
An Efficient and Generic Reversible Debugger
using the Virtual Machine based Approach

Toshihiko Koju
Graduate School of

Science and Technology,
Keio University

k-ju@doi.ics.keio.ac.jp

Shingo Takada
Graduate School of

Science and Technology,
Keio University

michigan@ics.keio.ac.jp

Norihisa Doi
Faculty of Science and

Engineering, Chuo University

doi@ise.chuo-u.ac.jp

ABSTRACT
The reverse execution of programs is a function where pro-
grams are executed backward in time. A reversible debugger
is a debugger that provides such a functionality. In this pa-
per, we propose a novel reversible debugger that enables
reverse execution of programs written in the C language.
Our approach takes the virtual machine based approach. In
this approach, the target program is executed on a special
virtual machine. Our contribution in this paper is two-fold.
First, we propose an approach that can address problems
of (1) compatibility and (2) efficiency that exist in previous
works. By compatibility, we mean that previous debuggers
are not generic, i.e., they support only a special language or
special intermediate code. Second, our approach provides
two execution modes: the native mode, where the debuggee
is directly executed on a real CPU, and the virtual ma-
chine mode, where the debuggee is executed on a virtual
machine. Currently, our debugger provides four types of
trade-off settings (designated by unit and optimization) to
consider trade-offs between granularity, accuracy, overhead
and memory requirement. The user can choose the appro-
priate setting flexibly during debugging without finishing
and restarting the debuggee.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Reliability

Keywords
Debugger, Reverse Execution, Virtual Machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05, June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

1. INTRODUCTION
The reverse execution of programs is a function where

programs are executed backward in time. In other words,
it is a function that “undoes” effects of previously executed
instructions, lines, and procedures. A reversible debugger is
a debugger that provides such a functionality.
Reverse execution is very useful for locating the causes of

software failures. In general, software does not fail immedi-
ately after the cause of the failure is executed. Instead, the
software may fail some time after the cause of the failure
has been executed. In such cases, a programmer may want
to backtrack from the location where the failure occurred
to the location where its cause exists. But most debuggers
cannot perform reverse execution. If the programmer wants
to investigate the state of the program at the location imme-
diately before the failure occurs, he/she will need to restart
the program and set a breakpoint at that location to stop
it. If the programmer wants to go further back in the pro-
gram, he/she will again need to restart the program. The
programmer will need to repeat this tedious process until
the cause of the failure is successfully located.
In this paper, we propose a novel reversible debugger that

enables reverse execution of programs written in the C lan-
guage. Our approach takes the virtual machine based ap-
proach [9, 12]. In this approach, the target program is exe-
cuted on a special virtual machine, instead of directly on a
real CPU. Our contribution in this paper is two-fold. First,
we propose an approach that can address problems of (1)
compatibility and (2) efficiency that exist in previous works
using the virtual machine based approach. Second, our ap-
proach provides two execution modes: the native mode,
where the debuggee is directly executed on a real CPU, and
the virtual machine mode, where the debuggee is executed
on a virtual machine 1.
In the rest of this paper, we first describe related work.

Section 3 presents the design of our reversible debugger.
Then, section 4 describes the implementation of our re-
versible debugger. Section 5 gives an evaluation, and finally
section 6 makes concluding remarks.

2. RELATED WORK
There have been many attempts to realize reverse execu-

tion. The most common approach is to create a history log
of changes to program states during execution [1, 3, 4, 6, 8,

1Note that our debugger deals with only applications and
not entire systems (that include hardware and OS).

79

9, 11, 12]. For example, the contents of memory are saved
before the program tries to overwrite it. Reverse execution
can then be realized by reconstructing the original memory
contents using the saved information.
PROVIDE [12] is a visualization and debugging environ-

ment for a subset of the C Language. PROVIDE executes
a program on its interpreter. The interpreter records state
transitions to a process history database. Spyder [1] is a de-
bugging tool for the C Language. Spyder uses a structured-
backtracking approach which identifies and saves a change-
set of a statement. A change-set consists of all variables
whose values are modified by a statement. ZStep94 [11]
is a source code stepper for Lisp. ZStep94 uses a special
interpreter, and keeps a history of evaluations. In addi-
tion, it maintains a consistent view of the user interface,
and can backtrack graphical outputs. Chen et al. [6] pro-
posed an approach based on instrumentation of assembly
code. Their approach keeps all states that are changed by
assembly instructions. Akgul et al. [3] also proposed an
approach that enables assembly instruction level reverse ex-
ecution. It distinguishes states that are reconstructable from
other states. An inverse version of the program is generated
to avoid saving reconstructable states. So, it can reduce
storage requirements. This approach was improved by using
dynamic slicing [4]. Cook [8] proposed a reversible debugger
for Java. It exploits Kaffe’s interpreter so that it can cap-
ture state changes caused by Java bytecode. It also supports
multi-threading. Leonardo Virtual Machine (LVM) [9] is a
portable virtual machine which has the function of reverse
execution. It uses a transaction for a unit of reverse execu-
tion. The length of each transaction can be freely changed
during execution. Executables for LVM can be produced by
using the Leonardo C Compiler.
There are two main issues for approaches which create

