has actually changed. This be-
havior is correct but may be slow depending on the num-
ber of interests.

There is an additional crash recovery issue in Vault,
which occurs if a feed crashes after updating its data but
before notifying the notification server. In Figure 6, this
could happen if the server crashes on line 22. If an ap-
plication server crashes, there is no way to tell whether it
was about to send notifications. To avoid losing notifica-
tions, every existing interest must be notified whenever
any application server crashes. Another alternative is to
use a two-phase notification, but the associated overheard
makes the first alternative a more attractive option.

6 Benchmarks

We ran a series of experiments to measure the perfor-
mance and scalability of the Vault notification mecha-
nism. Our intent was to determine how many servers are
needed to handle a given load. We ran our experiments

9

122 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

 0 10 20 30 40 50 60 70 80 90 100
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
C

re
at

e-
re

m
ov

e
pa

irs
 p

er
 s

ec
on

d

La
te

nc
y

(u
s)

Number of clients

Throughput
Latency

Figure 9: Performance measurements of the notifica-
tion server for creating and removing interests. Each
load generator repeatedly messages the notification
server to create an interest and then remove the inter-
est. Throughput measures the number of create-remove
pairs handled by the notification server per second and
latency measures the time from the start of creating the
interest to the end of removing the interest.

on 40 identical servers. Each one has a Xeon X3470
(4x2.93 GHz cores), 24GB of 800MHz DDR3 SDRAM,
and an Intel e1000 NIC. For some benchmarks, the num-
ber of application servers is larger than the number of
machines, in which case some machines run multiple
processes (the impact on the measurements is negligible
because the notification server bottlenecks before any of
the application servers do).
Our first experiment was to determine the number of

create-interest and remove-interest operations each noti-
fication server can handle per second. Creates are per-
formed by an application server when a long poll creates
an interest locally and the application server has not yet
relayed the interest to the notification server. Removing
an interest occurs when the application server determines
that there are no longer any interested long polls. Creat-
ing and removing an interest may happen as frequently
as several times per page request so they should be fast.

The experiment measured the total number create-
remove pairs handled by the notification server per sec-
ond and the latency from the start of the create to the
end of the remove, as shown in Figure 9. Each load
generator ran a loop sending a create message and wait-
ing for the response and then sending a remove without
waiting for the response. Our results show a linear in-
crease in throughput as the number of load generators is
increased. The throughput maximum is around 160,000
create-remove pairs per second, but drops about 10% af-
ter the maximum is reached. Latency remains roughly
constant until the throughput limit is reached, at which
point the latency begins to grow linearly.

 0

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 0 5 10 15 20 25 30 35 40

M
ax

im
um

 n
ot

ifi
ca

tio
ns

 /
se

co
nd

Fan-out

Notifications sent
Notifications received

Figure 10: Performance of the notification server for
processing notifications. Fan-out indicates the num-
ber of application servers that must ultimately receive
each notification received by the notification server. The
chart shows the maximum rate at which the server can
receive notifications (measured by varying the number
of issuing clients) and the maximum rate at which it
sends them to individual application servers.

Our second experiment measured the cost for the no-
tification server to process events and relay them to in-
terested application servers. We measured the maximum
throughput for the notification server with different fan-
outs per notification, as seen in Figure 10. The figure
shows the total number of notifications received by the
notification server per second and the number of notifica-
tions it passes on to application servers. The notifications
received starts at just under 200,000 per second with one
interested server, then drops roughly linearly as the fan-
out increases. The total number of notifications sent rises
as fan-out increases, peaking at around 1,000,000 notifi-
cations per second with a fan-out of 15-20. As the num-
ber of servers continues to increase, the total number of
notifications sent drops to around 800,000 per second.
Figure 10 does not contain a data point for interests

with a fan-out of zero. For notifications where no server
is interested, the notification server can process about
2,000,000 per second. Notification servers may get many
notifications for which there are no interested servers so
it is important for them to be quick.

7 Framework integration

Although the principles of Vault are applicable to any
MVC framework, integrating Vault with a Web frame-
work requires some basic level of support from the
framework. We have identified two such requirements:
the ability to decouple requests from their threads, and
page properties.

Many existing frameworks do not currently allow re-

10

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 123

quests to be put to sleep. For example, Django does not
support this, so we modified the Django Web server to
implement request detaching. Our initial implementa-
tion in Fiz was easier because Fiz is based on Apache
Tomcat 7.0, which provides a mechanism to detach a
request from the thread that is executing it, so that the
thread can return without ending the request. The Vault
dispatcher saves information about the detached request
and then returns so its thread can process other requests
(one of which might generate a notification needed by
the detached request). When a notification occurs the
dispatcher retrieves the detached request and continues
processing it as described above.

If a framework does not allow requests to be detached
but does support multi-threading, then the dispatcher can
use synchronization mechanisms to put the long poll
thread to sleep and wake it up later when a notification
occurs. However, this means that each waiting long poll
request occupies a thread, which could result in hun-
dreds or thousands of sleeping threads for a busy Web
server. Unfortunately, many systems suffer performance
degradation when large numbers of threads are sleeping,
which could limit the viability of the approach.

If a framework only allows a single active request and
does not support request detaching, then the framework
cannot support long polling; applications will have to use
a traditional polling approach. However, Vault could still
be used in such a framework and most of Vault’s benefits
would still apply.

Secondly, a framework must provide page properties
or some equivalent mechanism to associate data with a
particular Web page and make that data available in fu-
ture requests emanating from the page. If a framework
does not support page properties, they can be built into
Vault on top of existing session facilities (a separate ob-
ject for each page can be created within the session, iden-
tified with a unique identifier that is recorded in the page
and returned in long poll requests).

8 Limitations

We are aware of two limitations in the Vault architec-
ture. The first limitation is that some styles of notifica-
tion do not map immediately onto interest strings, such
as get attribute changes in Section 4. We be-
lieve these situations can be handled with the creation
of auxiliary data structures as described in Section 4, but
the creation of these structures may affect the complexity
and efficiency of the application. There may be some ap-
plications where a better solution could be achieved with
a richer data model built into the notification mechanism.

The second limitation of Vault is that the crash recov-
ery mechanism can produce large numbers of extraneous
notifications, as described in Section 5. We have experi-

mented with alternatives that reduce the extraneous noti-
fications, but they result in extra work during normal op-
eration, which seems worse than the current overheads
during crash recovery.

9 Related Work

9.1 CometD/Bayeux
CometD [2] is the most well known long polling sys-
tem. It is an implementation of Bayeux [1], a protocol
intended primarily for bidirectional interactions between
Web clients. Bayeux communication is done through
channels and is based on a publish/subscribe model.
Clients can post messages to a channel, and other clients
subscribed to the channel receive the messages.

CometD works well for publish/subscribe communi-
cation but does not generalize to other uses (for example,
there is no way to implement database notifications using
CometD). Since CometD is a stand-alone framework, it
does not work with existing MVC frameworks. By tying
the protocol to the message-based model used, CometD
limits the ability of developers to write applications using
other data models. In addition, the current implementa-
tion of CometD does not seem to have a mature cluster
implementation.

9.2 WebSockets
The WebSocket [7] API is a proposed addition to Web
browsers that allows for bi-directional communication
between the browser and the server. Although WebSock-
ets are often seen as a “solution” to long polling, they
do not fix any of the major issues associated with long
polling. Notification, scalability, and integration with
MVC will still be issues with WebSockets. WebSock-
ets only fix some minor inconveniences such as the need
to hold Ajax requests at the server and some of the as-
sociated complexity of long polling. If widely adopted
(which is likely when HTML5 becomes supported by
all browsers) WebSockets could become the new trans-
port mechanism for Vault, in which case Vault would not
have to worry about Ajax requests timing out or the need
to wait for an Ajax request to return from the browser to
send another update.

9.3 Event-based Web Frameworks
Due to the difficulty of using long polling in traditional
Web frameworks, event-based frameworks have become
popular for handling long polling. This is typically done
by running two Web frameworks side-by-side, one to
handle normal requests and an event-based one to han-
dle long polls, with the two communicating though some

11

124 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

backend channel. This approach is easier than trying to
include long polling in existing MVC frameworks but is
not as clean as keeping all application logic in one frame-
work.

Event-based Web frameworks differ from other frame-
works because they only run one thread at a time, elim-
inating the thread issues traditional MVC frameworks
have when implementing long polling. Since there is
only one thread, it is important that it does not block. If
an expensive operation is performed, such as disk or net-
work access, a callback is specified by the caller and the
server stops processing the current request and starts pro-
cessing a different request. When the operation finishes,
the server runs the callback, passing in values generated
by the operation. This style of programming makes it
easy to resume a request at a later time as is required
with Vault. Node.js [5] is an javascript event-based IO
library used to write server-side javascript applications.
Tornado [6] is a similar Web server for Python, based on
FriendFeed [4].

10 Conclusion

Long polling allows for new interactive Web applications
that respond quickly to external events. Existing imple-
mentations, however, have not been general or scalable,
and they require too much glue code for application de-
velopers. We have presented a modification of the MVC
pattern that allows developers to write their applications
in a familiar style without needing to know about the de-
tails of how long polling is implemented. Furthermore,
Vault makes it easy to develop a variety of feeds that can
be reused in many different applications. Internally, the
Vault implementation handles long polling in a scalable
way using a distributed notifier to minimize the amount
of work that is required per request.

We hope that the Vault architecture will be imple-
mented in a variety of mainstream frameworks in order
to encourage the development of interesting applications
based on long polling.

11 Acknowledgments

This research was supported by the National Science
Foundation under Grant No. 0963859. Thanks to Tomer
London, Bobby Johnson, and anonymous program com-
mittee members for reviewing various drafts of this pa-
per.

References
[1] Bayeux protocol. http://svn.cometd.com/trunk/

bayeux/bayeux.html.

[2] Cometd homepage. http://cometd.org/.

[3] Django. http://www.djangoproject.com/.

[4] Friendfeed homepage. http://friendfeed.com/.

[5] Node.js homepage. http://nodejs.org/.

[6] Tornado web server homepage. http://nodejs.org/.

[7] Web socket api. http://dev.w3.org/html5/
websockets/.

[8] GARRETT, J. J. Ajax: a new approach to web applica-
tions, February 2005. http://www.adaptivepath.com/
ideas/essays/archives/000385.php.

[9] LAMPSON, B. W., AND REDELL, D. D. Experience with pro-
cesses and monitors in mesa. Commun. ACM 23 (February 1980),
105–117.

[10] OUSTERHOUT, J. Fiz: A Component Framework for Web
Applications. Stanford CSD Technical Report. http://www.
stanford.edu/˜ouster/cgibin/papers/fiz.pdf,
2009.

[11] OUSTERHOUT, J., AND STRATMANN, E. Managing state for
ajax-driven web components. USENIX Conference on Web Ap-
plication Development (June 2010), 73–85.

[12] REENSKAUG, T. Models-views-controllers. Xerox PARC
technical note http://heim.ifi.uio.no/˜trygver/
mvc-1/1979-05-MVC.pdf, May 1979.

[13] REENSKAUG, T. Thing-model-view-editor. Xerox PARC
technical note http://heim.ifi.uio.no/˜trygver/
mvc-2/1979-12-MVC.pdf, May 1979.

[14] RUSSEL, A. Comet: Low latency data for the browser,
March 2006. http://alex.dojotoolkit.org/2006/
03/comet-lowlatency-data-for-the-browser/.

[15] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER,
D. R., KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN,
H. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11 (February 2003), 17–
32.

12

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 125

Detecting Malicious Web Links and Identifying Their Attack Types

Hyunsang Choi
Korea University

Seoul, Korea
realchs@korea.ac.kr

Bin B. Zhu
Microsoft Research Asia

Beijing, China
binzhu@microsoft.com

Heejo Lee
Korea University

Seoul, Korea
heejo@korea.ac.kr

Abstract
Malicious URLs have been widely used to mount various
cyber attacks including spamming, phishing and mal-
ware. Detection of malicious URLs and identification of
threat types are critical to thwart these attacks. Know-
ing the type of a threat enables estimation of severity
of the attack and helps adopt an effective countermea-
sure. Existing methods typically detect malicious URLs
of a single attack type. In this paper, we propose method
using machine learning to detect malicious URLs of all
the popular attack types and identify the nature of at-
tack a malicious URL attempts to launch. Our method
uses a variety of discriminative features including tex-
tual properties, link structures, webpage contents, DNS
information, and network traffic. Many of these fea-
tures are novel and highly effective. Our experimental
studies with 40,000 benign URLs and 32,000 malicious
URLs obtained from real-life Internet sources show that
our method delivers a superior performance: the accu-
racy was over 98% in detecting malicious URLs and over
93% in identifying attack types. We also report our stud-
ies on the effectiveness of each group of discriminative
features, and discuss their evadability.

1 Introduction

While the World Wide Web has become a killer applica-
tion on the Internet, it has also brought in an immense
risk of cyber attacks. Adversaries have used the Web as
a vehicle to deliver malicious attacks such as phishing,
spamming, and malware infection. For example, phish-
ing typically involves sending an email seemingly from
a trustworthy source to trick people to click a URL (Uni-
form Resource Locator) contained in the email that links
to a counterfeit webpage.

To address Web-based attacks, a great effort has been
directed towards detection of malicious URLs. A com-
mon countermeasure is to use a blacklist of malicious
URLs, which can be constructed from various sources,

This work was done when Hyunsang Choi was an intern at Mi-
crosoft Research Asia. Contact author: Bin B. Zhu (binzhu@ieee.org).

particularly human feedbacks that are highly accurate yet
time-consuming. Blacklisting incurs no false positives,
yet is effective only for known malicious URLs. It can-
not detect unknown malicious URLs. The very nature of
exact match in blacklisting renders it easy to be evaded.

This weakness of blacklisting has been addressed by
anomaly-based detection methods designed to detect un-
known malicious URLs. In these methods, a classifica-
tion model based on discriminative rules or features is
built with either knowledge a priori or through machine
learning. Selection of discriminative rules or features
plays a critical role for the performance of a detector.
A main research effort in malicious URL detection has
focused on selecting highly effective discriminative fea-
tures. Existing methods were designed to detect mali-
cious URLs of a single attack type, such as spamming,
phishing, or malware.

In this paper, we propose a method using machine
learning to detect malicious URLs of all the popular at-
tack types including phishing, spamming and malware
infection, and identify the attack types malicious URLs
attempt to launch. We have adopted a large set of dis-
criminative features related to textual patterns, link struc-
tures, content composition, DNS information, and net-
work traffic. Many of these features are novel and highly
effective. As described later in our experimental stud-
ies, link popularity and certain lexical and DNS features
are highly discriminative in not only detecting malicious
URLs but also identifying attack types. In addition, our
method is robust against known evasion techniques such
as redirection [42], link manipulation [16], and fast-flux
hosting [17].

