
Picviz: finding a needle in a haystack

Sebastien Tricaud
INL

Abstract

When considering log files for security, usual applica-
tions available today either look for patterns using sig-
nature databases or use a behavioral approach. In both
cases, information can be missed. The problem becomes
bigger with systems receiving a massive amount of logs.
Parallel coordinates is an answer to display an infinity
of events in multiple dimensions. As security data are
multivariate, parallel coordinates provides a neat way to
display and ease abnormal behaviors detection. Picviz
implements the use of parallel coordinates on acquired
data, such as logs, to create a parallel coordinates image.
Using this image, the analyst can use Picviz to improve
the output image, filter information and visually detect
things. Finally, based on what the image helped to de-
tect, the analyst can then write automatic tools and avoid
the human interaction with the image.

1 Introduction

1.1 Parallel coordinates plot

Since this paper uses parallel coordinates as a core tech-
nique, it is necessary to recall some simple facts on par-
allel coordinates plots (later abbreviated as‖-coords)[6]
for the reader who may not be familiar with the concept.

Imagine one has to collect elementary events of a
given type (temperatures of all capitals of Asia, network
traffic on a network adapter, etc.). Let’s suppose that
each given elementary event carriesN kinds of infor-
mation and thatN is not small (greater than 4). Since it
is not easy to plot vectors belonging to a space of more
than 3 dimensions in a 3 dimensional physical space (not
counting the time), it becomes necessary to adapt the rep-
resentation technique.

In anN -dimensional vector spaceE, one needs a ba-
sis ofN vectors. Then each vector~u ∈ E corresponds to

anN -tuple of the form(x1, x2, . . . , xn). In the usual eu-
clidean space of dimensionN , denotedRN , the canon-
ical basis is orthogonal, which means that axes are con-
sidered pairwise perpendicular.

Figure 1: Orthogonal basis inR3

Since it is impossible to draw more than 3 perpendic-
ular axes in a 3 dimensional physical space, the idea be-
hind‖-coords is to draw the axes side by side, all parallel
to a given direction. It is then possible to draw all these
axes in a 2d plane :

0 0 0 0

x1 x2 x3 x4

Figure 2: Four axes

For example, the vector~u = (0.6, 1.6,−0.8, 1.2) ∈
R

4 should show up as :

1

0 0 0 0

x1 x2 x3 x4

0.6

1.6

−0.8

1.2

Figure 3: Four axes and a vector

That point ofR4 has become a polygonal line in‖-
coords. At first sight, it might seem that we have lost
simplicity. Of course, on one side, it is obvious that
many points will lead to many polygonal lines, overlap-
ping each other in a very cumbersome manner. But on
the other side, it is a fact that certain relationship be-
tween coordinates of the point correspond to interesting
patterns in‖-coords. For example, ifx1 andx2 are linked
by an affine relationshipx2 = αx1 +β, a bow tie pattern
appears in‖-coords:

Figure 4: 2D Line relationship

It has been shown recently that points all belonging
to certain hypersurfaces ofRN induce complicated but
structured patterns in‖-coords, opening a way towards
data classification.

1.2 Data acquisition

The data acquisition process we used in this paper aims
to transform logs into the PCV file before Picviz treat-
ment. In this paper, log is used interchangeably with data
to express something that is captured from one or several
machines. That being one in:

• Syslog: System and application log files. Contain-
ing at least four variables: time, machine, applica-
tion and the logged event.

• Network: Sniffed data.

• Database: Structured information storage.

• Specific: Log file for applications not using stan-
dard log functions.

• Other: Any other way to record events.

CSV being a common format to read and write such
data, Picviz can take it as input and will translate it into
PCV.

1.3 Picviz

Picviz is a software transforming acquired data into a
parallel coordinates plot image to visualize data and dis-
cover interesting results quickly. Picviz is composed in
three parts, each facilitating thecreation, tuning andin-
teraction of ‖-coords graphs:

1. Data acquisition: log parsers and enricher

2. Console program: transforms PCV into a svg or png
image. Unlike the graphical frontend, it does not
require graphical canvas to display the lines, it is
fast and able to generate millions of lines.