history logs: what kinds of execution states need to be saved,
and how to save the execution states.
The former is a very difficult issue because there are trade-

offs between forward and reverse execution speed, memory
requirement, granularity of a reverse execution unit, anal-
ysis cost, etc. For example, [9] showed that larger granu-
larity can realize faster execution and smaller memory re-
quirement. Another example would be the difference in the
states that are saved in a loop in [1] and [6]. In [1], only
variables which could be modified during execution of an
entire loop are saved before entering the loop. On the other
hand, in [6], every state changed by each instruction in the
loop body are saved. So, [1] can achieve faster execution and
smaller memory requirement. But it cannot backtrack each
loop iteration. [6] is the exact opposite. It can backtrack
each loop iteration or each instruction in the loop body,
but it has higher overhead and needs larger memory. [3]
showed that faster execution and smaller memory require-
ment can be achieved in exchange for possibly large analysis
cost. Futhermore, [4] showed that faster reverse execution
along dynamic slices can be achieved with extra analysis
cost. From the above consideration, it is very important
not to limit users to a particular trade-off setting. A re-
versible debugger should provide multiple types of trade-off
settings to consider related trade-offs and be able to switch
among them flexibly during debugging. But most of the
above works do not have such a capability.
There are two software based approaches focusing on the

latter issue, i.e. how to save execution states. One is the

static instrumentation approach [6] and the other is the vir-
tual machine based approach [8, 9, 11, 12]. In the static
instrumentation approach, code is inserted to save states
that are changed during execution. This insertion (or trans-
lation of the program) is done before the target program is
started. In the virtual machine based approach, the target
program is executed on a special virtual machine, instead
of directly on a real CPU. The virtual machine is responsi-
ble for saving states that are changed during execution. As
mentioned above, a reversible debugger should provide mul-
tiple types of trade-off settings and be able to switch among
them. So, the virtual machine based approach is preferable
rather than the static instrumentation approach. This is
because the virtual machine based approach is much more
flexible compared to the static instrumentation approach. In
the static instrumentation approach, all translation occurs
before the program starts. So, users need to consider trade-
offs before starting the program. If the user wants to make
changes during execution, the user must finish the program,
re-translate it, and restart it. This is a very tedious process.
In contrast, the virtual machine based approach does not
have such limitations. The behavior of a virtual machine
(including settings for trade-offs) can be changed freely dur-
ing execution. So, the virtual machine based approach can
provide the above capability much more easily.
When we focus on reversible debuggers for the C language,

PROVIDE [12] and LVM [9] are examples that take the
virtual machine based approach. But they have two seri-
ous problems: (1) compatibility and (2) efficiency. Both
works have a compatibility problem with existing develop-
ment environments. PROVIDE [12] supports only a subset
of the C language, PROVIDE-C. There are many limita-
tions, e.g., only integers, characters and one-dimensional ar-
rays are supported. On the other hand, LVM provides the
Leonardo C Compiler, which supports the ISO C89 stan-
dards. But it is not sufficient because LVM uses special
intermediate code, and libraries of existing development en-
vironments (native machine code) cannot be used without
recompiling the libraries using the Leonardo C Compiler. In
other words, the source code of the libraries are necessary.
So, to use PROVIDE or LVM, developers may first need to
port their programs and/or libraries to the environments.
This greatly reduces the usefulness of these environments.
The other problem, efficiency, is caused by the interpre-

tive execution in both PROVIDE and LVM. Generally, C
programs are compiled to native machine code, and directly
executed on a real CPU. So, the slowdown factors in these
environments are very significant.

3. REVERSIBLE DEBUGGER
USING THE VM BASED APPROACH

As described in section 2, existing works which use the
virtual machine based approach have two serious problems:
(1) compatibility and (2) efficiency. So, we propose a new re-
versible debugger using the virtual machine based approach,
which overcomes these problems:

(1) Compatibility Existing works have a compatibility prob-
lem because they support only a special language or
special intermediate code. In our reversible debugger,
we avoid using such a language or intermediate code.
We choose to use native machine code as the target of
our reversible debugger, and execute native machine

80

Request for
Reverse Execution

Reverse Execution
Is Not Needed

Debugger

Debuggee

CPU

Execution Control,
State Access

Execute the Original
Native Machine Code

(i) Native Mode

Debugger

Virtual Machine

Debuggee

Execution Control,
State Access

Execute the Translated
Native Machine Code

CPU

Buffer

Address Space
of the Debuggee

Changed
States

(ii) VM Mode

Figure 1: Overview of our reversible debugger.

code on our virtual machine. This makes it possible
to use compilers, linkers, libraries, etc. of existing de-
velopment environments along with our reversible de-
bugger. There is no need to modify user programs and
the user’s development environment. Thus, we assure
complete compatibility with existing development en-
vironments.