Identification of attack types is useful since the knowl-
edge of the nature of a potential threat allows us to
take a proper reaction as well as a pertinent and effec-
tive countermeasure against the threat. For example,
we may conveniently ignore spamming but should re-
spond immediately to malware infection. Our exper-
iments on 40,000 benign URLs and 32,000 malicious
URLs obtained from real-life Internet sources show that
our method has achieved an accuracy rate of more than
98% in detecting malicious URLs and an accuracy rate

1

126 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

of more than 93% in identifying attack types.
This paper has the following major contributions:

• We propose several groups of novel, highly discrim-
inative features that enable our method to deliver
a superior performance and capability on both de-
tection and threat-type identification of malicious
URLs of main attack types including spamming,
phishing, and malware infection. Our method pro-
vides a much larger coverage than existing methods
while maintaining a high accuracy.

• To the best of our knowledge, this is the first study
on classifying multiple types of malicious URLs,
known as a multi-label classification problem, in a
systematic way. Multi-label classification is much
harder than binary detection of malicious URLs
since multi-label learning has to deal with the am-
biguity that an entity may belong to several classes.

The remainder of this paper is organized as follows.
We present the proposed method and the learning algo-
rithms it uses in Section 2, and describe the discrimina-
tive features our method uses in Section 3. Evaluation of
our method with real-life data is reported in Section 4.
We review related work in Section 5, and conclude the
paper in Section 6.

2 Our Framework

2.1 Overview
Our method consists of three stages as shown in Fig-
ure 1: training data collection, supervised learning with
the training data, and malicious URL detection and at-
tack type identification. These stages can operate se-
quentially as in batched learning, or in an interleaving
manner: additional data is collected to incrementally
train the classification models while the models are used
in detection and identification. Interleaving operations
enable our method to adapt and improve continuously
with new data, especially with online learning where the
output of our method is subsequently labeled and used to
train the classification models.

1. Data Collection

3-1. Detection

2. Supervised Leaning

3-2. IdentificationInput: URL

Output: Benign URL Malicious URL, {Type}

Figure 1: The framework of our method.

2.2 Learning Algorithms
The two tasks performed by our method, detecting mali-
cious URLs and identifying attack types, need different

machine learning methods. The first task is a binary clas-
sification problem. The Support Vector Machine (SVM)
is used to detect malicious URLs. The second task is a
multi-label classification problem. Two multi-label clas-
sification methods, (RAkEL [38] and ML-kNN [48]), are
used to identify attack types.

Task1: Support Vector Machine (SVM). SVM is
a widely used machine learning method introduced by
Vapnik et al. [8]. SVM constructs hyperplanes in a high
or infinite dimensional space for classification. Based
on the Structural Risk Maximization theory, SVM finds
the hyperplane that has the largest distance to the nearest
training data points of any class, called functional mar-
gin. Functional margin optimization can be achieved by
maximizing the following equation

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

subject to

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., n

where αi and αj are coefficients assigned to training
samples xi and xj . K(xi, xj) is a kernel function used
to measure similarity between the two samples. After
specifying the kernel function, SVM computes the co-
efficients which maximize the margin of correct classi-
fication on the training set. C is a regulation parameter
used for tradeoff between training error and margin, and
training accuracy and model complexity.

Task2: RAkEL. and ML-kNN. RAkEL is a high-
performance multi-label learning method that accepts
any multi-label learner as a parameter. RAkEL creates
m random sets of k label combinations, and builds an
ensemble of Label Powerset (LP) [47] classifiers from
each of the random sets. LP is a transformation-based
algorithm that accepts a single-label classifier as a pa-
rameter. It considers each distinct combination of labels
that exists in the training set as a different class value
of a single-label classification task. Ranking of the la-
bels is produced by averaging the zero-one predictions
of each model per considered label. An ensemble voting
process under a threshold t is then employed to make a
decision for the final classification set. We use C4.5 [32]
as the single-label classifier and LP as a parameter of the
multi-label learner.

ML-kNN is derived from the traditional k-Nearest
Neighbor (kNN) algorithm [1]. For each unseen in-
stance, its k nearest neighbors in the training set are first
identified. Based on the statistical information gained
from the label sets of these neighboring instances, max-
imum a posteriori principle is then utilized to determine
the label set for the unseen instance.

2

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 127

3 Discriminative Features

Our method uses the same set of discriminative features
for both tasks: malicious URL detection and attack type
identification. These features can be classified into six
groups: lexicon, link popularity, webpage content, DNS,
DNS fluxiness, and network traffic. They can effectively
represent the entire multifaceted properties of a mali-
cious URL and are robust to known evasion techniques.

3.1 Lexical Features
Malicious URLs, esp. those for phishing attacks, often
have distinguishable patterns in their URL text. Ten lex-
ical features, listed in Table 1, are used in our method.
Among these lexical features, the average domain/path
token length (delimited by ‘.’, ‘/’, ‘?’, ‘=’, ‘-’, ‘ ’) and
brand name presence were motivated from a study by
McGrath and Gupta [24] that phishing URLs show dif-
ferent lexical patterns. For example, a phishing URL
likely targets a widely trusted brand name for spoofing,
thus contains the brand name. Therefore, we employ a
binary feature to check whether a brand name is con-
tained in the URL tokens but not in its SLD (Second
Level Domain)1.

Table 1: Lexical features (LEX)
No. Feature Type
1 Domain token count Integer
2 Path token count Integer
3 Average domain token length Real
4 Average path token length Real
5 Longest domain token length Integer
6 Longest path token length Integer

7∼9 Spam, phishing and malware SLD hit ratio Real
10 Brand name presence Binary

In our method, the detection model maintains two lists
of URLs: a list of benign URLs and a list of malicious
URLs. The identification model breaks the list of mali-
cious URLs into three lists: spam, phishing, and mal-
ware URL lists. For a URL, our method extracts its
SLD and calculates the ratio of the number that the SLD
matches SLDs in the list of malicious URLs or a list of
specific type of malicious URLs (e.g., spam URL list)
to the number that the SLD matches SLDs in the list of
benign URLs. This ratio is called the malicious or a spe-
cific attack type (e.g., spam) SLD hit ratio feature, which
is actually an a priori probability of the URL to be ma-
licious or of a specific malicious type (e.g., spam) based
on the precompiled URL lists.

Previous methods use URL tokens as the “bag-of-
words” model in which the information of a token’s po-
sition in a URL is lost. By examining a large set of ma-
licious and benign URLs, we observed that the position
of a URL token also plays an important role. SLDs are
relatively hard to forge or manipulate than URL tokens

1Brand names can be taken from the SLDs of the Alexa [2] top 500
site list.

at other positions. Therefore, we discard the widely used
“bag-of-words” approach and adopt several new features
differentiating SLDs from other positions, resulting in
a higher robustness against lexical manipulations by at-
tackers. Lexical features No. 1 to No. 4 in Table 1 are
from previous work. Feature No. 10 is different from
the “bag-of-words” model used in previous work by ex-
cluding the SLD position. The other lexical features in
Table 1 are novel features never used previously.

3.2 Link Popularity Features
One of the most important features used in our method
is “link popularity”, which is estimated by counting the
number of incoming links from other webpages. Link
popularity can be considered as a reputation measure of
a URL. Malicious sites tend to have a small value of link
popularity, whereas many benign sites, especially pop-
ular ones, tend to have a large value of link popularity.
Both link popularity of a URL and link popularity of the
URL’s domain are used in our method. Link popularity
(LPOP) can be obtained from a search engine2. Different
search engines may produce different link popularity due
to different coverage of webpages each has crawled. In
our method, five popular search engines, Altavista,
AllTheWeb, Google, Yahoo!, and Ask, are used to
calculate the link popularity of a URL and the link popu-
larity of its domain, corresponding to LPOP features No.
1 to 10 in Table 2.

One problem in using link popularity is “link-
farming [16]”, a link manipulation that uses a group
of webpages to link together. To address this problem,
we develop five additional LPOP features by exploiting
different link properties between link-manipulated ma-
licious websites and popular benign websites. The first
feature, the distinct domain link ratio, is the ratio of the
number of unique domains to the total number of do-
mains that link to the targeted URL. The second fea-
ture, the max domain link ratio, is the ratio of the max-
imum number of links from a single domain to the total
number of domains that link to the targeted URL. Link-
manipulated malicious URLs tend to be linked many
times with a few domains, resulting in a low score on the
distinct domain link ratio and a high score on the max
domain link ratio. A study by Castillo et al. [4] indi-
cates that spam pages tend to be linked mainly by spam
pages. We believe that a hypothesis to assume that not
only spam pages, but also phishing and malware pages
tend to be linked by phishing and malware pages, re-
spectively, is plausible. Therefore, we develop the last
three features: spam link ratio, phishing link ratio, and
malware link ratio. Each represents the ratio from do-
mains of a specific malicious type that link to the targeted
URL. To measure these three features, we use the mali-
cious URL lists described in Section 3.1. The link pop-
ularity features described in this subsection are all novel

2For example, we can use Yahoo! site explorer to get inlinks of
target URLs.

3

128 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

features.

Table 2: Link popularity features (LPOP)
No. Feature Type
1∼5 5 LPOPs of the URL Integer
6∼10 5 LPOPs of the domain Integer

11 Distinct domain link ratio Real
12 Max domain link ratio Real

13∼15 Spam, phishing and malware link ratio Real

3.3 Webpage Content Features
Recent development of the dynamic webpage technol-
ogy has been exploited by hackers to inject malicious
code into webpages through importing and thus hiding
exploits in webpage content. Therefore, statistical prop-
erties of client-side code in the Web content can be used
as features to detect malicious webpages. To extract
webpage content features (CONTs), we count the num-
bers of HTML tags, iframes, zero size iframes, lines, and
hyperlinks in the webpage content. We also count the
number for each of the following seven suspicious native
JavaScript functions: escape(), eval(), link(), unescape(),
exec(), link(), and search() functions. As suggested by a
study of Hou et al. [18], these suspicious JavaScript func-
tions are often used by attacks such as cross-site script-
ing and Web-based malware distribution. For example,
unescape() can be used to decode an encoded shellcode
string to obfuscate exploits. The counts of these seven
suspicious JavaScript functions form features No. 6 to
No. 12 in Table 3. The last feature in this table is the
the sum of these function counts, i.e., the total count of
these suspicious JavaScript functions. All the features in
Table 3 are from the previous work [18].

Table 3: Webpage content features (CONT)
No. Feature Type
1 HTML tag count Integer
2 Iframe count Integer
3 Zero size iframe count Integer
4 Line count Integer
5 Hyperlink count Integer

6∼12 Count of each suspicious JavaScript function Integer
13 Total count of suspicious JavaScript functions Integer

The CONTs may not be effective to distinguish phish-
ing websites from benign websites because a phishing
website should have similar content as the authentic web-
site it targets. However, this very nature of being sensi-
tive to one malicious type but insensitive to other mali-
cious types is very much desired in identifying the type
of attack that a malicious URL attempts to launch.

3.4 DNS Features
The DNS features are related to the domain name of
a URL. Malicious websites tend to be hosted by less

reputable service providers. Therefore, the DNS infor-
mation can be used to detect malicious websites. Ra-
machandran et al. [33] showed that a significant portion
of spammers came from a relatively small collection of
autonomous systems. Other types of malicious URLs are
also likely to be hosted by disreputable providers. There-
fore, the Autonomous System Number (ASN) of a do-
main can be used as a DNS feature.

Table 4: DNS features (DNS)
No. Feature Type
1 Resolved IP count Integer
2 Name server count Integer
3 Name server IP count Integer
4 Malicious ASN ratio of resolved IPs Real
5 Malicious ASN ratio of name server IPs Real

All the five DNS features listed in Table 4 are novel
features. The first is the number of IPs resolved for
a URL’s domain. The second is the number of name
servers that serves the domain. The third is the number of
IPs these name servers are associated with. The next two
features are related to ASN. As we have mentioned in
Section 3.1, our method maintains a benign URL list and
a malicious URL list. For each URL in the two lists, we
record its ASNs of resolved IPs and ASNs of the name
servers. For a URL, our method calculates hit counts
for ASNs of its resolved IPs that matches the ASNs in
the malicious URL list. In a similar manner, it also cal-
culates the ASN hit counts using the benign URL list.
Summation of malicious ASN hit counts and summation
of benign ASN hit counts are used to estimate the mali-
cious ASN ratio of resolved IPs, which is used as an a
priori probability for the URL to be hosted by a disrep-
utable service provider based on the precompiled URL
lists. ASNs can be extracted from MaxMind’s database
file [14].

3.5 DNS Fluxiness Features
A newly emerging fast-flux service network (FFSN) es-
tablishes a proxy network to host illegal online services
with a very high availability [17]. FFSNs are increas-
ingly employed by attackers to provide malicious con-
tent such as malware, phishing websites, and spam cam-
paigns. To detect URLs which are served by FFSNs,
we use the discriminative features proposed by Holz et
al. [17], as listed in Table 5.

Table 5: DNS fluxiness features (DNSF)
No. Feature Type
1∼2 φ of NIP , NAS Real
3∼5 φ of NNS , NNSIP , NNSAS Real

We lookup the domain name of a URL and repeat the
DNS lookup after TTL (Time-To-Live value in a DNS
packet) timeout given in the first answer to have consec-
utive lookups of the same domain. Let NIP and NAS be

4

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 129

the total number of unique IPs and ASNs of each IP, re-
spectively, and NNS , NNSIP , NNSAS be the total num-
ber of unique name servers, name server IPs, and ASNs
of the name server IPs in all DNS lookups. Then, we can
estimate fluxiness using the acquired numbers. For ex-
ample, fluxiness of the resolved IP address is estimated
as follows,

φ = NIP /Nsingle,

where φ is the fluxiness of the domain and Nsingle is the
number of IPs that a single lookup returns. Similarly, all
of the other fluxiness features are estimated.

3.6 Network Features
Attackers may try to hide their websites using multiple
redirections such as iframe redirection and URL short-
ening. Even though also used by benign websites, the
distribution of redirection counts of malicious websites is
different from that of redirection counts of benign web-
sites [31]. Therefore, redirection count can be a useful
feature to detect malicious URLs. In a HTTP packet,
there is a content-length field which is the total length of
the entire HTTP packet. Hackers often set malformed
(negative) content-length in their websites in a buffer
overflow exploit. Therefore, content-length is used as
a network discriminative feature. Benign sites tend to be
more popular with a better service quality than malicious
ones. Web technologies tend to make popular websites
quick to look up and faster to download. In particular,
benign domains tend to have a higher probability to be
cached in a local DNS server than malicious domains,
esp. those employing FFSNs and dynamic DNS. There-
fore, domain lookup time and average download speed
are also used as features to detect malicious URLs. The
network features listed in Table 6 except the third and
fifth features are novel features.