3. Graphical Frontend: transforms PCV into a graphi-
cal canvas for user interaction.

Generated

graphlanguage
Acquired

 data

PCV

Figure 1: Picviz simplified architecture

It was written because of a lack of visualization tools
able to work with a large set of data. Graphviz is very
close to how Picviz works, except that is has limitations
regarding the number of dimensions that can be handled
by a directed graph, such as when dealing with time.

1.4 Understanding 10000 lines of log

Visualization is an answer to analyze a massive amount
of lines of logs. ‖-coords helps to organize them and
see correlations and issues by looking at the generated
graph[4].

Each axis strictly defines a variable: logs, even those
that are unorganized, are always composed by a set of
variables. At least they are:time when the event oc-
curred,machinewhere the log comes from,servicepro-
viding the log information,facility to get the type of pro-
gram that logged, and thelog itself.

The log variable is a string that varies widely based
on the application writing it and what it is trying to con-
vey. This variability of the string is what makes the logs
disorganized. From this string, other variables can be ex-
tracted: username, IP address, failure or success etc.

2

Log sample: PAM session

Aug 11 13:05:46 quinificated su[789]:
pam_unix(su:session): session opened
for user root by toady(uid=0)

Looking at the PAM session log, we know how the
user authenticates with the commonpam unix module.
We know that the commandsu was used by the user
toady to authenticate asroot on the machinequinifi-
cated on August 11th at 1:05pm. This is useful infor-
mation to care about when dealing with computer secu-
rity. In this graph we clearly identify:

• If a user sometime fails to give the correct password

• If a user logged in using a non-common pam mod-
ule or service

• Time when users log in

Figure 5 shows the representation of theauth syslog
facility:

Figure 5: Picviz frontend showing pam sessions opening

Analysis
What one can easily see in figure 5 is how many users

logged in as root on the machine: red lines means root
destination user. Also, the leftmost axis (time) is inter-
esting: it has a blank area and using the frontend we dis-
cover that no one opened a session between 2:29am and
5:50am:

Figure 6: Zoom on time axis

Thesecond axisis themachinewhere the logs orig-
inated. Since this example is a single machine analysis,
lines converge to a single point.

This third axis is theserviceor application that wrote
the log. We can quickly see four services (one red, three
blacks, the line at the bottom is also a connection be-
tween two axes): moving the mouse above the red line at
the service on top of the figure shows that only the ’su’
service is used to log a user as root. Hopefully no one
logs in usinggdm, kdm or login as root.

The fourth axis is thepam module that was used to
perform the login authentication: again, as only local au-
thentication was done using thepam unix module, lines
are converging. If we would have had a remote authenti-
cation, or other modules opening the session, we would
see them on this axis.

Figure 7: PAM module convergence

The fifth and sixth axis are the user source and des-
tination of the logs. We have as much source logins as
destination logins. On this machines, logins are bothsu
andssh.

As experts might know,‖-coords are already used in
computer security[1] but face a problem of not being
easy to automate or with various data formats. This paper
focuses on how relevant security information can be ex-
tracted from logs, whatever format they have, how any-
one can discover attacks or software malfunctions and
how the analyst can then filter and dig into data to dis-
cover high level issues. The next part covers how Picviz
was designed, its internals. After we will see how mali-
cious attacks can be extracted, and how it can help you
to write correlation rules.

2 Picviz architecture

2.1 The PCV language

It has been designed to be easy to generate and as close
as possible to the Graphviz[3] language (mostly for prop-
erties names). It is a description language for‖-coords
which allows to specify all kinds of properties for a given
line (data), set each axis variableaxesand give instruc-
tions to the engine in theenginesection. Also, a graph
title can be set in theheadersection.