(2) Efficiency Existing works have an efficiency problem
because they exploit the interpretive execution approach.
In our reversible debugger, the virtual machine makes
use of an approach called dynamic translation [5, 7,
10, 13]. Dynamic translation is an approach that per-
forms code translation within a virtual machine. Our
virtual machine translates native machine code of the
target program by inserting code for saving states that
are changed during execution. Code generated by this
translation is also native machine code. Then, our vir-
tual machine executes the generated code on the real
CPU. This makes it possible to both execute the tar-
get program and save changed states directly by native
machine code. Thus, we realize very fast execution
compared with the interpretive execution approach.

In the following sections, we give an overview and then
describe functionalities of our reversible debugger.

3.1 Overview
Fig. 1 shows an overview of our reversible debugger. We

provide two main components: the reversible debugger it-
self and the virtual machine. The reversible debugger is
responsible for providing its functionalities to users through
its user interface. The virtual machine is responsible for sav-
ing states that are changed during execution of the target
program.
As mentioned above, we use native machine code as the

target of our reversible debugger to assure compatibility. In
addition, our reversible debugger can use debugging infor-
mation in the target program’s executable file. Debugging
information includes mapping between native machine code
and source code. This information can easily be generated
with existing compilers by turning on the debugging op-
tion. Thus, we can say that our reversible debugger offers
its functionalities at both the native machine code level and
the source code level.
One novel characteristic of our reversible debugger is its

two execution modes. In our debugger, the target program
is executed directly on the real CPU when reverse execution
is not needed (Fig. 1 (i)). So, the execution does not incur

any overhead. We call this the native mode. The target pro-
gram is executed on our virtual machine only when reverse
execution is needed (Fig. 1 (ii)). We call this the VM mode.
As mentioned above, our virtual machine employs dynamic
translation to realize very fast execution.
Providing these two modes offers two significant advan-

tages. First, even though our virtual machine employs dy-
namic translation, execution on our virtual machine always
incurs some degree of overhead, even if no state saving is
performed2. In such a case, this overhead is completely un-
necessary. By offering the native mode, we can avoid such
overhead and execute the target program at full speed when
reverse execution is not needed. Second, the capability of
switching between the native mode and the VM mode en-
ables attaching and detaching of already running programs.
This is because our debugger does not require the target pro-
gram to be entirely executed on our virtual machine. Our
debugger can attach to an already running program on a
real CPU, enter native mode and then switch to VM mode,
or vice versa. “Attach” and “Detach” are basic functional-
ities of conventional debuggers, and essential for debugging
of multi-processing programs.

Native Mode In this mode, users cannot reverse execute
the target program, and functionalities are limited to
those provided by traditional source code level debug-
gers, such as those given in Table 1 (b) and (c).

VM Mode In our reversible debugger, details of execution
on our virtual machine are hidden from the users. So,
the users can perform debugging activities without any
attention to details of the virtual machine.

In this mode, users can use functionalities specific to
reverse execution. Our virtual machine translates the
native machine code of the debuggee (the target pro-
gram of the debugger) by inserting code that will save
states that are changed during execution. So, as the
execution of the debuggee on our virtual machine pro-
ceeds, the changed states are saved in a buffer in the
debuggee’s address space (Fig. 1 (ii)). Later, the de-
bugger performs reverse execution by reconstructing
the original states using the information stored in the
buffer.

2As will be described in section 5.1, the average was a slow-
down of 1.7 times.

81

Table 1: Main functionalities of our reversible debugger.
(a) Start Start new program under debugger’s control.

Attach Attach already running program to obtain its control.
Kill Terminate program.

Detach Detach program from debugger’s control.
(b) Breakpoint Set and delete breakpoints.

Continue Continue execution.
Step Continue execution but for only one execution unit.

(c) Access to registers Read and write register values.
Access to memory Read and write contents of memory.

(d) Enable reverse execution Switch to VM mode.
Disable reverse execution Switch to native mode.
Change trade-off setting Choose appropriate trade-off setting

Reverse execution Perform reverse execution.