Table 6: Network features (NET)
No. Feature Type
1 Redirection count Integer
2 Downloaded bytes from content-length Real
3 Actual downloaded bytes Real
4 Domain lookup time Real
5 Average download speed Real

4 Evaluation

In this section, we evaluate the performance of our
method for both malicious URL detection and attack type
identification. We also study the effectiveness of differ-
ent groups of features. The main findings of our experi-
ments include:

• Link popularity. Link popularity first used in our
method is highly discriminative for both malicious
URL detection (over 96% accuracy) and attack
type identification (over 84% accuracy). Google’s

search engine was not suitable to estimate link pop-
ularity since it reported just a partial list of link pop-
ularity.

• Link distribution. Malicious URLs are mainly
linked by malicious URLs of the same attack type:
about 56% of malicious URLs were found to be
linked only by the malicious URLs of the same at-
tack type.

• Multi-labels. In our collected malicious URLs,
over 45% belong to multiple types of threat. There-
fore, malicious URLs should be classified with a
multi-label classification method in order to pro-
duce a more accurate result on the nature of attack.

• Identification. Our method has achieved an accu-
racy rate of over 93% in attack type identification. It
is worth mentioning that novel features used in our
method including malicious SLD hit ratio in LEX,
three malicious link ratios in LPOP, two malicious
ASN ratios in DNS were found to be highly effec-
tive in distinguishing different attack types.

4.1 Methodology and Data Sets
Real-life data was collected from various sources to eval-
uate our method:

• Benign URLs. 40,000 benign URLs were collected
from the following two sources as used in previ-
ous work [49, 43, 21, 22]: 1) randomly selected
20,000 URLs from the DMOZ Open Directory
Project [10] (manually submitted by users), 2) ran-
domly selected 20,000 URLs from Yahoo!’s di-
rectory (generated by visiting http://random.
yahoo.com/bin/ryl)3.

• Spam URLs. The spam URLs were acquired from
jwSpamSpy [19] which is known as an e-mail spam
filter for Microsoft Windows. We also used a pub-
licly available Web spam dataset [3].

• Phishing URLs. The phishing URLs were ac-
quired from PhishTank [29], a free community
site where anyone can submit, verify, track and
share phishing data.

• Malware URLs. The malware URLs were obtained
from DNS-BH [11], a project creates and maintains
a list of URLs that are known to be used to propa-
gate malware.

The data set of malicious URLs is simply the union of
the three individual data sets of malicious types. A total
of 32,000 malicious URLs was collected. A malicious
URL may launch multiple types of attack, i.e., belongs
to multiple malicious types. The malicious data sets col-
lected above were marked with only single labels. URLs

3Many URLs from 1) and 2) did not have any sub-path. We adjusted
the ratio of benign URLs with a sub-path to be half of benign URLs.

5

130 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

of multi-labels were found by querying both McAfee
SiteAdvisor4 [23] and WOT5 (Web of Trust) [41] for
each URL in the malicious URL data set. The two sites
provide reputation of a submitted website URL including
the detailed malicious types it belongs to. Their informa-
tion was relatively accurate, although they had made er-
rors (e.g., SiteAdvisor has incorrectly labeled web-
sites6 and WOT was manipulated by attackers to generate
incorrect labels7). We use (λi) with a single index i to
represent a single type: spam (λ1), phishing (λ2), mal-
ware (λ3). Multi-labels are represented by the set of their
associated indexes, e.g., λ1,3 represents a URL of both
spam and malware. Table 7 shows the resulting distribu-
tion of multi-label URLs, where LSAd and LWOT rep-
resent the results reported by SiteAdvisor and WOT,
respectively, and LBoth denotes their intersection. From
Table 7, about half of the malicious URLs were classified
to be multi-labels: 45% by SiteAdvisor and 46%
by WOT. Comparing the labeling results by both LSAd

and LWOT , 91% of the URLs were labeled consistently
whereas 9% of URLs were labeled inconsistently by the
two sites.

Table 7: The collected data set of multi-labels
Label Attribute LSAd LWOT LBoth

λ1 spam 6020 6432 5835
λ2 phishing 1119 1067 899
λ3 malware 9478 8664 8105
λ1,2 spam, phishing 4076 4261 3860
λ1,3 spam, malware 2391 2541 2183
λ2,3 phishing, malware 4729 4801 4225
λ1,2,3 spam, phishing, malware 2219 2170 2080

Once the URL data sets were built, three crawlers were
used to crawl features from different sources. A web-
page crawler crawled the webpage content features and
the network features by accessing each URL in the data
sets. We implemented a module to the webpage crawler
using the cURL library [9] to detect redirections (includ-
ing URL shortening) and find original URLs automati-
cally. A link popularity crawler crawled the link popular-
ity features from the five search engines, Altavista,
AllTheWeb, Google, Yahoo!, and Ask, for each
URL and collected inlink information. A DNS crawler
crawled and calculated the DNS features and DNS fluxi-
ness features by sending queries to DNS servers.

Two-fold cross validation was performed to evaluate
our method: the URLs in each data set were randomly
split into two groups of equal size: one group was se-
lected as the training set while the other was used as
the testing set. Ten rounds of two-fold cross validation
were used to obtain the performance for both malicious

4The SiteAdvisor is a service to report safety of websites using
a couple of webpage analysis algorithms.

5The WOT is a community-based safe surfing tool that calculates the
reputation of a website through a combination of user ratings and data
from trusted sources.

6http://en.wikipedia.org/wiki/McAfee_SiteAdvisor
7http://mashable.com/2007/12/04/web-of-trust/

URL detection and attack type identification. The SVM-
light [35] software package was used as the support vec-
tor machine implementation in our evaluation.

4.2 Malicious URL Detection Results
The following metrics were used to evaluate the detec-
tion performance: accuracy (ACC) which is the propor-
tion of true results (both true positives and true negatives)
over all data sets; true positive rate (TP, also referred to
as recall) which is the number of the true positive clas-
sifications divided by the number of positive examples;
false positive rate (FP) and false negative rate (FN) which
are defined similarly.

4.2.1 Detection Accuracy

By applying all the discriminative features on the data
sets described in Section 4.1, our malicious URL detec-
tor produced the following results: 98.2% for the ac-
curacy, 98.9% for the true positive rate, 1.1% for the
false positive rate, and 0.8% for the false negative rate.
We also conducted the same experiments using only the
20,000 benign URLs collected from Yahoo!’s direc-
tory. The results were similar: 97.9% for the accuracy,
98.2% for the true positive rate, 0.98% for the false pos-
itive rate, and 1.08% for the false negative rate.

To study the effectiveness of each feature group, we
performed detection using only each individual feature
group. The resulting accuracy and true positive rate are
shown in Figure 2. We can clearly see in this figure that
LPOP is the most effective group of features in detecting
malicious URLs in terms of both detection accuracy and
true positive rate.

60

70

80

90

100

LEX LPOP CONT DNS DNSF NET

A
cc

u
ra

cy
 a

n
d

 t
ru

e
p

o
si

ti
v

es
 (

%
)

Accuracy
True positives

Figure 2: Detection accuracy and true positives for each
group of features.

We also compared the performance of each feature
group on detecting each type of malicious URLs by mix-
ing the corresponding malicious URL data set with the
benign URL data set. The resulting accuracies and true
positive rates are shown in Table 8.

As expected, the lexical features (LEX) are effective
on detecting phishing URLs, but did a poor job to de-
tect spam and malware URLs. This is because the lat-
ter types do not show very different textual patterns as

6

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 131

Table 8: Detection accuracy and true positive rate (%) of
individual feature groups for each malicious type

Dataset Metric
Feature group

LEX LPOP CONT DNS DNSF NET

Spam
ACC 73.0 97.2 82.8 77.4 87.7 72.1
TP 72.4 97.4 74.2 75.9 86.3 77.4

Phishing
ACC 91.6 98.1 77.3 76.3 71.8 77.2
TP 86.1 95.1 82.8 76.9 70.1 78.2

Malware
ACC 70.3 96.2 86.2 78.6 68.1 73.3
TP 74.5 93.2 88.4 75.1 74.2 78.2

compared with benign URLs. A different sensitivity to a
different malicious type is exactly what we want to dis-
tinguish one malicious type from other malicious types
(phishing from spam and malware for the specific case
of lexical features) in the attack type identification to be
reported in Section 4.3. These partially discriminative
features (effective only for some types of attack) and the
features that are effective for all the malicious types form
the set of discriminative features for our malicious URL
detector.

The link popularity features (LPOP) outperformed all
the other groups of features for detecting any type of
malicious URLs. Table 8 shows that the webpage con-
tent features (CONT) are useful in distinguishing malware
URLs from benign ones. This is because malware URLs
usually have malicious tags or scripts in their Web con-
tent to infect visitors. From Table 8, it seems that the
webpage content features are also effective in detecting
spam and phishing URLs as malicious URLs from a mix-
ture of malicious and benign URLs. That might be par-
tially due to the fact that many spam or phishing URLs
also belonged to malware, as we have seen in Section 4.1.
Note that a URL is claimed to be malicious no matter
which malicious type it is detected to belong to.

From Table 8, the DNS fluxiness features (DNSF) were
effective to detect spam URLs. This should be due to the
fact that FFSNs were widely used by spam campaigns, as
shown by Moore et al. [25]. Malicious network behav-
iors such as redirections using multiple proxies can be
employed by any type of threat. That can explain similar
performance of the network features (NET) for detecting
each type of malicious URLs.

4.2.2 Link Popularity Feature Analysis

In this section, we study the effectiveness of the link
popularity features in detail, and show the effective-
ness of our method for two unfavorable scenarios when
the link popularity features are not effective:1) the case
when malicious websites have high manipulated popu-
larity scores; and 2) the case when newly-setup benign
websites do not have high popularity scores.

First, we studied the distribution of the link popular-
ity for each data set. In our data sets, malicious URLs
had typically much smaller LPOP than benign URLs. A
majority, more precisely 60.35%, of the malicious URLs
had 0 link popularity. On the other hand, only a very

small portion of benign URLs had almost 0 link popular-
ity. This confirms the observation in Section 4.2.1 that
LPOP is effective to differentiate malicious URLs from
benign URLs.

Next we studied the quality of the link populari-
ties retrieved from the five different search engines:
Altavista, AllTheWeb, Google, Yahoo!, and
Ask. The distribution of LPOP for each search engine
over 20,000 benign URLs randomly selected from the
collected 40,000 benign URLs is shown in Figure 3, and
the distribution over the 32,000 malicious URLs is shown
in Figure 4. The x-axis in both figures is the index of the
URLs sorted by the link popularity.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

L
in

k
 p

o
p
u
la

ri
ty

 (
lo

g
 n

o
rm

al
iz

ed
)

URL index (sorted by link popularity)

AllTheWeb (benign)
Altavista (benign)

Ask (benign)
Google (benign)
Yahoo! (benign)

Figure 3: LPOP of benign URLs for each search engine.

 0

 0.5

 1

 1.5

 2

 2.5

21000 24000 27000 30000 33000

L
in

k
 p

o
p
u
la

ri
ty

 (
lo

g
 n

o
rm

al
iz

ed
)

URL index (sorted by link popularity)

AllTheWeb (malicious)
Altavista (malicious)

Ask (malicious)
Google (malicious)
Yahoo! (malicious)

Figure 4: LPOP of malicious URLs for each search en-
gine.

The larger the gap between benign URLs and ma-
licious URLs a search engine reports, the more accu-
rate that the link popularity is in distinguishing mali-
cious URLs from benign URLs. Google tends to re-
port a lower link popularity for both benign and mali-
cious URLs and thus should produce higher false posi-
tives and lower false negatives. Table 9 shows the mea-
sured metrics for the malicious URL detection using only
LPOP reported by each individual search engine. From
the table, Google yielded high false positives (12.3%)
and low false negatives (2.1%). AllTheWeb showed a
link popularity distribution similar to that of Yahoo!.
They had similar performance on malicious URL detec-
tion. This is not a surprise since AlltheWeb started to

7

132 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

use Yahoo!’s database since March 20048.
The result using Google was a surprise to us. We ex-

pected that Googlewould report the same, if not higher,
link polarity than other search engines since it should
have more comprehensive information of the Web. It
turned out that Google just reported a partial list of
link popularity, as their official website described9. The
Google Webmaster Tool provides more comprehensive
external link information, but we could not use it since it
is available only for the owner’s website.

Table 9: Detection accuracy, false positives and false
negatives using only LPOP reported by each individual
search engine (%)

Metric AllTheWeb Altavista Ask Google Yahoo!

ACC 95.1 95.6 84.0 85.7 95.9
TP 95.3 96.3 85.7 86.7 95.7
FP 2.7 2.7 8.4 12.3 2.1
FN 2.2 1.6 7.6 2.1 2.1

Unpopular legitimate link classification. From the
results reported above, we can conclude that LPOP is the
most effective discriminative feature for detecting mali-
cious URLs. It outperforms all the other feature groups
by a large margin. However, LPOP alone may be inef-
fective for certain types of URLs, for example, to dis-
tinguish malicious URLs from a group of unpopular or
newly setup benign URLs which also have low LPOP
scores. This is the worst scenario for our malicious URL
detector since the most effective feature, LPOP, is inef-
fective in this case. To conduct a test on the performance
for this worst scenario, we used only the benign and ma-
licious URLs which had zero LPOP to evaluate the per-
formance of our detector. We obtained the following re-
sults on malicious URL detection: 91.2% for the accu-
racy, 4.0% for false positives, and 4.8% for false nega-
tives. The accuracy remains high even under this worst
scenario.

Popularity-manipulated link classification. As de-
scribed in Section 3.2, some malicious URLs have high
LPOP scores because their links are manipulated using a
link farm [16]. We have developed five features, i.e., dis-
tinct domain link ratio, max domain link ratio, spam link
ratio, phishing link ratio, and malware link ratio, to de-
tect link manipulated malicious URLs. To make our de-
tector light-weight and feasible in real-time applications,
we used sampled link information instead of the whole
link information to calculate each of these features. To
evaluate the performance when the links are manipu-
lated, we collected malicious URLs which had high LPOP
scores (LPOP > 10). Among the 32,000 malicious URLs
we collected, only 622 URLs could be selected. Their
distinct domain link ratio and max domain link ratio are
shown against those of benign URLs in Figure 5. This
figure indicates that the popularity-manipulated mali-
cious URLs show a different pattern from those of benign

8AlltheWeb was taken over by Yahoo!.
9http://sites.google.com/site/webmasterhelpforum/

en/faq--crawling--indexing---ranking\#links

URLs. Moreover, about 90% of these malicious URLs
have more than 10% malicious link ratio (spam link ra-
tio, phishing link ratio, and malware link ratio), whereas
about 5% of benign URLs have more than 10% mali-
cious link ratio. About 56% of these malicious URLs
were linked exclusively by malicious URLs of the same
type. Consequently, we obtained 90.03% accuracy in de-
tecting link-manipulated malicious URLs with the afore-
mentioned five features.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

M
ea

su
re

d
 r

at
io

URL dataset (LPOP > 10)

Distinct domain link ratio (Ben)
Distinct domain link ratio (Mal)

Max domain link ratio (Ben)
Max domain link ratio (Mal)

Figure 5: Distinct domain link ratio and max domain link
ratio for benign and malicious URLs.