Below is an example of a source PCV file as structured
to represent a single line:

header {
title = "foobar";
}

3

axes {
integer axis1 [label="First"];
string axis2 [label="Second"];
}
data {
x1="123",x2="foobar" [color="red"];
}

2.1.1 The axes section

It defines possible types you can set to each axis, as well
as setting axis properties. Labels can be set to axes with
the label property. Axes types must be one of them:

Type Range Description
timeline ”00:00” - ”23:59” 24 hours time
years ”1970-01-01 00:00” - Several years

”2023-12-31 23:59”
integer 0 - 65535 Integer number
string ”” - ”No specific limit” A string
short 0 - 32767 Short number
ipv4 0.0.0.0 - IP address

255.255.255.255
gold 0 - 1433 Small value
char 0 - 255 Tiny value
enum anything Enumeration
ln 0 - 65535 Log(n) function

2.1.2 The data section

Data are written line by line, each value coma separated.
Four data entries with their relatives axes can be written
like this:

data {
t="11:30",src="192.168.0.42", \

port="80" [color="red"];
t="11:33",src="10.0.0.1",port="445";
t="11:35",src="127.0.0.1",port="22";
t="23:12",src="213.186.33.19", \

port="31337";
}

The key=value pair allows to identify which axis has
which value. Since axis variable type was defined in the
previousaxis section, the order does not matter.

As of now, two properties are available:color and
penwidth, which allow to set the line color and width
respectively.

Data lines are generated by scripts from various
sources, ranging from logs to network data or anything
a script can capture and transform into PCV language
data section. This paper focuses on logs, and Perl was
choosen for its convenience with Perl Compatible Regu-
lar Expressions (PCRE) built-in with the language. The

next part explains how such a script can be written to
generated the PCV language.

2.2 Generating the language

Picviz delivers a set of tools to automate the PCV lan-
guage generation from various sources, such asapache
logs, iptables logs, tcpdump, syslog, SSH connections,
. . .
Perl being suited language for this kind of task, it was
chosen as the default generator language. Of course,
nothing prevent other people to write generators for their
favorite language.

The PCV language is generated with the Perlprint
function, along with Perl pattern matching capabilities
to write the data section. The syslog to PCV takes 25
lines of code, including lines colorization where the word
’segfault’ shows up in the log file. Then, to use the gen-
erator, type:

perl syslog2pcv /var/log/syslog \
> syslog.pcv

To help finding evilness, a Picviz::Dshield class was
written. Calling it will check if the port or IP address
match with dshield.org database:

use Picviz::Dshield;

$dshield = Picviz::Dshield->new;

$ret = $dshield->ip_check("10.0.0.1")

It can be used to set the line color, to help seing an
event correlated with dshield information database.

2.3 Understand the graph

2.3.1 Graphical frontend

Aside from having a good looking graph, it is good to dig
into it, and see what was generated. An interactive fron-
tend was written for this purpose. It is even a good exam-
ple on how Picviz library can beembededin a Python
application. The applicationpicviz-gui was written in
Python and Trolltech QT4 library.

The frontend provides a skillful interaction to find re-
lationship among variables, allows to apply filters, drag
the mouse over the lines to see the information displayed
and to see the time progression of plotted events. Real-
time capabilities are also possible, since the frontend lis-
ten to a socket waiting for lines to be written.

The frontend has limitations: on a regular machine,
more than 10000 events makes the interface sluggish. As
Picviz was designed to deal with million of events, a con-
sole program was written.

4

2.3.2 Command line interface

Thepcv program is the CLI binary that takes PCV lan-
guage as input, uses the picviz library output plugins and
generate the graph using the called plugin. To generate a
SVG, the program can be called like this:

pcv -Tsvg syslog.pcv > syslog.svg

As SVG is a vectorial format, this is reporting the
scalability issue encountered with the frontend to third-
party applications. So a PNG capable plugin was written,
based on plplot1. That can be called like this:

pcv -Tplplot syslog.pcv
Plotting Options:
...
< 3> psc PostScript File (color)
< 4> xfig Fig file
...
<16> pngcairo Cairo PNG Driver

Enter device number or keyword: 16
Enter graphics output file name: \

syslog.png

PNG output is preferred to the use of a frontend, to
handle million of events. You can then use the filtering
Picviz provides to remove useless information and finally
use the frontend with those filtered data. Section2.3.4
explains how events can be filtered.