3.2 Functionality
In this section, we briefly describe functionalities of our re-

versible debugger from the user’s viewpoint. Table 1 shows
the main functionalities of our reversible debugger. Func-
tionalities (a), (b), and (c) in Table 1 are very similar to
conventional debuggers and can be used in the same way.
Functionalities (d) indicate those related to reverse ex-

ecution. With “Enable reverse execution”, the debuggee
will be executed on our virtual machine. With “Disable re-
verse execution”, the debuggee will be executed on the real
CPU. With “Change trade-off setting”, users can choose the
appropriate trade-off setting to consider trade-offs between
granularity, accuracy, overhead and memory requirement.
Details are described later in section 4.1.1.1. Finally, with
“Reverse execution”, the user can reverse execute the de-
buggee.
From the user’s viewpoint, “Enable reverse execution”,

“Disable reverse execution”, and “Change trade-off setting”
cause no side-effects to the execution of the debuggee, and
functionalities (b) and (c) can be used in the same way re-
gardless of the mode. So, even if a debuggee is executed on
our virtual machine, it can be seen as executing directly on
the real CPU by the user.

4. IMPLEMENTATION
In this section, we describe the implementation of our re-

versible debugger. We implemented our debugger for the
Intel x86 architecture and Linux operating system. The de-
buggees need to be compiled with debugging information,
e.g. with the -g option in GCC 3. In the following sections,
we describe the implementation of our virtual machine and
then our reversible debugger.

4.1 Virtual Machine
Our virtual machine makes use of dynamic translation.

Fig. 2 shows an overview of the execution of the debuggee
along with dynamic translation on our virtual mchine:

(i) Save the register values and change the stack area to
our virtual machine’s own stack area.

(ii) Fetch a code fragment of the debuggee that should be
executed next, and insert code for saving states that
are changed during execution of that fragment.

3This is required to identify units of reverse execution (lines
and procedures in source code).

Debuggee
(Native Machine Code)

(ii) Translation by the Virtual Machine
(Insert Code for Saving States)

Context Switch

(v) Execution of Translated Fragments
on Real CPU.

(iv) Jump to
Translated Fragment

(vi) Finish Execution of
Translated Fragment

(i) Save Registers
and Change Stack

(iii) Restore Registers
and Stack

Code Fragment

Figure 2: Execution on our virtual machine.

(iii) Restore the register values and the stack area backed
up in (i).

(iv) Jump to the top of the translated fragment.

(v) Execute the translated fragment directly on the real
CPU.

(vi) After the translated fragment finishes executing, re-
turn to step (i).

Note that we use the term “context switch” to indicate
the switching between the target program and our virtual
machine that happen in the same debuggee process. In the
following sections, we describe code translation carried out
in step (ii) in more detail.

4.1.1 Code Translation
Fig. 3 shows an overview of code translation in our vir-

tual machine. A unit of translation in our virtual machine
is a code fragment. A code fragment begins with an instruc-
tion that resides in the next execution point, and ends with
the first branch instruction. Basically, our virtual machine
performs two types of translation:

Insert Code for Saving Changed States Our virtual ma-
chine inserts code for saving states before the states are
changed during execution of that fragment. For exam-
ple, in Fig. 3, such a code is inserted between instruc-
tion 1 and instruction 2, assuming that some state(s)
are changed in instruction 2 but not in instructions 1,

82

Return to
Virtual Machine

Code for Saving
Changed States

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 4
(Branch)

Instruction 2

Instruction 3

(a) Original Fragment (b) Translated Fragment

Figure 3: Overview of code translation.

(a) Original Fragment. (b) Translated Fragment.

(2) Backup the registers.
Save the data type.
Save the address.
Save the contents.
(3) Restore the registers.
; The original instruction.
(1) inc dword [eax]

Save address of somewhere.
; Jump to the virtual machine.
jmp VM

; Increment memory content
; pointed by the register eax.
(1) inc dword [eax]

; Jump to ‘‘somewhere’’.
jmp somewhere

Figure 4: Example of code translation.

3 and 4. Currently, we provide four types of code for
saving changed states based on the trade-off settings.

Change Destinations of Branches Our virtual machine
changes destinations of branch instructions to let trans-
lated fragments return control to our virtual machine
after finishing executing them on the real CPU. This
corresponds to step (vi) in section 4.1. Instruction 4
in Fig. 3 is an example.