4.2.3 Error Analysis

In this section, both false positives and negatives are fur-
ther studied to understand why these errors happened in
order to further improve our method.

False positives. A false positive is when a benign
URL is misclassified as malicious. False positives can
be broadly categorized as follows:

• Disreputable URL. A benign URL is likely mis-
classified by our detector if it fits into two or more
of the following three cases: 1) the URL’s domain
has a very low link popularity (LPOP errors), 2) the
URL contains a malicious SLD (LEX errors), and
3) the URL’s domain is hosted by malicious ASNs
(DNS errors). In this case, a benign URL can be
considered as a disreputable URL. More than 90%
of the false positives belonged to the disreputable
case (e.g., 208.43.27.50/˜mike).

• Contentless URL. Some benign URLs had no con-
tent on their webpages. In this case, CONT would
fail (e.g., 222.191.251.167, 1traf.com, and
3gmatrix.cn).

• Brand name URL. Some benign URLs contained a
brand name keyword even they were not related to
the brand domain. These URLs could be misclas-
sified as malicious (e.g., twitterfollower.
wikispaces.com).

• Abnormal token URL. We observed several
benign URLs which had unusual long domain
tokens typically appearing in phishing URLs (e.g.,

8

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 133

centraldevideoscomhomensmaduros.
blogspot.com).

False negatives. A false negative is when a mali-
cious URL is undetected. Most false negatives were
hosted by popular social networking sites which had a
high link popularity and most URLs they hosted were
benign. Most of the false negative URLs were of spam
or phishing type. They generated features similar to
those of benign URLs. More than 95% of the false
negatives belonged to this case (e.g., blog.libero.
it/matteof97/ and digilander.libero.it/
Malvin92/?). This will be further discussed in Sec-
tion 4.4.

4.3 Attack Type Identification Results

To evaluate the performance of attack type identification,
the following metrics given in [37] for multi-label classi-
fication were used: 1) micro and macro averaged metrics,
and 2) ranking-based metrics with respect to the ground
truth of multi-label data.

Identification metrics. Additional notation is first in-
troduced. Assume that there is an evaluation data set of
multi-label examples (xi, Yi), i = 1, ...m, where xi is
a feature vector, Yi ⊆ L is the set of true labels, and
L = {λj : j = 1...q} is the set of all labels.

• Micro-averaged and macro-averaged metrics.
To evaluate the average performance across multi-
ple categories, we apply two conventional methods:
micro-average and macro-average [45]. The micro-
average gives an equal weight to every data set,
while the macro-average gives an equal weight to
every category, regardless of its frequency. Let tpλ,
tnλ, fpλ, and fnλ denote the number of true pos-
itives, true negatives, false positives, and false neg-
atives, respectively, after evaluating binary classifi-
cation metrics B (accuracy, true positives, etc.) for
a label λ. The micro-averaged and macro-averaged
version of B can be calculated as follows:

Bmicro = B(
M∑
λ=1

tpλ,
M∑
λ=1

tnλ,
M∑
λ=1

fpλ,
M∑
λ=1

fnλ),

Bmacro =
1

M

M∑
λ=1

B(tpλ, tnλ, fpλ, fnλ).

• Ranking-based metrics. Among several ranking-
based metrics, we employ the ranking loss and av-
erage precision for the evaluation. Let ri(λ) denote
the rank predicted by a label ranking method for a
label λ. The most relevant label receives the highest
rank, while the least relevant label receives the low-
est rank. The ranking loss is the number of times
that irrelevant labels are ranked higher than relevant

labels. The ranking loss, denoted as RLoss, is cal-
culated as follows:

Rloss =
1

m

m∑
i=1

1

|Yi||Y i|
|{(λa, λb) : ri(λa) > ri(λb),

(λa, λb) ∈ Yi × Y i}|

where Y i is the complementary set of Yi with re-
spect to L. The average precision, denoted by Pavg ,
is the average fraction of labels ranked above a par-
ticular label λ ∈ Yi which are actually in Yi. It is
calculated as follows:

Pavg =
1

m

m∑
i=1

1

|Yi
|
∑
λ∈Yi

|{λ′ ∈ Yi : ri(λ
′) ≤ ri(λ)}|

ri(λ)
.

Table 10: Multi-label classification results (%)
Label

Averaged Ranking-based
ACC micro TP macro TP Rloss Pavg

LSAd 90.70 87.55 88.51 3.45 96.87
RAkEL LWOT 90.38 88.45 89.59 4.68 93.52

LBoth 92.79 91.23 89.04 2.88 97.66
LSAd 91.34 86.45 87.93 3.42 95.85

ML-kNN LWOT 91.04 88.96 89.77 3.77 96.12
LBoth 93.11 91.02 89.33 2.61 97.85

Identification accuracy. We performed the multi-
label classification by using three label sets, LSAd,
LWOT and LBoth mentioned in Section 4.1. The re-
sults for two different learning algorithms, RAkEL al-
gorithm and ML-kMN, are shown in Table 10, where
micro TP and macro TP are micro-averaged true positives
and macro-averaged true positives, respectively. The fol-
lowing results were obtained: the average accuracy was
92.95%, whereas the average precision of ranking of the
two algorithms was 97.76%. The accuracy on the label
set LBoth was always higher than that on either LSAd or
LWOT . This implies that more accurate label set pro-
duces a more accurate result for identifying attack types.

50

60

70

80

90

100

LEX LPOP CONT DNS DNSF NET

A
cc

u
ra

cy
 a

n
d

 t
ru

e
p

o
si

ti
v

es
 (

%
)

Average accuracy
Average true positives

Figure 6: Average accuracy and micro-averaged true
positives (%).

9

134 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Fig. 6 shows effectiveness of each feature group in
identifying attack types. Among the top ten most ef-
fective features, eight are novel features. They are three
SLD hit ratio features in LEX, three malicious link ratios
in LPOP, and two malicious ASN ratios in DNS. From this
figure, even the link popularity features were also rather
effective in distinguishing different attack types. In addi-
tion, no single feature group was highly effective in iden-
tifying attack types: they all yielded an accuracy lower
than 85%. The combination of all the groups of features,
however, yielded a much improved performance.

4.4 Evadability Analysis
Existing methods can be evaded by capable attackers.
Similarly, our features are also evadable to a certain de-
gree. However, it is an improvement if we can raise the
bar of evasion difficulty by either increasing the evasion
cost or decreasing the effectiveness of threat. To study
evadability of our method, we discuss in this subsection
the robustness of our method against known evasions and
also possible evasion tactics.

Robust against known evasions. 1) Redirection: One
possible evasion tactic is to hide the original URL using
multiple redirections (also known as a “drive-by website
attack” such as Iframe redirection) or a URL shortening
service which makes a webpage available under a very
short URL in addition to the original URL. Our method
is robust against this kind of URL hiding and embed-
ding evasions because our webpage crawler can auto-
matically detect redirections and find the original URLs.
2) Link manipulation: As mentioned in Section 4.2.2,
our method is robust against the link manipulation at-
tack (more than 90% of link-manipulated URLs were de-
tected). 3) Fast-flux hosting: The DNSF features used in
our method can detect fast-fluxed domains.

URL obfuscation. If an attacker (or a domain gen-
eration algorithm in malware, e.g., Conficker Worm)
generates a domain name and path tokens with random
length and counts, most statistical features in LEX will be
evaded. Therefore, it is easy to evade the statistical fea-
tures in LEX except our unique feature “malicious SLD
hit ratio” since a plenty of domains have to be registered
to evade the malicious SLD hit ratio. Evading brand
name presence feature is easy but such an evasion will
make a malicious URL less likely to be clicked, result-
ing in a reduced effectiveness of attack. URL obfuscation
using IDN (Internationalized Domain Names) spoofing
can also be used to evade our detector. For exam-
ple, http://www.pаypal.com represents
http://www.paypal.com. Such an evasion can be
easily prevented by adding a module to deobfuscate a
URL to find the resulting URL in our webpage crawler.

JavaScript obfuscation. Malicious javascript of-
ten utilizes obfuscation to hide known exploits, embed
redirection URLs, and evade signature-based detection
methods. Particularly, JavaScript obfuscation can make
the webpage crawler mislead webpage content features
(CONT). To extract webpage content features accurately,

the webpage crawler should have an automated deob-
fuscation functionality. The Firefox JavaScript deob-
fuscator add-on10 inspired by “The Ultimate Deobfusca-
tor” [5] can be used in our webpage content crawler as a
JavaScript deobfuscation module.

Social network site. Utilizing social network sites
(e.g., Twitter) to attack can reduce the effectiveness
of LEX, LPOP, DNS, and NET features. A possible solution
against this evasion tactic is to adopt features which can
differentiate hacker’s fake accounts from normal users.
For example, we can use the number of incoming linked
accounts (e.g., “followers” in Twitter) as a feature to
detect faked accounts. Such a feature is still evadable
with more sophisticated attacks which build a fake so-
cial network to link each other. Like the five link ratio
features in LPOP to deal with the link popularity manip-
ulation, similar linked account ratio features can be used
to deal with a fake social network. Other countermea-
sures against social spam and phishing [20] can also be
combined with our detector.

As mentioned in this section, it may cost little to evade
a single feature group. However, evading all the features
in our method would cost much more and also reduce the
effectiveness of attack.

5 Related Work

This section reviews the related work of our method.
They can be classified into two categories depending on
how the classifier is built: machine learning methods
which use machine learning to build classifiers, and other
methods which build classifiers with a priori knowledge.

5.1 Non-machine learning approaches
Blacklisting. One of the most popular approaches is to
build a blacklist to block malicious URLs. Several web-
sites provide blacklists such as jwSpamSpy [19], Phish-
Tank [29], and DNS-BH [11]. Several commercial prod-
ucts construct blacklist using user feedbacks and their
proprietary mechanisms to detect malicious URLs, such
as McAfee’s SiteAdvisor [23], WOT Web of Trust [41],
Trend Micro Web Reputation Query Online System [36],
and Cisco IronPort Web Reputation [7]. URL blacklist-
ing is ineffective for new malicious URLs. The very na-
ture of exact match in URL blacklisting renders it easy to
be evaded. Moreover, it takes time to analyze malicious
URLs and propagate a blacklist to end users. Zhang et
al. [46] proposed a more effective blacklisting approach,
“predictive blacklists”, which uses a relevance ranking
algorithm to estimate the likelihood that an IP address is
malicious.

VM execution. Wang et al. [39] detected drive-
by exploits on the Web by monitoring anomalous state
changes in a Virtual Machine (VM). SpyProxy [26] also
uses a VM-based Web proxy defense to block suspicious

10The Firefox add-on shows JavaScript runs on a webpage, even if
the JavaScript is obfuscated and generated on the fly [28].

10

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 135

Web content by executing the content in a virtual ma-
chine first. The VM-based approaches detect malicious
webpages with a high accuracy, but only malware ex-
ploiting pages can be detected.

Rule-based anti-phishing. Several rule-based anti-
phishing approaches have been proposed. Zhang et
al. [49] proposed a system to detect phishing URLs with
a weighted sum of 8 features related to content, lexical
and WHOIS data. They used the Google Web search as
a filter for phishing pages. Garera et al. [13] used logis-
tic regression over manually selected features to classify
phishing URLs. The features include heuristics from a
URL such as Google’s page rank features. Xiang and
Hong [43] proposed a hybrid phishing detection method
by discovering inconsistency between a phishing identity
and the corresponding legitimate identity. PhishNet [30]
provides a prediction method for phishing attacks using
known heuristics to identify phishing sites.

5.2 Machine learning-based approaches
Detection of single attack type. Machine learning has
been used in several approaches to classify malicious
URLs. Ntoulas et al. [27] proposed to detect spam
webpages through content analysis. They used site-
dependent heuristics, such as words used in a page or title
and fraction of visible content. Xie et al. [44] developed
a spam signature generation framework called AutoRE
to detect botnet-based spam emails. AutoRE uses URLs
in emails as input and outputs regular expression signa-
tures that can detect botnet spam. Fette et al. [12] used
statistical methods to classify phishing emails. They
used a large publicly available corpus of legitimate and
phishing emails. Their classifiers examine ten differ-
ent features such as the number of URLs in an e-mail,
the number of domains and the number of dots in these
URLs. Provos et al. [31] analyzed the maliciousness of
a large collection of webpages using a machine learning
algorithm as a pre-filter for VM-based analysis. They
adopted content-based features including presence of ob-
fuscated javascript and exploit sites pointing iframes.
Hou et al. [18] proposed a detector of malicious Web
content using machine learning. In particular, we bor-
row several webpage contents features from their fea-
tures. Whittaker et al. [40] proposed a phishing website
classifier to update Google’s phishing blacklist automat-
ically. They used several features obtained from domain
information and page contents.

Detection of multiple attack types. The classifica-
tion model of Ma et al. [21, 22] can detect spam and
phishing URLs. They described a method of URL clas-
sification using statistical methods on lexical and host-
based properties of malicious URLs. Their method de-
tects both spam and phishing but cannot distinguish these
two types of attack.

Existing machine learning-based approaches usually
focus on a single type of malicious behavior. They all
use machine learning to tune their classification models.
Our method is also based on machine learning, but a new

and more powerful and capable classification model is
used. In addition, our method can identify attack types
of malicious URLs. These innovations contribute to the
superior performance and capability of our method.

Other related work. Web spam or spamdexing aims
at gaining an undeservedly high rank from a search
engine by influencing the outcome of the search en-
gine’s ranking algorithms. Link-based ranking algo-
rithms, which our link popularity is similar to, are widely
used by search engines. Link farms are typically used
in Web spam to affect link-based ranking algorithms of
search engines, which can also affect our link popularity.
Researches have proposed methods to detect Web spams
by using propagating trust or distrust through links [15],
detecting bursts of linking activity as a suspicious sig-
nal [34], integrating link and content features [4], or var-
ious link-based features including modified PageRank
scores [6]. Many of their techniques can be borrowed
to thwart evading link popularity features in our detector
through link farms.

6 Conclusion

The Web has become an efficient channel to deliver vari-
ous attacks such as spamming, phishing, and malware.
To thwart these attacks, we have presented a machine
learning method to both detect malicious URLs and iden-
tify attack types. We have presented various types of
discriminative features acquired from lexical, webpage,
DNS, DNS fluxiness, network, and link popularity prop-
erties of the associated URLs. Many of these discrim-
inative features such as link popularity, malicious SLD
hit ratio, malicious link ratios, and malicious ASN ra-
tios are novel and highly effective, as our experiments
found out. SVM was used to detect malicious URLs, and
both RAkEL and ML-kNN were used to identify attack
types. Our experimental results on real-life data showed
that our method is highly effective for both detection and
identification tasks. Our method achieved an accuracy
of over 98% in detecting malicious URLs and an accu-
racy of over 93% in identifying attack types. In addition,
we studied the effectiveness of each group of discrimi-
native features on both detection and identification, and
discussed evadability of the features.