2.3.3 Grand tour

Because choosing the right order for the right axis is one
of ‖-coords disadvantages, Picviz provides via theplplot
plugin aGrand tour capability. TheGrand tour gen-
erates as much images as pairs permutation of axes pos-
sible, the idea is to show every possible relation among
every available axes. Plugin arguments are provided with
the-A command. So to generate a grand tour on graphs,
pcv should be called like this:

pcv -Tplplot syslog.pcv -Agrandtour
...
File Time-Machine.png written
File Time-Service.png written
...
File Log-Machine.png written
File Log-Service.png written

2.3.4 Filtering

To select lines one want to be displayed, Picviz provides
filters. They can be used on the real value to match a

1http://www.plplot.org

Figure 2: Syslog grand tour

given regular expression, line frequency, line color or po-
sition as mapped on the axis. It is a multi-criterion filter.
It is set with the CLI or Frontend parameters.

With the CLI, they can be called like this:

pcv -Tplplot syslog.pcv \
’your filter here’

With the frontend, filter can be called like this:

picviz-gui syslog.pcv \
’your filter here’

Filter syntax is:

display type relation value \
on axis number && ...

Where:

• display: show or hide, select if we hide or display
the selected value

• type: value, plot, color or freq, choose what is fil-
tered

• relation: <, >, <=, >=, ! =, =, relation with
selected value

• value: selected value to compare data with

• on axis: text to express the axis selection

• number: axis number to filter values on

For example, to display all lines plotted under a hun-
dred on the second axis, one can replaceyour filter here
by show only plot < 100 on axis 2. Specific data can
also be removed, such as:

5

pcv -Tplplot syslog.pcv \
’hide value = "sudo" on axis 2’

A percentage can be applied to avoid knowing the
value that can be filtered:’show plot > 42% on axis
3 and plot < 20% on axis 1’.

2.3.5 String positioning

One of the basic string algorithm displaying is to sim-
ply add the ascii code to create a number. Among pros
of using this very naive algorithm, is to be able to dis-
play scans (strings very close to each other coming from
one source) very easily. As for the cons there is the col-
lision risk, but in practice this low risk of having such
events. As Picviz is very flexible, it still offer other string
alignment algorithms, using Levenstein[7] or Hamming
distance[5] from a reference string. This still makes col-
lision possible, but differently.

The basic algorithm highlights scans evidences, and
then one can quickly spot an issue. This way, without
having any knowledge of how the log must be read, little
changes will appear close enough to each other to grab
the reader attention.

The following lines are logs taken from ssh authenti-
cation, and appear like this:

time="05:08", source="192.168.0.42",
log="Failed keyboard-interactive/pam

for invalid user lindsey";
time="05:08", source="192.168.0.42",
log="Failed keyboard-interactive/pam

for invalid user ashlyn";
time="05:08", source="192.168.0.42",
log="Failed keyboard-interactive/pam

for invalid user carly";

Figure 3 shows a generated graph from twenty lines of
a ssh scan.

On the third axis, one can clearly see the lines sweep,
showing the scan.

2.3.6 Correlations

With ‖-coords, several correlations are possible, as
shown in figure 5, where it is known for sure all events
share a common variable.

Because‖-coords are multi-dimensional, what can be
seen in figure 4 which is in two dimension can lead to
more interesting pattern discovery of a bow tie gener-
ates an other, which generates again an other, and so
forth. . . It draws a path where every value is guessable.

One other way to correlate is applying a line coloriza-
tion for their frequency of apparition between two axes
and colorize the whole line, according to the highest

Figure 3: SSH scan

Figure 4: Same shared value

value. Picviz can generate graphs in this mode with the
heatline rendering plugin and itsvirus mode.

Figure 5: Syslog heatline with virus mode

As of today, only the svg and pngcairo handle this fea-
ture. Picviz CLI should be called like this:

pcv -Tpngcairo syslog.pcv -Rheatline \
-Avirus > syslog.png

6

2.3.7 Section summary

Picviz has been designed to be very flexible and let any-
one capable to generate the language, filter data and vi-
sualize them. This can be done statically on a plain gen-
erated file, and with the graphical interface, this is even
possible in real-time. Of course the knowledge of logs
lines is better to set more axis and have more information
to understand the graph. However, the naive approach is
sometime enough to see scanning activities.
Now that the Picviz architecture and features have been
explained, we will show how we can efficiently use it to
dig into logs and extract relevant information.