Fig. 4 shows an example of the code translation. In Fig.
4, italic typeface indicates pseudo-code. In the original code
(Fig. 4 (a)), the first instruction increments the memory
content pointed by the register eax, and thus overwrites the
memory content. The second instruction is a branch instruc-
tion that jumps to “somewhere”.
In the translated code (Fig. 4 (b)), code for saving the

changed state is inserted before the first instruction of the
original code. In this case, the data type (e.g., the size of
the content), the address (the value of eax), and the con-
tent (the value of dword [eax]) is saved. Also, translation
is done to change the destination in the second instruction
of the original code. First, the original destination address
(“somewhere”) is saved to the appropriate data area in our
virtual machine. Then, the destination address is changed
so that control will jump to our virtual machine.
Note that we do not destroy registers and memory loca-

tions in inserted code (excluding dead registers; see section
4.1.1.1). Thus, instructions in translated fragments corre-
sponding to the original instructions can use the exact same
registers and memory locations as the original instructions
(Fig. 4 (1)). This means live registers and memory loca-
tions are kept “in the clear” for the original execution. This
makes the switchings between the native mode and the VM
mode very simple. In fact, the switchings can be done by

just adjusting the current execution position as will be de-
scribed in section 4.2.4.
In addition, our virtual machine performs caching and

linking of translated fragments [13]. With caching, once
original fragments of the debuggee are translated, the trans-
lated fragments are registered to our virtual machine’s cache
buffer. This makes it unnecessary to re-translate the same
fragments. With linking, translated fragments in the cache
buffer are directly linked with branch instructions. So, con-
text switches in Fig. 2 can be avoided between linked frag-
ments. These approaches make the execution speed of our
virtual machine extremely fast. But for indirect branch in-
structions, we cannot apply linking because their destina-
tions are not fixed. Instead, we execute small assembly code
that checks a sub-cache of translated fragments each time
they are executed. In the following sections, we describe
the code inserted for saving changed states and the circular
buffer used to save the changed states.

4.1.1.1 Code for Saving Changed States.
The execution states of programs consist of internal states

and external states. Internal states are the contents of regis-
ters and memory. External states are any other states that
are mainly managed by the operating system, such as file
systems. To realize reverse execution, we must save the dif-
ferences between the execution states when they change. For
internal states, we need to save the contents of registers and
memory before the change. For external states, we need to
save enough information to reconstruct the original external
states, such as the contents and/or the I/O pointer of a file
before the change.
Currently, our reversible debugger provides four types of

trade-off settings to consider trade-offs between granularity,
accuracy, overhead and memory requirement. The user can
choose the appropriate setting by designating unit and op-
timization.
In our reversible debugger, the user can designate the unit

of reverse execution to be line or procedure of C source code.
We avoid saving the same registers many times during exe-
cution of instructions corresponding to a single line or pro-
cedure. The code for saving registers are gathered together
for such instructions, and we only save registers once per ex-
ecution of a line or a procedure. For any other states, such
as contents of memory and external states, we insert code
for saving states immediately before they change. So, they
may be saved multiple times in one construct.
The unit of reverse execution offers a trade-off between

granularity, (forward) execution speed, and memory require-
ment. A line is of smaller granularity than a procedure. But
using a line as a unit will incur higher overhead and memory
requirement than with a procedure. This is because regis-
ters are saved more frequently when lines are used as the
units of reverse execution.
In addition, the user can enable or disable optimization.

Some inserted code for saving changed states may need to
use temporary registers. The purpose of optimization is to
omit saving and restoring these temporary registers at the
beginning and the end of inserted code, i.e. spills of registers
(Fig. 4 (2) and (3)). If optimization is disabled, spills are
performed on all temporary registers. On the other hand, if
optimization is enabled, our virtual machine analyzes dead
registers [2] in the original code fragments. Dead registers
are registers whose values are no longer used by later in-

83

structions. If available, we make use of such dead registers
as temporary registers, and no spills are performed on them.
Optimization offers a trade-off between (forward) execu-

tion speed and accuracy against the original execution. The
user can improve (forward) execution speed by enabling op-
timization since spills of some temporary registers will be
omitted. But at the same time, since some temporary regis-
ters are not spilled in inserted code, their values may differ
from the original execution. So, accuracy against the origi-
nal execution is lower if optimization is enabled.
In sum, the user can select the unit of reverse execution

from line or procedure and the optimization from enable or
disable. These settings for the unit and optimization can of
course be combined. Thus, our reversible debugger offers a
grand total of four types of trade-off settings. The settings
offer trade-offs between granularity, accuracy, overhead and
memory requirement. The user can choose the appropri-
ate setting flexibly during debugging without finishing and
restarting the debuggee. Section 5 will show a detailed com-
parison between these four types of trade-off settings.

4.1.1.2 Circular Buffer.
We save states changed during execution in a circular

buffer, similar to [6]. We make use of the Unix system
call mprotect to reduce the overhead incurred by boundary
checking. We protect the last page of the circular buffer
and perform no boundary checking in the translated code.
So, when translated code tries to save changed states to a
protected page in the circular buffer, a memory violation
error occurs, i.e. the buffer is full. Our debugger is given
the task of detecting such a violation error. When such an
error is detected, our debugger performs a wraparound of
the circular buffer.