References
[1] AHA, D. W. Lazy learning: Special issue editorial. Artifiial

Intelligence Review (1997), 7–10.

[2] ALEXA. The web information company. http://www.
alexa.com, 1996.

[3] CASTILLO, C., DONATO, D., BECCHETTI, L., BOLDI, P.,
LEONARDI, S., SANTINI, M., AND VIGNA, S. A reference col-
lection for web spam. SIGIR Forum 40, 2 (2006), 11–24.

[4] CASTILLO, C., DONATO, D., GIONIS, A., MURDOCK, V., AND
SILVESTRI, F. Know your neighbors: web spam detection using
the web topology. In ACM SIGIR: Proceedings of the conference
on Research and development in Information Retrieval (2007).

11

136 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

[5] CHENETTE, S. The ultimate deobfuscator. http:
//securitylabs.websense.com/content/Blogs/
3198.aspx, 2008.

[6] CHUNG, Y.-J., TOYODA, M., AND KITSUREGAWA, M. Identi-
fying spam link generators for monitoring emerging web spam. In
WICOW: Proceedings of the 4th workshop on Information credi-
bility (2010).

[7] CISCO IRONPORT. IronPort Web Reputation: Protect and defend
against URL-based threat. http://www.ironport.com.

[8] CORTES, C., AND VAPNIK, V. Support vector networks. Ma-
chine Learning (1995), 273–297.

[9] CURL LIBRARY. Free and easy-to-use client-side url transfer
library. http://curl.haxx.se/, 1997.

[10] DMOZ. Netscape open directory project. http://www.
dmoz.org.

[11] DNS-BH. Malware prevention through domain blocking.
http://www.malwaredomains.com.

[12] FETTE, I., SADEH, N., AND TOMASIC, A. Learning to detect
phishing emails. In WWW: Proceedings of the international con-
ference on World Wide Web (2007).

[13] GARERA, S., PROVOS, N., CHEW, M., AND RUBIN, A. D. A
framework for detection and measurement of phishing attacks. In
WORM: Proceedings of the Workshop on Rapid Malcode (2007).

[14] GEOIP API, MAXMIND. Open source APIs and database for
geological information. http://www.maxmind.com.

[15] GYÖNGYI, Z., AND GARCIA-MOLINA, H. Link spam alliances.
In VLDB: Proceedings of the international conference on Very
Large Data Bases (2005).

[16] GYONGYI, Z., AND GARCIA-MOLINA, H. Web spam taxon-
omy, 2005.

[17] HOLZ, T., GORECKI, C., RIECK, K., AND FREILING, F. C.
Detection and mitigation of fast-flux service networks. In NDSS:
Proceedings of the Network and Distributed System Security
Symposium (2008).

[18] HOU, Y.-T., CHANG, Y., CHEN, T., LAIH, C.-S., AND CHEN,
C.-M. Malicious web content detection by machine learning.
Expert Systems with Applications (2010), 55–60.

[19] JWSPAMSPY. E-mail spam filter for Microsoft Windows. http:
//www.jwspamspy.net.

[20] LEE, K., CAVERLEE, J., AND WEBB, S. Uncovering social
spammers: social honeypots + machine learning. In ACM SIGIR:
Proceeding of the international conference on Research and de-
velopment in Information Retrieval (2010).

[21] MA, J., SAUL, L. K., SAVAGE, S., AND VOELKER, G. M. Be-
yond blacklists: learning to detect malicious web sites from sus-
picious URLs. In KDD: Proceedings of the international confer-
ence on Knowledge Discovery and Data mining (2009).

[22] MA, J., SAUL, L. K., SAVAGE, S., AND VOELKER, G. M.
Identifying suspicious URLs: an application of large-scale online
learning. In ICML: Proceedings of the International Conference
on Machine Learning (2009).

[23] MCAFEE SITEADVISOR. Service for reporting the safety of web
sites. http://www.siteadvisor.com/.

[24] MCGRATH, D. K., AND GUPTA, M. Behind phishing: An ex-
amination of phisher modi operandi. In LEET: Proceedings of
the USENIX Workshop on Large-Scale Exploits and Emergent
Threats (2008).

[25] MOORE, T., CLAYTON, R., AND STERN, H. Temporal correla-
tions between spam and phishing websites. In LEET: Proceedings
of the USENIX Workshop on Large-Scale Exploits and Emergent
Threats (2009).

[26] MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D.,
AND LEVY, H. M. Spyproxy: Execution-based detection of ma-
licious web content. In Security: Proceedings of the USENIX
Security Symposium (2007).

[27] NTOULAS, A., NAJORK, M., MANASSE, M., AND FETTERLY,
D. Detecting spam web pages through content analysis. In
WWW: Proceedings of international conference on World Wide
Web (2006).

[28] PALANT, W. JavaScript Deobfuscator 1.5.6. https:
//addons.mozilla.org/en-US/firefox/addon/
javascript-deobfuscator/, 2011.

[29] PHISHTANK. Free community site for anti-phishing service.
http://www.phishtank.com/.

[30] PRAKASH, P., KUMAR, M., KOMPELLA, R. R., AND GUPTA,
M. PhishNet: Predictive Blacklisting to Detect Phishing Attacks.
In INFOCOM: Proceedings of the IEEE Conference on Computer
Communications (2010).

[31] PROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND MON-
ROSE., F. All your iFRAMEs point to us. In Security: Proceed-
ings of the USENIX Security Symposium (2008).

[32] QUINLAN, J. R. C4.5: Programs for machine learning. Morgan
Kaufmann Publishers (1993).

[33] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding the
network-level behavior of spammers. In SIGCOMM (2006).

[34] SHEN, G., GAO, B., LIU, T.-Y., FENG, G., SONG, S., AND
LI, H. Detecting link spam using temporal information. IEEE
International Conference on Data Mining 0 (2006), 1049–1053.

[35] T. JOACHIMS. Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning, B.
Scholkopf and C. Burges and A. Smola (ed.). MIT-Press (1999).

[36] TREND MICRO. Web reputation query - online system. http:
//reclassify.wrs.trendmicro.com/.

[37] TSOUMAKAS, G., KATAKIS, I., AND VLAHAVAS, I. Mining
Multi-label Data. Data Mining and Knowledge Discovery Hand-
book, O. Maimon, L. Rokach (Ed.), Springer, 2nd edition, 2010.

[38] TSOUMAKAS, G., KATAKIS, I., AND VLAHAVAS, I. Random
k-labelsets for multi-label classification. IEEE Transactions on
Knowledge and Data Engineering (2010).

[39] WANG, Y.-M., BECK, D., JIANG, X., ROUSSEV, R., VER-
BOWSKI, C., CHEN, S., AND KING, S. Automated web pa-
trol with strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities. In NDSS: Proceedings of the Symposium
on Network and Distributed System Security (2006).

[40] WHITTAKER, C., RYNER, B., AND NAZIF, M. Large-scale au-
tomatic classification of phishing pages. In NDSS: Proceedings
of the Symposium on Network and Distributed System Security
(2010).

[41] WOT. Web of Trust community-based safe surfing tool. http:
//www.mywot.com/.

[42] WU, B., AND DAVISON, B. D. Cloaking and redirection: A
preliminary study. In AIRWeb: Proceedings of the 1st Workshop
on Adversarial Information Retrieval on the Web (2005).

[43] XIANG, G., AND HONG, J. I. A hybrid phish detection approach
by identity discovery and keywords retrieval. In WWW: Proceed-
ings of the international conference on World Wide Web (2009).

[44] XIE, Y., YU, F., ACHAN, K., PANIGRAHY, R., HULTEN, G.,
AND OSIPKOV, I. Spamming botnets: signatures and character-
istics. In SIGCOMM (2008).

[45] YANG, Y. An evaluation of statistical approaches to text catego-
rization. Journal of Information Retrieval (1999), 67–88.

[46] ZHANG, J., PORRAS, P., AND ULLRICH, J. Highly predictive
blacklisting. In Security: Proceedings of the USENIX Security
Symposium (2008).

[47] ZHANG, M.-L., AND ZHOU, Z.-H. A k-Nearest Neighbor based
algorithm for multi-label classification. In IEEE International
Conference on Granular Computing (2005), vol. 2.

[48] ZHANG, M. L., AND ZHOU, Z. H. ML-KNN: A lazy learning
approach to multi-label learning. Pattern Recognition 40, 7 (July
2007), 2038–2048.

[49] ZHANG, Y., HONG, J., AND CRANOR, L. CANTINA: A
content-based approach to detecting phishing web sites. In
WWW: Proceedings of the international conference on World
Wide Web (2007).

12

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 137

Maverick: Providing Web Applications with Safe and Flexible Access to
Local Devices

David W. Richardson and Steven D. Gribble
Department of Computer Science & Engineering

University of Washington

Abstract
Web browsers do not yet provide Web programs with

the same safe, convenient access to local devices that
operating systems provide to native programs. As a re-
sult, Web programmers must either wait for the slowly
evolving HTML standard to add support for the device
classes they want to use, or they must use difficult to de-
ploy browser plug-ins to add the access they need.

This paper describes Maverick, a browser that pro-
vides Web applications with safe and flexible access to
local devices. Maverick lets Web programmers imple-
ment USB device drivers and frameworks, like file sys-
tems or streaming video layers, using standard Web pro-
gramming technologies such as HTML, JavaScript, or
even code executed in a native client sandbox. These Web
drivers and Web frameworks are downloaded dynami-
cally from Web servers and executed by browsers along-
side Web applications. Maverick provides Web drivers
with protected access to the USB bus, and it provides Web
drivers and frameworks with event-driven IPC channels
to communicate with each other and with Web applica-
tions.

We prototyped Maverick by modifying the Chrome
Web browser and the Linux kernel. Using Maverick, we
have implemented: several Web drivers, including a USB
mass storage driver and a Webcam driver; several Web
frameworks, including a FAT16 filesystem and a stream-
ing video framework; and, several Web applications that
exercise them. Our experiments show that Web drivers,
frameworks, and applications are practical, easy to au-
thor, and have sufficient performance, even when imple-
mented in JavaScript.

1 Introduction

Web browsers do not yet provide Web programs with the
same safe, convenient access to local devices that OSs
provide to native programs. Digital devices like cameras,

printers, scanners, smartphones, and GPS trackers are in-
creasingly pervasive, yet browsers currently provide little
support to Web applications for accessing them. The sup-
port that does exist is limited to a handful of HTML tags
for accessing a small number of common device classes,
such as Webcams or microphones.

Today, Web programmers that want to use unsup-
ported or exotic local devices must either wait for HTML
standards to evolve to include them, or they must im-
plement, deploy, and support browser plug-ins that users
may be reluctant to install. Such poor choices limit the
functionality of Web applications and discourage the de-
velopment and adoption of new, interesting local devices.

In this paper, we describe Maverick, an experimen-
tal browser that gives Web applications safe and flexible
access to local USB devices. Maverick takes the aggres-
sive approach of removing the responsibility for manag-
ing devices and device frameworks from the host oper-
ating system and empowering the browser to execute de-
vice drivers and frameworks alongside Web applications.
Specifically, instead of requiring users to install USB de-
vice drivers into their host OS, Maverick dynamically
finds, downloads, and executes Web drivers that are writ-
ten with standard Web programming technologies like
HTML, JavaScript, or Native Client (NaCl) [24], and that
directly communicate with the USB devices they drive.

Similarly, instead of relying on device frameworks
within the host OS, such as file systems or video frame-
works, Maverick finds, downloads, and executes Web
frameworks to provide Web applications with convenient
high-level abstractions. Maverick permits Web appli-
cations to communicate directly with Web frameworks,
which in turn communicate with Web drivers.

Maverick’s approach has several advantages. Web de-
velopers can add support for new USB devices and make
them immediately accessible to any Maverick user and
Web application without waiting for updates to slowly
moving standards bodies, browser vendors, or operating
systems. Maverick also inherits many of the safety and

138 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

security benefits of running drivers in user-level, such as
insulating the OS from driver bugs.

Maverick addresses three main challenges:

1. Security. Maverick must isolate Web drivers and
Web frameworks to prevent access to unauthorized
devices or interference with unrelated Web appli-
cations and native software. Maverick uses exist-
ing JavaScript and NaCl sandboxes to contain Web
drivers and frameworks. In addition, Maverick ex-
poses a virtualized USB bus to Web drivers, grant-
ing each driver the ability to send and receive USB
messages only to the devices for which it is autho-
rized. So that Web drivers, frameworks, and appli-
cations can interact flexibly and efficiently, Maverick
provides them with protected event-driven IPC chan-
nels.

2. Performance. Web drivers and frameworks must be
efficient. We prototyped Maverick by modifying the
Chrome browser and the Linux kernel, implemented
several drivers and frameworks in both JavaScript
and NaCl, and compared them to native Linux equiv-
alents. Not surprisingly, user-level drivers in gen-
eral, and JavaScript drivers and frameworks in partic-
ular, are significantly slower than their Linux coun-
terparts. Nonetheless, our experiments demonstrate
they are fast enough to support many interesting USB
devices and applications. As well, we show that NaCl
can achieve performance closer to that of in-kernel
drivers and frameworks.

3. Usability. Maverick must avoid burdening users
with making confusing and error-prone decisions on
how to select trustworthy and compatible drivers and
frameworks for Web applications. To do this, Mav-
erick allows users to configure their browsers to trust
one or more Maverick domain providers. A domain
provider is a trusted third-party like Google or Mi-
crosoft that is responsible for selecting and bundling
together a set of interoperable Web frameworks and
drivers.

We have prototyped several Web drivers and frame-
works and applications that exercise them, including:
a USB mass storage driver, a Webcam driver, a FAT
filesystem framework, and a streaming video framework.
Overall, our experience with Maverick suggests that Web
drivers and frameworks are straightforward to imple-
ment, and are safe and practical from a performance, se-
curity, and usability standpoint.

The rest of this paper is structured as follows. In Sec-
tion 2, we present a brief overview of USB. Section 3
describes the architecture of Maverick, and Section 4
presents our prototype implementation. In Section 5, we
evaluate the performance and security of Maverick and

we showcase several applications. After discussing re-
lated work in Section 6, we conclude.

2 A Brief Overview of USB

Maverick exposes USB devices to Web drivers and appli-
cations. We chose to focus on USB for two reasons; first,
it has become the predominant interconnect for most
consumer devices, making it an attractive target. Second,
since USB is message-oriented, it was relatively straight-
forward to expose USB message transmission and recep-
tion to JavaScript and NaCl. In contrast, we believe it
would be much less natural to expose complex device in-
terconnects, such as PCI, that use more architecturally-
dependent features like DMA and memory-mapped I/O.

In this section, we provide a brief overview of USB
device abstractions and protocols. Readers familiar with
USB may choose to skip to Section 3.