The next section covers how we can efficientlyseeat-
tacks from many lines of log and finally write a correla-
tion script in perl.

3 Catch me if you can!

3.1 Introduction

Let’s suppose one account has been compromised. But
the attacker is smart enough not to be noisy, so that the
attacked account user does not even know it has been at-
tacked: no altered files, no suspect behavior. Paranoid,
the attacker does not log in out of office hours. We are
on a five hundred (500) machines network, logs are ag-
gregated.

When a SSH connection occurs, one in the following
lines of log is written in the syslog auth facility, which is
in the file /var/log/auth.log on a Linux Debian system:

Aug 18 20:45:53 jazz sshd[26424]: \
Accepted publickey for toady from \
192.168.1.23 port 63379 ssh2

Aug 18 20:49:47 jazz sshd[26444]: \
Accepted keyboard-interactive/pam \
for toady from 192.168.1.42 port \
1115 ssh2

Aug 18 21:02:38 jazz sshd[26592]: \
error: PAM: Authentication failure \
for toady from 192.168.1.42

3.2 Generating the language

We Generate PCV files with a perl script using the fol-
lowing regular expression to get all SSH connection at-
tempts:

\w+ ?\d+ (\d+:\d+:\d+) [\w-.]+ \
sshd.*: (.*) for (\S+) from \
(\d+.\d+.\d+.\d+)

This creates fours axes:Time, Authentication type,
IP source andLogin. The script is combined with the

Figure 6: SSH authentications‖-coords

Picviz::Dshield class we have seen earlier so IP ad-
dresses matching the Dshield database will appear in red.

Our perl script is executed:

ssh-auth2pcv.pl /var/log/auth.log \
> auth.pcv

It will dig dshield for IP addresses in the top 10000 of
those matching firewall logs subscribed to dshield.org,
and match ssh logs against those IP addresses, and draw
them in red if they match (see figure 6).

First of all, a few fact that can be seen interactively but
impossible to see on a static printed paper like here. On
the time axis, midnight is at the bottom and 23:59:59 at
the very top. Twoauthentication types(second axis) are
extracted:’Failed password’ and’Accepted keyboard-
interactive/pam’. On the third axis,IP Sourceare var-
ious, as one can see in the graph and there is only one
login used to open a session.

There are several things that are instantaneously seen
in the resulted graph:

• Accepted logins are mostly time-wise grouped

• A red dshielded IP address appears fortunately with
a failed login, however it is not interesting since lo-
gin attempts were unsuccessful

• Various sources are used to log a single user in (four
with success)

• No public key is used to log the user in, just regular
password (keyboard-interactive)

• By looking at the bottom of the last axis (Login), we
easily notice one single source had both successful
and unsuccessful logins, attempt done on a single
login

7

Figure 7: Something interesting

The discovered IP source address is none if those the
target user uses to log in, its account may have been com-
promised, at least one need to investigate why the person
behind this login logs from several IP sources.‖-coords
are surprisingly good to catch those things.

As a conclusion, most Host IDS will generate an alert
upon authentication. However, few administrators will
really consider them. In this case, visualization can help
them to wonder why several IP addresses were used to
log in. Just looking over the visualized logs was enough
to make us have the idea and want to automate the detec-
tion of this kind of behavior. The next section explains
how two correlation rules can easily be written using the
Perl programming language.

4 Automate attack detection

In the last section, using‖-coords, two possible attacks
were discovered. Showing how insightful they led us to
wonder how several IP addresses can actually be used to
log into an account without the operator being able to
catch the alert sent by the Host IDS. Fortunately, its au-
tomation is easy and the goal of this section is to show a
perl script can in this particular case replace the visual-
ization.

It is good to consider visualization as a tool, that can
sometime be very helpful but can often hardly be auto-
mated. The point we want to focus here is that visual-
ization helped us to have the idea. Picviz can help to
write correlation rulesets for intrusion detection and help
to understand better than an isolated event[2].