4.2 Reversible Debugger
Our reversible debugger manipulates the debuggee and

our virtual machine using ptrace system call and /proc file
system. They are very popular debugging constructs in
Unix-like operating systems, and offer very raw primitives
for debugging at the native machine code level. In the fol-
lowing sections, we briefly describe the implementation of
the functionalities of our reversible debugger according to
the classification in Table 1. Our approach is very similar
to traditional source code level debuggers. So, we describe
mainly the parts that are different from traditional source
code level debuggers.

4.2.1 Debugging Session (Table 1 (a))
Basically, our reversible debugger is the same as tradi-

tional debuggers in terms of the implementation of these
functionalities. But our reversible debugger must perform
the additional tasks of loading and unloading our virtual
machine. When “Start” or “Attach” is used to start a new
debugging session, our reversible debugger must load (or in-
ject) our virtual machine to the debuggee’s address space.
Similarly, when “Kill” or “Detach” is used to finish the de-
bugging session, our reversible debugger must unload our
virtual machine from the debuggee’s address space.
To achieve this, we make use of a very small stub library

and an environment variable LD PRELOAD. This stub li-
brary contains only one procedure each for loading and un-
loading our virtual machine and is set to LD PRELOAD
in advance. This indicates the system to automatically load

(a) Traditional Debugger
(b) Our Debugger

(VM mode)

Debugging Information
Generated by Compilers

Source Code

Machine Code

Source Code

Translated Code

Machine Code

Debugging Information
Generated by Compilers

Debugging Information
Generated by Virtual Machine

Figure 5: Debugging information.

the stub library to the programs’ address space. Thus, load-
ing or unloading our virtual machine can be easily achieved
by just executing the procedures of the stub library in the
debuggee’s address space.

4.2.2 Forward Execution (Table 1 (b))
As mentioned in section 3.2, these functionalities can be

used in both the native mode and the VM mode. In the
native mode, these functionalities can be implemented in
exactly the same way as traditional debuggers. But in the
VM mode, there is a problem since our reversible debugger
must handle translated code in addition to native machine
code and source code of debuggees. Thus, our reversible
debugger introduces extra debugging information.
Traditional debuggers use only one type of debugging in-

formation. This information is generated by compilers and
contains mapping between source code and native machine
code (Fig. 5 (a)). Our reversible debugger also makes use of
extra debugging information, which is generated by our vir-
tual machine and contains mapping between native machine
code and translated code (Fig. 5 (b)).
In the VM mode, machine code level manipulation over

translated code is realized using information generated by
our virtual machine. Then, source code level manipulation
over machine code is realized using information generated
by compilers. The latter (source code over machine code)
is basically the same as in traditional debuggers. We thus
now describe the former, i.e., machine code over translated
code:

Breakpoint In our virtual machine, the entry to a trans-
lated fragment is restricted to the first instruction of
that translated fragment. This means the same in-
struction can be translated multiple times. Fig. 6
shows an example. In Fig. 6 (a), we assume instruc-
tions 1, 2, and 3 are destinations of branch instructions
not shown in the figure. When the branch instruction
whose destination is instruction 1 is first executed, our
virtual machine translates the fragment into one that
begins with instruction 1 (Fig. 6 (b)). Later, when
the branch instruction whose destination is instruc-
tion 2 is first executed, our virtual machine translates
the fragment to produce another fragment that begins
with instruction 2 (Fig. 6 (c)), instead of letting the
branch instruction jump to the middle of the translated
fragment 1 which resides in the cache buffer. Thus, in
this case, instructions 2, 3, and 4 are translated twice
and appear in two different translated fragments.

84

(c) Translated
Fragment 2

(d) Translated
Fragment 3

(b) Translated
Fragment 1

Return to
Virtual Machine

Instruction 3

Instruction 2

Instruction 1

Return to
Virtual Machine

Instruction 3

Instruction 2

Return to
Virtual Machine

Instruction 3

(a) Original Fragment

Instruction 4
(Branch)

Instruction 3

Instruction 2

Instruction 1Destination 1

Destination 2

Destination 3

Figure 6: Multiple translated fragments.

So, when the user sets (or deletes) a breakpoint to one
such (original) instruction, our virtual machine sets
(or deletes) breakpoints to all code corresponding to
the (original) instruction scattered in different trans-
lated fragments. For example, in the above case, when
the user sets a breakpoint to instruction 3, our vir-
tual machine sets breakpoints to both instructions 3
in translated fragments 1 and 2. Such correspondences
can be retrieved from the extra debugging information
generated by our virtual machine.

But this is not enough because after setting a break-
point to an (original) instruction and resuming the exe-
cution, the (original) instruction may be re-translated.
For example, after resuming the execution in the above
case, when the branch instruction whose destination
is instruction 3 is first executed, our virtual machine
produces yet another translated fragment which begins
with instruction 3 (Fig. 6 (d)). In this case, there is
already a breakpoint set to instruction 3. We need to
make sure that the breakpoint is still set to instruction
3 of translated fragment 3. This is done by our vir-
tual machine at the time of translation. Our debugger
passes information on the breakpoints that have been
set to our virtual machine before the translation oc-
curs.