2.1 USB Devices and Communication
Channels

A USB bus connects a host, such as a laptop or desktop,
to multiple peripheral devices over a star topology. Some
USB devices consist of more than one logical device; for
example, a Web camera might consist of a video camera
and a microphone packaged together into a single physi-
cal box. Each of these logical devices would appear as a
separate addressable entity on the USB bus.

A logical device consists of one or more communica-
tion endpoints associated with some specific function of
the logical device. A host establishes a pipe to an end-
point to communicate with it. There is a one-to-one map-
ping between pipes and endpoint. Each endpoint and its
corresponding pipe are typed. USB supports four kinds
of pipes:

• Control. A control pipe facilitates the bidirectional
exchange of small control messages used to query or
control a device. The USB specification mandates
that hosts must reserve 10% of the USB bus band-
width for control traffic. All devices have at least one
control endpoint.

• Interrupt. An interrupt pipe is a unidirectional chan-
nel used to convey messages from a device to a host.
For example, USB keyboards generate interrupt mes-
sages when key press events occur. Interrupt mes-
sages are latency sensitive; hosts must poll interrupt
endpoints sufficiently frequently to ensure respon-
siveness.

• Isochronous. An isochronous pipe is a unidirec-
tional channel used to transfer a continuous stream
of data, such as video frames or audio packets. Hosts

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 139

must schedule USB messages to provide a guaranteed
amount of bandwidth to an established isochronous
pipe. Isochronous pipes may experience occasional
data loss.

• Bulk. Bulk pipes are unidirectional channels that pro-
vide reliable data transfer but no bandwidth guaran-
tees. USB bulk storage devices and printers often use
bulk pipes.

2.2 Host OS Abstractions and Duties

USB bus bandwidth is allocated and scheduled into time
slices called frames. For high speed USB 2.0 devices,
frames have a 125 micro-second interval, permitting
up to 8,000 frames per second. The host operating
system is responsible for scheduling USB packets into
frames. Because USB mandates reserved bandwidth for
isochronous pipes and responsiveness for interrupt pipes,
the OS must queue USB packets, potentially delaying
some to meet the scheduling demands of isochronous
and interrupt traffic. Packets associated with bulk and
control transfers are scheduled whenever a frame has
available bandwidth not already consumed by interrupt
or isochronous transfers.

Operating systems typically abstract USB transactions
into a data structure called a USB request block (URB).
A URB encapsulates a single, asynchronous interaction
between the host and a device. The URB structure ac-
commodates a request, data to be transferred, and a com-
pletion status message. Device drivers allocate and sub-
mit URBs to low-level, device-independent USB pro-
cessing code within an OS. The OS schedules the trans-
mission of messages and data indicated by the URB, and
upon completion, notifies the driver.

While programmers can manually construct URBs for
any type of data transfer, operating systems typically
supply USB libraries with higher-level abstractions for
constructing, sending, and receiving URBs based on the
specified type of data transfer.

3 Architecture

Maverick splits a computer into two worlds (Figure 1):
a legacy desktop world that contains the underlying host
operating system, its drivers and frameworks, and appli-
cations, and the Maverick world that executes on top of
a browser. Each world is isolated from the other with re-
spect to the USB devices they can access: a given device
is assigned to one of the two worlds, and the other cannot
observe or influence it.

The assignment of USB devices to worlds is managed
by the USB world splitter in the host OS. When a new
USB device is detected, the splitter prompts the user

O
S

Maverick USB
Virtualizer (MUV)

U
se

r L
ev

el

Desktop WorldMaverick World

USB device

Desktop
Applications

Browser Kernel

Web Drivers,
Frameworks,
Applications

USB
Device Drivers

Device
Frameworks

USB device

H
ar

dw
ar

e

USB world splitter user
input

Figure 1: Maverick “World Splitting.” Maverick splits com-
puters into the legacy desktop world and the Maverick web
world. USB devices are partitioned between the two worlds;
each world runs its own drivers, frameworks, and applications.

to assign the device to either the desktop or Maverick
world. The splitter then enforces this assignment when
routing messages between devices and the two worlds.

3.1 The Desktop World

The desktop world exists to facilitate incremental de-
ployment and backwards compatibility. Users can run
unmodified legacy device drivers, frameworks, and ap-
plications in it: besides the presence of the USB world
splitter, the desktop world is unaware of the existence of
the Maverick world. Thus, in the desktop world, USB
device drivers are installed into the host OS and com-
municate with devices using the USB core libraries pro-
vided by the OS. Drivers abstract away the details of
specific devices and interfaces with frameworks, such as
file systems, network stacks, and video frameworks. A
framework, which is typically implemented partially in
the host OS kernel and partially as sets of user-mode li-
braries, provides high-level, device-independent abstrac-
tions to applications.

3.2 The Maverick World

The Maverick world has some similarity to the legacy
desktop world, in that the structural relationship between
drivers, frameworks, and applications is the same in both
cases. However, unlike the legacy world, in Maverick
these components are (1) dynamically downloaded rather
than installed, (2) implemented using Web programming
technologies such as JavaScript and NaCl, and (3) exe-
cuted by a browser kernel entirely at the user-level.

Figure 2 shows the architecture of the Maverick world.

140 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

M
av

er
ic

k
Br

ow
se

r K
er

ne
l

USB Device Manager

Br
ow

se
r i

ns
ta

nc
es

local USB
devices

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Framework

sandbox

Web Driver

sandbox

Web Driver

sandbox

Web Application

sandbox

driver
events

framework
events

application
events

Maverick
IPC

Event Router

Web Instance Manager

Web
(drivers, frameworks, apps)

USB
messages

HTTP
transactions

browser
instance

policy

device
access
policy

Figure 2: The “Maverick World.” The Maverick world
consists of a trusted browser kernel and untrusted browser in-
stances. The kernel manages instances, provides IPC channels,
and relays USB messages between authorized drivers and local
USB devices.

At a high-level, the world is deconstructed into two com-
ponents: untrusted browser instances and the trusted
browser kernel. We describe each component below.

3.2.1 Maverick Browser Instances

Maverick browser instances contain untrusted code pro-
vided by a remote Web service. Browser instances are
sandboxed from each other, the browser kernel, and
the legacy desktop world. Instances can implement
device driver functionality, framework functionality, or
application-level functionality using standard Web pro-
gramming technologies. We focus on two variants:
JavaScript and NaCl instances (Figure 3). Similar to
browsers like Chrome [20], a JavaScript instance con-
tains DOM bindings, a JavaScript interpreter, and an
HTML renderer, in addition to the browser instance’s
code itself. A NaCl instance contains x86 code that is
verified and contained by the NaCl sandbox.

When an instance is instantiated, it has access to a reg-
istration IPC channel provided to it by the browser ker-
nel. When the instance has initialized itself, it uses the
registration channel to alert the browser kernel, which
then establishes point-to-point IPC channels between the
instance and other instances with which it must commu-
nicate. We discuss the policy by which the browser ker-
nel interconnects devices, frameworks, and applications
in Section 3.3.

3.2.2 The Maverick Browser Kernel

The Maverick browser kernel serves two main roles.
First, it provides the standard functions of a “typical”

browser sandbox

registration
channel

USB
device

channel

HTML
renderer

DOM
access

JS
engine

Web driver
(JavaScript + HTML)

framework
channel

NaCl sandbox

driver
channels

registration
channel

Web framework
(NaCl)

application
channels

Web
drivers

Web
applications

Web instance
manager

Web instance
manager

USB device
manager

Figure 3: Maverick Web Browser Instances. Web drivers,
frameworks, and applications execute inside browser instances.
Instances contain JavaScript+HTML or NaCl code, and they in-
teract with each other and the browser kernel via IPC channels.

browser kernel, including: managing standard Web stor-
age like cookies, cache, and history; providing net-
work access to browser instances; enforcing the same-
origin policy; and, implementing the browser’s user in-
terface [20]. We have not modified these functions, and
will not describe them further in this paper.

Second, the browser kernel provides Web drivers with
safe access to local USB devices and facilitates secure
communication between drivers, frameworks, and appli-
cations. The Maverick browser kernel consists of three
modules: (1) the USB device manager, (2) the Web in-
stance manager, and (3) the event router. The USB de-
vice manager stores device information such as vendor
and device IDs for devices made available to Maverick
via the world splitter. As well, the device manager es-
tablishes the channel between a Web driver and its local
USB device: messages transmitted by a driver are routed
to device manager, which verifies that they are properly
formatted and addressed to the driver’s authorized device
before relaying them down to the host OS.

The Web instance manager downloads and instantiates
Web driver and framework instances. The Web instance
manager is also responsible for establishing the point-
to-point IPC channels between drivers, frameworks, and
applications. The IPC channels are managed by the event
router: each channel implements a reliable, point-to-
point FIFO queue. Browser instances communicate over
these channels using events that contain a name, untyped
variable-length payload, and destination. Within these
constraints, browser instances are free to define and use
any communication protocol.

3.2.3 The Maverick USB Virtualizer

The Maverick USB Virtualizer (MUV) is a device-
agnostic USB driver that lives inside the host OS. It virtu-
alizes the USB API provided by the core USB libraries in
the kernel, translating and packaging up USB messages
from the kernel’s USB core into events that delivered to
the browser kernel, and from there, routed to the appro-

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 141

priate Web driver. USB events sent from Web drivers are
routed from the browser kernel to the MUV and trans-
lated into appropriate calls into the host OS’s USB core.

3.3 Naming and Binding of Web Drivers
and Frameworks

As previously mentioned, Maverick must decide how
to select, download, and interconnect Web driver and
framework instances to applications. The policies it uses
to do this are critical, as they impact safety, reliability,
and compatibility: the policy must prevent users from be-
ing exposed to malicious drivers and frameworks, ensure
that the set of drivers and frameworks that are instanti-
ated are compatible with each other and with the appli-
cations, and that the applications can depend on a stable,
coherent set of framework abstractions and interfaces.

We have experimented with several policies, and we
describe two below. However, we feel that we are still
just beginning to explore this topic: there are still many
difficult and interesting research challenges to solve.

Application-driven. Under this policy, each Web ap-
plication declares to Maverick the URLs of the frame-
works that it requires. Similarly, each instantiated frame-
work declares to Maverick the URLs of the drivers that it
trusts and is compatible with. When a user navigates to
an application, Maverick instantiates its declared frame-
works, observes which drivers the framework is willing
to have loaded, and identifies the subset of drivers that
match available, underlying USB devices. Before the
drivers are loaded and bound to USB devices, Maver-
ick prompts the user for authorization: the prompt in-
forms the user of the URLs of the application, frame-
works, drivers, and devices that are involved.

This policy is simple, but has many disadvantages.
First, since different applications may select different
frameworks, there is no opportunity for frameworks (and
their drivers) to form a coherent, interoperable set of ab-
stractions. Two different applications may cause vastly
different frameworks to load, and those frameworks will
have no basis for interoperating or sharing the underly-
ing devices between applications. Second, users likely
have no basis to make reasonable authorization deci-
sions: users know they want to use an application, but
they cannot know whether the frameworks and drivers
selected are trustworthy, especially since URLs in and of
themselves are not particularly informative.

Domain-driven. Under this policy, users can config-
ure their browsers to trust one or more Maverick domain
providers. A domain provider is a trusted third-party that
is responsible for selecting and bundling together a set of
interoperable Web frameworks and drivers. Users name
domain providers by URL; the document behind this
URL contains the list of authorized framework and driver

URLs. We anticipate that organizations like Google, Mi-
crosoft, or the FSF could be domain providers.

When loaded, an application declares to Maverick the
domain provider it wants to use, and the frameworks
within that domain that it requires. If the user has au-
thorized the specified domain provider, Maverick will
demand load the required frameworks. Once loaded,
the framework declares the Web drivers that it requires;
Maverick verifies that they are on the domain’s autho-
rized list, and loads them if so. Frameworks are respon-
sible for prompting users before granting a Web applica-
tion access to particular device or device class.

A given framework within a domain is loaded only
once. Multiple applications that use the same domain
are bound to that single instance, permitting the frame-
works to facilitate sharing across those applications, as
appropriate. Of course, this implies that the frameworks
must provide adequate protection as well!

The benefit of the domain-driven approach is that the
user makes a single higher-level trust decision and del-
egates to the trusted domain provider the responsibility
for selecting appropriate, safe, and interoperable frame-
works and drivers. As well, the domain provider can en-
gineer its frameworks to be interoperable with each other,
providing much of the same kind of API coherence, re-
source sharing, and protection that today’s operating sys-
tems provide to applications. A disadvantage of this ap-
proach is that it may cause the user to place too much
trust in a small number of domain providers, and it could
lead to significant fragmentation of applications across
domain providers.

4 Implementation

We implemented a prototype of Maverick by modifying
the Chrome Web browser and the Linux kernel. Since
Maverick uses Chrome, we inherit its process model:
each browser instance (driver, framework, or applica-
tion) executes in its own, separate Linux process. As
well, Chrome’s browser kernel executes as its own sepa-
rate, trusted process. Rather than attempting to integrate
our Maverick browser kernel components into Chrome’s
browser kernel, we bundled them into their own trusted
process.

Using our prototype, we implemented several Web
drivers, frameworks, and applications, both in JavaScript
and in NaCl. In this section, we describe our aspects of
the implementation, focusing on non-obvious issues.

4.1 Event Framework
Maverick browser instances communicate with each
other and with the browser kernel using an asynchronous
event-driven model, facilitating a natural integration with

142 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

today’s event-driven Web programming languages and
browser abstractions. Our events are untyped, meaning
that Web drivers, frameworks, and applications can ex-
change arbitrary data with each other, giving them the
flexibility to define and implement their own high-level
interfaces and protocols.

Maverick events have three fields: the name of the
event, unstructured data payload, and a routing target ad-
dress. The sender provides each of these fields, specify-
ing a routing target of muv, driverID, frameworkID,
or applicationID. This target address tells Maverick to
route the event to either the MUV (via the USB device
manager), or to a Web driver, framework, or application
with the provided ID. The Maverick event router main-
tains routing tables to determine whether the sender has a
valid communication channel to the target Maverick in-
stance with the specified ID. If so, Maverick routes the
event to the target’s event queue.

4.1.1 Events in NaCl Instances

A programmer might choose to implement a Web driver,
framework, or application using NaCl. To integrate
our event framework into NaCl, we had to solve three
problems. First, we needed to create IPC channels be-
tween NaCl instances and our Maverick browser kernel
process; we implemented UNIX domain sockets as our
channel transport. Second, we needed to be able to mar-
shal Maverick events over that transport; we created a
RPC layer using Google’s protobuf library to do this [9].

Third, we needed to exchange events with the Web
instance code. To do this, we extended the NaCl sys-
tem call interface to permit sandboxed code to send
events over the IPC channel, and to synchronously re-
ceive the next event from the channel. We also pro-
vide instance programmers with an (untrusted by Mav-
erick) support library that spawns a NaCl thread to loop,
issuing blocking receives on the IPC channel and dis-
patching events to a programmer-supplied callback func-
tion. This library provides programmers with convenient
createEvent() and postEvent() functions, as well
as functions for registering event handlers.