Our perl script should be able toautomatethe follow-
ing:

• Discover if an account logged in from several IP ad-
dresses

• Discover if a user login from at least two IP ad-
dresses had success and failures on one of them

• Match IP address against Dshield

• Warn about the possible intrusion attempt.

All of what is needed is to write Perl code to construct
information we will then use to send alerts[8]:

if (!$users{$login}) {
push @{$users{$login}},

"$src,$authtype";
} else {
foreach $val (@{$users{$login}}) {
($ipsrc,$ipauth) = split(/,/,$val);
if ($ipsrc ne "$src") {

push @{$users{$login}}, "$val";
if ($ipauth ne $authtype) {
push(@ip_authtypes, $ipsrc);

}
last;

}
}
}

And to send the alert:

while(($key, $value) = each(%users)) {
if (@{$value} >= 2) {

print "*** Alert ***\n";
print "Different IP addresses

for one user\n";
($ipsrc,$ipauth) = split(/,/,$value);
print "Source IP: $ipsrc"
$client << $idmef;
}
}

4.1 Conclusion

This paper explained what we can do with‖-coords and
system logs. Ranging from better understanding, see
some network security anomalies and see how unex-
pected things can be discovered. That can lead to write
a simple script to warn about a specific behavior. Visual-
ization is an important and growing part of security that
can be used for several things: one is to have non-expert
able to understand complex attack they can latter report
to the analyst, the other is to help the analyst to dig where
he he would not do normally but also, help to write bet-
ter tools to automate intrusion detection. The future of
Picviz will be to automate visually correlations and go
further than‖-coords to make a better representation of
axes correlations.

4.2 Acknowledgments

I would like to thank Alfred Inselberg for his great
achievements with‖-coords, and his encouragements
upon my work with Picviz. Philippe Saadé for the re-
search conducted together on improving‖-coord and
Pierre Chifflier on IDS correlation. Steve Grubb, Lukas
Kuklinek and Tomas Heinrich for their work done at Red
Hat in intrusion detection, Prelude IDS and their Picviz

8

package available in next Fedora release. Yoann Van-
doorselaere for his great work leading the Prelude IDS
project. As well as INL, a very good place to work sur-
rounded by bright people and their will to innovate in the
computer security area.

References

[1] CONTI, G., AND ABDULLAH , K. Passive visual fingerprinting of
network attack tools. InVizSEC/DMSEC ’04: Proceedings of the
2004 ACM workshop on Visualization and data mining for com-
puter security (New York, NY, USA, 2004), ACM, pp. 45–54.

[2] DEBAR, H., AND WESPI, A. Aggregation and correlation of
intrusion-detection alerts. InIn Recent Advances in Intrusion De-
tection, LNCS 2212 (2001), Springer-Verlag, pp. 85–103.

[3] GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C.,AND PHONG

VO, K. A technique for drawing directed graphs.IEEE Transac-
tions on Software Engineering 19 (1993), 214–230.

[4] GRINSTEIN, G., MIHALISIN , T., HINTERBERGER, H., AND IN-
SELBERG, A. Visualizing multidimensional (multivariate) data
and relations. InVIS ’94: Proceedings of the conference on Vi-
sualization ’94 (Los Alamitos, CA, USA, 1994), IEEE Computer
Society Press, pp. 404–409.

[5] HAMMING , R. Error detecting and error correcting codes.Bell
Syst. Tech. J. 29 (1950), 147–160.

[6] I NSELBERG, A., AND DIMSDALE , B. Parallel coordinates: a tool
for visualizing multi-dimensional geometry. InVIS ’90: Proceed-
ings of the 1st conference on Visualization ’90 (Los Alamitos, CA,
USA, 1990), IEEE Computer Society Press, pp. 361–378.

[7] L EVENSHTEIN, V. I. Binary codes capable of correcting deletions,
insertions, and reversals. Tech. Rep. 8, 1966.

[8] TRICAUD, S. http://www.wallinfire.net/files/artcor.pl.

9