Continue There is no special processing for “Continue” in
VM mode. Just resuming execution is enough, and
execution of the debuggee on our virtual machine pro-
ceeds as before.

Step Our reversible debugger performs step execution by
executing translated code corresponding to one instruc-
tion of the original code. Such correspondences can be
retrieved from extra debugging information generated
by our virtual machine.

But when step execution is performed on a branch in-
struction, it may return control to our virtual machine
(as described in section 4.1.1). In such a case, our
reversible debugger continues execution of our virtual
machine to the top of the next translated fragment
(steps (i) to (iv) in section 4.1).

4.2.3 State Access (Table 1 (c))
Special handling for accessing registers and memory loca-

tions are not needed. This is because we do not simulate
registers or memory locations of the original code with dif-
ferent ones in translated code. So, the mapping between
original code and translated code is not needed, and we can
access registers and memory locations directly.

4.2.4 Reverse Execution (Table 1 (d))
The functionalities concerned with reverse execution are

as follows:

Enabling and Disabling Reverse Execution These func-
tionalities entail switching between the native mode
and the VM mode. When switching to the VM mode,
we save the current execution position (PC) of the de-
buggee to the appropriate data area of our virtual ma-
chine. Then, we adjust the PC of the debuggee and let
our virtual machine execute steps (i) to (iv) in section
4.1. Switching to the native mode is much easier. This
can be done by just recovering the PC to indicate the
corresponding position in the original code.

Changing Trade-off Setting When changing the trade-
off setting, we first reset our reversible debugger and
our virtual machine in the following manner. We let
our virtual machine flush the cache buffer which con-
tains translated code of the debuggee. The circular
buffer is also flushed. Then, our reversible debugger
discards all extra debugging information generated by
our virtual machine. After our debugger and our vir-
tual machine has been reset, we set our virtual machine
to the new chosen trade-off setting, and let our virtual
machine execute steps (i) to (iv) in section 4.1.

Reverse Execution The process of reverse execution is
very straightforward. We can perform reverse exe-
cution of the debuggee by sequentially accessing the
circular buffer and reconstructing the original states
using information saved by our virtual machine.

But this process needs operations to the debuggee’s
address space, reading from the circular buffer and
reconstructing the original states. These operations
are repeated many times until the reverse execution
is completed. Operations to other process’s address
space incur high overhead because they need support
from the operating systems. So, if our reversible de-
bugger performs the process of reverse execution by
directly manipulating the debuggee’s address space, it
may incur significant and unacceptable overhead.

Thus, we prepare code that performs the process of
reverse execution in our virtual machine. Reverse ex-
ecution is then realized by excuting that code in the
debuggee’s address space. In this way, our debugger
performs reverse execution avoiding direct manipula-
tions to the debuggee’s address space as much as pos-
sible.

4.3 Limitations
Currently, our reversible debugger has several limitations.

First, our reversible debugger supports only frequently used
system calls, such as those related to memory management
and file I/O. We use an approach similar to [8] for handling
file I/O.

85

Next, our reversible debugger does not support multi-
threaded programs. Multi-threading proposes a very diffi-
cult problem since just saving changed states in each thread
(such as is done in [8]) is insufficient. Such an approach al-
lows only separate reverse execution of each thread, and the
user is responsible for synchronizing backtracked threads.
Separate reverse execution of each thread is interesting and
useful in some cases, but in most cases, manual synchro-
nization of backtracked threads is a tedious and erroneous
process.
To backtrack the whole program consistently, we need to

retrieve the precise order of each state change that happens
in different threads. The simplest way is to use a single
circular buffer shared by all threads. But this approach
needs synchronizations of accesses to the buffer each time a
state changes, and can be extremely slow. Thus, we are cur-
rently investigating the introduction of a user level threading
scheme to our virtual machine. This enables complete con-
trol over the scheduling of threads. We expect that such a
user level threading scheme makes arranging and deriving
the order of state changes much easier.

5. EVALUATION
This section describes the results of experiments we con-

ducted. All measurements were done on a computer with
Pentium4 2.4 GHz and 512 MBytes memory. The main
components of the system we used were as follows: Linux
Kernel 2.4.27, gcc 2.95.4, and glibc 2.3.2.