4.1.2 Events in JavaScript Instances

JavaScript programmers that want to use Maverick can
include a convenience JavaScript library that we supply.
This library provides an API that is syntactically similar
to the API provided by our NaCl support library. This
simplifies porting a NaCl Web driver to JavaScript, and
vice-versa. Specifically, our library implements the fol-
lowing functionality:

1. To implement the IPC channel to the browser kernel,
the library includes a hidden NaCl component that

implements the IPC mechanisms we described above.
We could have instead modified Chrome’s JavaScript
interpreter to expose this IPC channel, eliminating
the need for NaCl support in the browser, but for the
sake of simplicity we chose to leverage our existing
NaCl code.

2. To deliver events to the instance programmer’s
JavaScript, we take advantage of the NPAPI interface
provided by NaCl to invoke a callback handler on
an object exposed to the instance through the DOM.
The library creates a separate DOM object for each
channel made available to the Web instance by the
browser kernel.

3. The JavaScript library provides the programmer with
convenience routines for base64 encoding and de-
coding binary data within event payloads, as well as
protobuf support for exchanging structured messages
with other browser instances.

4.2 The Maverick Browser Kernel
As previously mentioned, we implemented the trusted
Maverick browser kernel to run as a separate process,
independent of the Chrome browser kernel. At its heart,
the event router component within the Maverick browser
kernel is a threaded RPC server that establishes IPCs
to browser instances and the MUV, and processes and
routes events between them. We implemented the kernel
in C++; for each browser instance, we allocate an event
queue and spawn dedicated send and receive threads.

The Web instance manager component defines and
processes browser instance registration events on behalf
of the browser kernel. When a browser instance be-
gins executing, it is expected to send one of these events
over its registration channel. Similarly, the USB device
manager component defines and processes USB message
events, relaying them between authorized Web drivers
and the MUV. Web drivers can create control or bulk
URBs, start or terminate isochronous streams, and re-
ceive isochronous stream data (see Section 2). We have
not yet implemented support for USB interrupt mes-
sages, as our experimental drivers have not required
them, but doing so would be simple.

4.3 The Maverick USB Virtualizer and
World Splitter

The Maverick world splitter is implemented as a dynam-
ically loaded Linux USB device driver. When a USB
device is attached to the host, the world splitter prompts
the user to decide whether to associate the device with
Maverick or not. For devices associated by the user with
Maverick, the Linux USB subsystem relays the device’s

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 143

hardware IDs to the browser kernel which stores these
tags in a registered device ID table that can later be used
to bind compatible Web drivers to registered devices.
The world splitter then routes all received USB callbacks
up to the Maverick USB virtualizer. Devices not associ-
ated with Maverick by the user are bound to native Linux
device drivers.

For every attached USB device, the MUV spawns
a kernel thread devoted to handling that device. This
thread maintains an RPC connection to the Maverick
browser kernel, which it initially uses to register the de-
vice’s vendor and product IDs. USB events are shut-
tled between the browser kernel and the MUV over these
RPC connections; we ported a subset of protobuffer sup-
port into the Linux kernel to marshal events over these
connections. The MUV dispatches events to the Linux
core USB library.

To optimize the transmission of isochronous data from
the Linux kernel to a Web driver, the MUV shortcuts the
process of sending an isochronous URB to the device.
When an isochronous URB completes, the MUV pack-
ages up the URB into a completed urb event and sends
it to the Web driver via the browser kernel. The MUV
then immediately submits the next isochronous URB on
behalf of the Web driver. As we show in Section 5, this
optimization helps to improve bandwidth for streaming
devices by eliminating some of the additional USB la-
tency added by Maverick.

4.4 Example Drivers, Frameworks, and
Applications

We have implemented several experimental Web drivers
and frameworks. We built two versions of each, one
in JavaScript and one in C++ using NaCl. Note that
due to JavaScript’s lack of raw data support, raw data
in JavaScript drivers and frameworks are formatted as
base64-encoded strings:

• USB mass storage driver. The USB mass storage
specification consists of a “bulk-only” transport pro-
tocol used to initialize a device, exchange data, and
handle error conditions. The SCSI command pro-
tocol is layered on top of this; SCSI commands are
embedded inside bulk-only protocol messages. Our
drivers implement enough of the SCSI protocol to ini-
tialize attached drives, probe for capacity, and read
and write blocks. We have primarily experimented
with SanDisk USB flash drives.

• Logitech C200 Webcam driver. Our Webcam
drivers interact with the Logitech camera using Log-
itech’s proprietary protocol; we ported a subset of
this protocol using a Linux driver as reference. The
drivers extract 320x240 resolution video frames at

a rate of 30 frames per second over an isochronous
stream, and post events containing raw frame data to
an attached video framework.

• FAT16 file system framework. We implemented
FAT16 compatible filesystem frameworks that expose
file create, read, write, and delete operations to at-
tached Web applications. The frameworks are also
able to format and partition flash drives.

• Video stream rendering framework. Our video
frameworks first convert raw frame data into a JPEG
image; this only requires reformatting the frame data
by adding an appropriate JPEG header. Next, the
frameworks encode the images into base64 data URI
strings [12], and post events containing them to at-
tached Web applications. Web applications can then
blit JPEGs to the screen by updating an HTML im-
age tag’s source attribute with the received data URI
string.

To test these drivers and frameworks, we wrote a video
streaming Web application called PhotoBooth. Photo-
Booth allows users to view live video from an attached
Webcam, capture the Webcam’s live video stream and
save it to a flash drive, or read and display a previously
captured video stream from a flash drive.

5 Evaluation

In this section, we examine three aspects of our Maverick
prototype: (1) its performance, (2) its security implica-
tions, and (3) its suitability for building device-enabled
Web applications. We have not yet optimized our proto-
type implementation, so performance numbers should be
considered an upper bound for a Maverick system.

5.1 Performance
We evaluate the performance of our prototype in two
parts. First, to understand the overhead of moving device
drivers out of the kernel and into the Web browser, we
provide microbenchmarks that compare the performance
of Web drivers to their native Linux drivers. Then, we
evaluate the end-to-end performance of Maverick Web
applications. Our measurements were gathered on an 8-
core, 2GHz Intel Xeon machine with 6GB of RAM, run-
ning our modified Linux kernel.

5.1.1 Microbenchmarks

Our first set of experiments quantify the latency, through-
put, and CPU utilization of Maverick Web drivers. To
do this, we constructed a series of microbenchmarks that
exercise both the JavaScript and NaCl versions of our

144 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

Linux USB core +
bus/device (0.17)

MUV (0.004)

browser kernel (0.14)

NaCl module (0.35)

JavaScript driver (1.92)

RPC (0.11)

IPC (0.21)

JS invoke (1.38)

Linux USB core +
bus/device (0.18)

MUV (0.004)

browser kernel (0.15)

NaCl driver (0.26)

RPC (0.11)

IPC (0.21)

Linux USB core +
bus/device (0.19)

kernel driver (0.0003)

(a) JavaScript driver
total RTT: 4.30 ms

(b) NaCl driver
total RTT: 0.91 ms

(c) Linux kernel driver
total RTT: 0.19 ms

Figure 4: Driver Latency. The event flow and latencies of
transacting a USB bulk URB with a USB flash drive, using (a)
a JavaScript driver, (b) a NaCl driver, and (c) a Linux kernel
driver. Numbers in parenthesis indicate time spent in that com-
ponent or channel, in milliseconds.

storage and Webcam drivers. For a fair comparison, we
also back-ported our NaCl drivers to run as native Linux
drivers.

To measure the latency of performing USB opera-
tions from Web drivers, we instrumented our system to
measure the time spent in various Maverick components
when sending a single bulk message URB to a USB flash
drive and receiving the response. Figure 4 depicts the in-
volved components, the time spent in them, and the total
round-trip time between the driver and device. Results
are reported for each of the JavaScript, native client, and
kernel drivers, averaged over 600 trials.

Not surprisingly, the JavaScript driver has the high-
est total latency. Its dominant factors are the latency of
dispatching an event from the NaCl glue to JavaScript
and the JavaScript driver execution itself. The NaCl glue
overhead could be eliminated by modifying Chrome’s
JavaScript interpreter to deliver events rather than using
our indirect NaCl route. The NaCl driver avoids these
sources of overhead, but is roughly four times slower
than the kernel driver due to the marshaling and trans-
port of events from the Linux kernel to the browser.

To measure Web driver throughput and CPU utiliza-
tion, we tested whether our Logitech C200 drivers were
efficient enough to keep up with the isochronous URB
transaction rate of 250 URB/s corresponding to a frame
rate of 30 frame/s. For this experiment, we isolated driver
performance by modifying our drivers to simply receive
and drop URBs without further processing. Table 1
shows the URB rate sustained by each of our drivers, as
well as the total CPU utilization (out of 8 cores). Only
the JavaScript driver is unable to sustain the full stream-
ing rate, as it saturates a single core, resulting in a loss
of roughly one frame per second. However, future im-
provements to JavaScript execution engines should eas-
ily nudge this driver above the required 250 URB/s.

 sustained URB rate CPU utilization

JavaScript Web driver 240 URB/s 13.4%
NaCl Web driver 250 URB/s 2.7%

Linux kernel driver 250 URB/s 0.25%

Table 1: USB Webcam Driver Throughput. This table
shows the URB transaction rate that each driver could sustain,
as well as the CPU utilization of the machine. The camera
emits isochronous messages at a rate of 250 URBs per second.

5.1.2 End-to-End Performance

We now evaluate the end-to-end performance of Web ap-
plications in Maverick. Our application benchmarks ex-
ercise two drivers (USB storage and Webcam) and two
frameworks (FAT16 and video). As before, we will com-
pare using JavaScript, NaCl, and native kernel versions
of the drivers.

To measure end-to-end latency, we instrumented the
system to measure time spent in each major Maverick
component when sending a storage operation from Pho-
toBooth and receiving a response. These components
consist of the application, framework, driver, and the rest
of Maverick. Time spent in Maverick includes all IPC
and RPC channels, the browser kernel, the Linux kernel,
and the USB bus and device itself. All reported measure-
ments represent the average of 600 trials.

Table 2 shows our results. Not surprisingly, the
JavaScript stack has the highest latency. Similar to our
microbenchmark results, this overhead is mostly due to
the 10 expensive IPC crossings between native client and
JavaScript that are required because our prototype does
not implement event delivery directly in Chrome. The
JavaScript driver is also slow at processing byte-level
data. The native client stack avoids most of these IPC
overheads, but is still slower than the native desktop stack
because of the cost of routing events from the kernel into
user-space drivers and frameworks.

To measure Maverick’s end-to-end throughput and
CPU utilization, we benchmarked file create+write and
file read operations on 20KB-sized files in PhotoBooth
with the FAT16 framework and USB flash driver. As in
earlier experiments, we compare three cases: the Pho-
toBooth application driving a JavaScript framework and
a JavaScript driver, PhotoBooth driving a NaCl frame-
work and a NaCl driver, and a native C application that
issues similar file workload as PhotoBooth driving an
in-Linux-kernel combined framework and driver. Our
benchmarks leveraged Maverick’s ability to run drivers
and frameworks in parallel in separate Chrome processes
and pipelines file system operations through them.

Table 3 shows our results. For all three versions, the
file create+write benchmark achieved lower throughput
than file reads, since file creation and file append both re-

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 145

time spent in component
PhotoBooth latency

application framework driver Maverick
end-to-end

latency

JavaScript
driver/framework 0.8ms 1.7ms 3.3ms 8.7ms 14.5ms

NaCl
driver/framework 0.8ms 0.35ms 0.44ms 3.1ms 4.7ms

native “app/FW” and
Linux kernel driver

0.05 ms
(“app”)

0.22ms
(kernel driver + RPC) 0.27ms

Table 2: PhotoBooth Latency. The total roundtrip time for
sending an event from the PhotoBooth Web application through
a framework and driver to a USB flash device. We compare a
JavaScript driver and framework, a NaCl driver and framework,
and a native desktop “application” using a Linux kernel driver.

quire additional FAT16 operations to update file system
metadata. As before, the JavaScript driver and frame-
work are the slowest, while NaCl achieves closer perfor-
mance to the in-kernel driver and framework.

As a final test, we measured the frame rate at which
PhotoBooth could render a live video stream for the
JavaScript and NaCl versions of the driver and frame-
work. The NaCl version could render at the full rate of 30
frames per second, but inefficient, byte-level operations
to process URBs and video frames in the driver became
a bottleneck of the JavaScript version, achieving only 14
frames per second.

5.1.3 Performance summary

Unsurprisingly, JavaScript and the use of user-level
drivers introduce significant performance overhead rel-
ative to in-kernel, native device drivers. However, we
believe that JavaScript and NaCl drivers are sufficiently
fast to be practical for many USB device classes, includ-
ing storage devices and video cameras, in spite of the
fact that we have not attempted to optimize them, or our
user-mode driver framework, in any significant way.

5.2 Security Implications
There are serious security implications to exposing local
USB devices to Web programs using Maverick. In this
section, we define Maverick’s threat model and use it to
describe the possible attacks against Maverick. For each
attack, we discuss how Maverick defends against the at-
tack and identify where our current security mechanisms
are lacking.

5.2.1 Threat Model

Our threat model is similar to that assumed by modern
browsers when handling untrusted extensions [1]. We as-
sume that the browser kernel, the browser instance sand-
boxes, and the Maverick components inside the host OS
are correctly implemented and vulnerability-free. Thus,
Web drivers, frameworks, and application instances can

20KB file create+write 20KB file read

throughput CPU util. throughput CPU util.

JavaScript Web driver 11.2 files/s 27% 28.0 files/s 24%
NaCl Web driver 44.1 files/s 18% 134.4 files/s 18%

Linux kernel driver 65.5 files/s 0.4% 509 files/s 1.1%

Table 3: File Throughput. The throughput and CPU uti-
lization of two file benchmark applications, 20KB file cre-
ates+writes and 20KB file reads, in three cases.

only be directly attacked through Maverick’s IPC chan-
nels; we assume that attackers cannot directly access or
modify DOM objects in Web instances, or attack Web
instances by corrupting the browser kernel.

5.2.2 Attacks, Defenses, and Limitations

Given this threat model, Maverick is vulnerable to two
broad classes of attacks: (1) attacks aimed at compro-
mising trusted Web instances that are benign but buggy,
and (2) attacks aimed at tricking Maverick into running
malicious Web instances.

Benign-But-Buggy Web Instances. This class of at-
tacks exploits bugs in trusted Web instances to expose
a user’s local devices to an attacker. Local devices often
contain highly sensitive user information that an attacker
might like to access, delete, modify, or corrupt. Ex-
amples include data stored on USB storage devices, en-
vironmental information obtained via audio, video, and
GPS input devices, and sensitive information transmitted
to printers or other peripheral devices.

Because trusted frameworks and device drivers in
Maverick are Web programs, buggy implementations can
be vulnerable to conventional Web-based attack tech-
niques such as cross-site scripting, cross-site request
forgery, and framing attacks. Additionally, if trusted Web
instances are served over an insecure channel, attackers
could mount man-in-the-middle attacks to eavesdrop on
and hijack local devices.

Maverick does not provide any additional mechanisms
for defending against such attacks beyond those already
provided by browsers, nor does it make mounting these
attacks any easier. Instead, Maverick elevates the con-
sequences of writing buggy Web programs. Web devel-
opers will need to adopt best practices for eliminating
common vulnerabilities, and ensure that Web instances
are transmitted only through SSL-protected channels.

Maverick’s domain-driven naming, binding, and au-
thorization policy described in Section 3.3, in which a
user configures their browser to trust a domain provider’s
choice of frameworks and drivers, makes it so that the av-
erage user need only trust a small number of well-known
Web instance providers such as Google or Microsoft. Of
course, power users that opt-out of this default setting

146 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

and choose to adopt the more flexible application-driven
policy will face an increased burden in vetting the quality
of Web instances.

Malicious Web Instances. This second class of attacks
relies on an attacker being able to run a malicious Web
driver or framework in the user’s browser. If successful,
the consequences could be serious: because Maverick
exposes the USB subsystem to Web drivers, a malicious
Web driver can not only control the associated local de-
vice, but can inject arbitrary device commands into the
USB subsystem. This could allow the attacker to intro-
duce malware onto the device, or exploit bugs in the USB
software stack that could give the attacker unfettered ac-
cess to the user’s system.

Maverick’s security mechanisms are designed primar-
ily to prevent attackers from running malicious Web in-
stances in the first place. To try to trick Maverick into
running a malicious Web instance, attackers might lever-
age existing network-based and social engineering at-
tacks.

Example network-based attacks include DNS rebind-
ing and DNS cache-poisoning which redirect valid DNS
mappings in the browser to malicious URLs. Maver-
ick could defend against these attacks by using stronger
naming mechanisms such as secure DNS or certificate-
based naming. Maverick also protects against social en-
gineering attacks by relying on the domain-driven nam-
ing, binding, and authorization policy to prevent users
from authorizing malicious drivers or frameworks.

If a malicious Web instance somehow does manage
to run in the browser despite these safeguards, Maverick
currently has limited ability to protect the local system.
At best, Maverick’s IPC channels serve to help mitigate
the damage an attacker can do by limiting the compro-
mised device driver’s access to a single USB device. In
general, once an attacker has the ability to run a mali-
cious Web driver or framework, we consider the user’s
computing environment to be compromised.

5.3 Experiences with Maverick
Our experience with programming Maverick drivers and
frameworks has been positive. JavaScript and NaCl
drivers and frameworks enjoy Maverick’s clean event
model. Programmers do not need to worry about ker-
nel synchronization, pitfalls of interrupt-context code, or
the vagaries of kernel memory allocation. If a driver
is buggy, that browser instance will crash, but other
browser instances and the host OS continue to execute.
NaCl makes it easy to port existing C kernel drivers and
frameworks into Maverick. While JavaScript is slower
and not yet ideally suited for manipulating raw, binary
data, JavaScript code is dynamic and flexible, so manag-
ing complexity like callback function pointers is straight-

forward. Overall, we found that for the majority of de-
vices we considered, the advantages of programming in
higher-level languages and abstractions far outweighed
any performance limitations.

To showcase the power and flexibility of Maverick, we
built two additional Web applications. The first, called
SquirtLinux, makes it trivial to install Linux onto a USB
flash drive. Linux thumbdrives are useful for rescuing
data from a damaged system or carrying a portable, se-
cure boot environment. SquirtLinux consists of com-
bined Web application and framework instance that ex-
ploits our existing JavaScript-based USB mass storage
driver. SquirtLinux communicates with a Web server,
having it prepare a “Puppy Linux” USB installation im-
age on behalf of the user; it then uses AJAX to pipeline
downloading blocks of the image with writing it to an at-
tached drive. As a result, the user simply needs to find a
Maverick browser, attach their flash drive, browse to the
SquirtLinux service, and press a single button to manu-
facture a bootable thumbdrive.

Our second application, WebAmbient, uses a Del-
comm USB LED indicator to build an ambient display.
The LED supports a custom USB protocol that lets it be
programmed to emit any color as a combination of red,
green, and blue light. We wrote a JavaScript Web driver
and Web framework for it that exposes a high-level color
toggling interface to applications. Next, we wrote a Web
mashup that fetches real-time stock prices, making the
LED grow redder as price drops, greener as it increases,
and blue if it is flat. Maverick’s flexibility made it simple
for us to support the custom USB protocol and expose
high level functions without requiring any change to the
host OS, browser, or HTML standards.

6 Related Work

Maverick builds upon architectural features and tech-
niques explored by prior work. We discuss related work
below.

6.1 User-Level Drivers and Frameworks

Maverick moves device driver and framework code out
of the OS and into (user-level) Web applications. Our ap-
proach of running drivers and frameworks as Web appli-
cations is new, but the general approach of deconstruct-
ing a monolithic OS and moving its components to the
user-level is well studied. Mach [6] and L3 [16] ex-
plored microkernels, small OS kernels that provide ba-
sic hardware abstraction and rely on user-level servers to
implement major OS subsystems. Maverick also shares
features with exokernels [14], which allocate and pro-
tect hardware resources within a small, trusted kernel and

USENIX Association WebApps ’11: 2nd USENIX Conference on Web Application Development 147

delegate the higher-level abstractions to user-level pro-
grams.

Prior work has explored OS support for user-level
drivers. Decaf [22] and Microdrivers [7] use static pro-
gram analysis and code annotations to automatically par-
tition kernel drivers into user-space and kernel compo-
nents, leaving just the performance critical components
(like I/O) in the kernel. Other user-level driver frame-
works have been implemented on top of Linux [15, 5]
and Windows [17].

Maverick’s virtualization of the USB hub is perhaps
closest to the open source libusb [4] and Javax.USB [11]
projects, which expose the Linux USB core API to user-
level code. Like libusb and Javax.USB, Maverick ex-
poses familiar USB API functions, but unlike libusb and
Javax.USB, Maverick Web drivers are untrusted and dy-
namically located, downloaded, and executed.

6.2 Browser Architecture
Maverick inherits many of the safety and reliability ben-
efits of the Chrome browser. Chrome maps Web ap-
plications into OS processes, providing better isolation
and resource management [20, 19, 21]. Chrome’s pro-
cess model allows Maverick instances to run in parallel
on multicore systems, and its sandbox isolates untrusted
code.

Other research browsers have similar properties. For
example, Gazelle [23] isolates Web applications into
processes using the same origin policy (SOP), placing
mashup content from separate Web origins in different
trust domains. Gazelle plugins execute in their own pro-
cesses, and the browser kernel protects updates to the
display. OP decomposed the browser architecture into
multiple trusted components, but it did not provide full
compatibility with existing sites [10]. SubOS provided
a process abstraction for Web applications, but did not
explore in detail a process model or the interactions be-
tween processes [13]. Tahoma provided safe and flexible
isolation between Web applications by embedding each
in a Xen virtual machine [2]. Tahoma did not consider
the problem of exposing local devices to Web applica-
tions, but rather provides them with a limited set of stan-
dard virtual devices.

6.3 Web Application Access to Devices
ServiceOS’s browser architecture is designed to isolate
Web applications and allow them to directly monitor and
manage device resources [18]. As with Chrome OS [8],
ServiceOS envisions itself as a browser OS. However,
ServiceOS exposes devices to Web applications by in-
cluding DOM objects and system calls in the browser
kernel on a device-per-device basis. This solution is

clean and simple, but suffers from the same drawbacks as
adding new HTML tags to the HTML specification: new
device support requires modifications to the browser. In
contrast, Maverick lets Web developers add support for
new devices and functionality without requiring browser
vendor or OS cooperation.

The Javax.USB [11] project allows signed Java applets
to access USB devices. This work is complimentary to
the Web drivers piece of Maverick. However, Javax.USB
requires use of the heavy-weight (and potentially unsafe)
Java browser plugin, and provides no explicit support for
safe IPC channels for direct framework and application
communication with drivers.

6.4 Client-Side Code Sandboxes

Maverick uses Native Client [24] to provide a safe,
client-side sandbox for executing x86 Web drivers and
frameworks built with languages like C and C++. These
languages handle certain aspects of driver development
such as byte-level data manipulation more efficiently
than JavaScript, and supporting them in Maverick makes
porting existing kernel drivers much easier. Similar tech-
nologies to Native Client exist, most notably Xax [3].
Other client-side sandboxes include Flash, Java, Sil-
verlight, and ActiveX. Although our current implementa-
tion focuses only on JavaScript and Native Client, Mav-
erick could support these sandboxes in the future.

7 Conclusions

The Maverick browser gives Web applications safe ac-
cess to local USB devices, and permits programmers to
implement USB device drivers and frameworks using
standard Web programming technologies like JavaScript
and native client (NaCl). With Maverick, Web drivers
and Web frameworks are downloaded dynamically from
servers and safely executed by the Maverick browser
kernel, allowing new drivers and frameworks to be im-
plemented, distributed, and executed as conveniently as
Web applications.

The main challenges faced by Maverick are safety and
performance. Our prototype system, built by extending
the Chrome browser and Linux kernel, relies on existing
sandboxes to isolate Web drivers and frameworks from
each other, the Maverick browser, and the host operat-
ing system and applications. As well, our system is ar-
chitected to be flexible in supporting a range of policies
and trust models for authorizing Maverick driver, frame-
work, and application access to specific USB devices,
and for resolving which drivers and frameworks ought
to be downloaded and executed to satisfy application de-
pendencies.

148 WebApps ’11: 2nd USENIX Conference on Web Application Development USENIX Association

We prototyped several JavaScript and NaCl drivers
and frameworks, and evaluated them using microbench-
marks and application workloads. While our measure-
ments confirm that JavaScript Web drivers and frame-
works suffer from much higher latency and lower
throughput than NaCl or Linux equivalents, we also
showed that they perform sufficiently well to drive inter-
esting USB devices, including Webcams and USB flash
storage devices. Finally, we described two Web applica-
tions that showcase the flexibility and power of the Mav-
erick approach.

Acknowledgments

We thank Paul Gauthier, Charlie Reis, Roxana Geam-
basu, and Ed Lazowska for their feedback and help. We
also thank our anonymous reviewers, and our shepherd
Jon Howell, for their guidance. This work was supported
by NSF grants CNS-0627367 and CNS-1016477, the
Torode Family Career Development Professorship, and
gifts from Intel Corporation and Nortel Networks.

References

[1] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and
Aaron Boodman. Protecting browsers from extension
vulnerabilities. In Proceedings of the 17th Network and
Distributed System Security Symposium (NDSS 2010),
San Diego, CA, February 2010.

[2] Richard S. Cox, Steven D. Gribble, Henry M. Levy, and
Jacob Gorm Hansen. A safety-oriented platform for Web
applications. In Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy, Washington, DC, May
2006.

[3] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R.
Lorch. Leveraging legacy code to deploy desktop appli-
cations on the Web. In Proceedings of OSDI 2008, San
Diego, CA, December 2008.

[4] Daniel Drake and Peter Stuge. libusb. http://www.
libusb.org/.

[5] J. Elson. FUSD: A Linux framework for user-space de-
vices. http://www.circlemud.org/˜jelson/
software/fusd/.

[6] Alessandro Forin, David Golub, and Brian Bershad. An
I/O system for Mach 3.0. In Proceedings of the USENIX
Mach Symposium, Monterey, CA, November 1991.

[7] Vinod Ganapathy, Matthew J. Renzelmann an Arini Bal-
akrishnan, Michael M. Swift, and Somesh Jha. The de-
sign and implementation of Microdrivers. In Proceedings
of ASPLOS 2008, Seattle, WA, March 2008.

[8] Google. Chromium OS. http://www.chromium.
org/chromium-os.

[9] Google. Protocol buffers. http://code.google.
com/p/protobuf/.

[10] Chris Grier, Shuo Tang, and Samuel T. King. Secure Web
browsing with the OP Web browser. In Proceedings of the
2008 IEEE Symposium on Security and Privacy, Wash-
ington, DC, May 2008.

[11] IBM. Javax.USB. http://www.javax-usb.org/.
[12] IETF. RFC 2397: The data URL scheme. http://

tools.ietf.org/html/rfc2397.
[13] Sotiris Ioannidis and Steven M. Bellovin. Building a se-

cure Web browser. In Proceedings of the FREENIX of the
USENIX ATC, Boston, MA, October 2001.

[14] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hctor M. Briceo, Russell Hunt, David Mazires,
Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie. Application performance and flex-
ibility on Exokernel systems. In Proceedings of SOSP
1997, Saint Malo, France, September 1997.

[15] Ben Leslie, Peter Chubb, Nicholas Fitzroy-dale, Stefan
Götz, Charles Gray, Luke Macpherson, Daniel Potts,
Yueting Shen, Kevin Elphinstone, and Gernot Heiser.
User-level device drivers: Achieved performance. Jour-
nal of Computer Science and Technology, 20(5), 2005.

[16] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two years
of experience with a µ-kernel based OS. SIGOPS Oper-
ating System Review, 25(2), 1991.

[17] Microsoft. Architecture of the user mode driver
framework. http://www.microsoft.com/whdc/
driver/wdf/UMDF-arch.mspx, February 2007.

[18] Alexander Moshchuk and Helen J. Wang. Resource man-
agement for Web applications in ServiceOS. In MSR-TR-
2010-56, Redmond, WA, May 2010.

[19] Charles Reis, Brian Bershad, Steven D. Gribble, and
Henry M. Levy. Using processes to improve the reliability
of browser-based applications. In University of Washing-
ton Technical Report UW-CSE-2007-12-01, Seattle, WA,
2007.

[20] Charles Reis and Steven D. Gribble. Isolating Web pro-
grams in modern browser architectures. In Proceedings
of EuroSys 2009, Nuremberg, Germany, April 2009.

[21] Charles Reis, Steven D. Gribble, and Henry M. Levy. Ar-
chitectural principles for safe Web programs. In Proceed-
ings of HotNets 2007, Atlanta, GA, November 2007.

[22] Matthew J. Renzelmann and Michael M. Swift. Decaf:
Moving device drivers to a modern language. In Proceed-
ings of the USENIX ATC, San Diego, CA, June 2009.

[23] Helen J. Wang, Chris Grier, Alexander Moshchuk,
Samuel T. King, Piali Choudhury, and Herman Venter.
The multi-principal OS construction of the Gazelle Web
browser. In Proceedings of USENIX Security 2009, Mon-
treal, Canada, August 2009.

[24] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code. In Pro-
ceedings of the 30th IEEE Symposium on Security and
Privacy, Oakland, CA, May 2009.