5.1 Comparison with LVM
As described in section 2, existing works which use the vir-

tual machine based approach have two serious problems: (1)
compatibility and (2) efficiency. The compatibility problem
is solved by using native machine code as debuggees. In this
section, we give evaluation results related to the efficiency
problem.
We compare our debugger with LVM [9] using variants

of the Stanford integer benchmark suite. We modified a
very small amount of benchmark code related to standard
I/O and memory allocations for the evaluation of LVM, due
to LVM’s compatibility problem. But effects on the overall
execution time can be ignored. Since trade-offs provided
by LVM and our debugger are not the same, we compare
the base execution speeds of the virtual machines without
saving the changed states.
Table 2 shows the results. Overhead is the slowdown fac-

tor of the base execution speed without saving the changed
states over the direct execution speed on the real CPU.
As Table 2 shows, execution on LVM even without saving
changed states (i.e. normal execution for LVM) incurs on
average a slowdown of 80.8 times. In contrast, our virtual
machine incurs only a slowdown of 1.7 times. Thus, we
achieve a speed up of 47.5 times over LVM. This is because
our virtual machine performs execution of debuggees and
saving of changed states directly by native machine code.
Note that we compared the base execution speeds with-

out saving changed states. Execution speed when saving
changed states incurs an overhead of several times more in
both LVM and our debugger. These slowdowns are affected
by many other factors, such as granularity, accuracy, and
memory requirement. We show this in the next section.

Table 2: Comparison with LVM [times].
Overhead Speed up

LVM Our VM of our VM
80.8 1.7 47.5

5.2 Comparison of Trade-offs
As described in section 4.1.1.1, users of our reversible

debugger can consider trade-offs between granularity, ac-
curacy, overhead and memory requirement. The user can
choose the appropriate trade-off setting by designating set-
tings for unit and optimization. In this section, we compare
trade-offs provided by these settings.
To evaluate overhead and memory requirement, we used

SPEC CPU2000 benchmarks [14]. We selected eight inte-
ger benchmarks (CINT), gzip, vpr, mcf, crafty, parser, gap,
vortex, bzip2, and four floating point benchmarks (CFP),
mesa, art, equake, ammp. We excluded benchmarks written
in C++ and Fortran. We also excluded 3 benchmarks which
use system calls unsupported in our debugger. We ran every
benchmark using input data of training size. Table 3 shows
the results.
In the first column, “line” and “proc” denote that line or

procedure was selected as the unit of reverse execution. In
the second column, “opt” and “noopt” denote that enabling
or disabling was selected for optimization. Overhead is the
slowdown factor of execution speed with saving changed
states on our virtual machine vs execution speed on the real
CPU. Memory requirement is the required storage area per
line if the unit is line or per procedure if the unit is pro-
cedure. For the case of unit of procedure, we also denote
normalized memory requirement per line in parentheses.
As Table 3 shows, by changing the unit from line to pro-

cedure, the overhead of CINT is reduced from 28.4 times
to 13.3 times, and the overhead of CFP is reduced from
23.8 times to 7.1 times when optimization is disabled. Also,
the overhead of CINT is reduced from 24.8 times to 9.0
times and the overhead of CFP is reduced from 22.2 times
to 6.1 times when optimization is enabled. Thus, execution
speeds up by two to three times. In addition, the mem-
ory requirement of CINT is reduced from 59.5 bytes to 16.3
bytes, and the memory requirement of CFP is reduced from
114.9 bytes to 27.0 bytes. Thus, memory requirement is re-
duced by three to four times. But these improvements are
at the consequence of granularity.
As Table 3 shows, by enabling optimization, the overhead

of CINT is reduced from 28.4 times to 24.8 times, and the
overhead of CFP is reduced from 23.8 times to 22.2 times
when the unit is line. Also, the overhead of CINT is re-
duced from 13.3 times to 9.0 times, and the overhead of
CFP is reduced from 7.1 times to 6.1 times when the unit
is procedure. Thus, execution speeds up by 7.2% - 47.7%.
But these improvements sacrifice accuracy.
As shown above, there are very difficult trade-off prob-

lems between granularity, accuracy, overhead and memory
requirement. One of the advantage of the virtual machine
based approach is its flexibility. In our reversible debugger,
the user can choose the appropriate trade-off setting flexi-
bly during debugging without finishing and restarting the
debuggee. For example, users can first use the unit of pro-
cedures, and later change to the unit of lines when the parts
of code suspected to have bugs are narrowed down. Users

86

Table 3: Comparison of trade-offs.
Trade-off Setting Overhead [times] Memory Requirement [bytes]

Unit Optimization Granularity Accuracy CINT CFP CINT (per Line) CFP (per Line)
line noopt small high 28.4 23.8 59.5 114.9
line opt small low 24.8 22.2 59.5 114.9
proc noopt large high 13.3 7.1 414.7 (16.3) 4943 (27.0)
proc opt large low 9.0 6.1 414.7 (16.3) 4943 (27.0)

can also normally enable optimization, but for code where
dead register values are important (such as when registers
are allocated to variables in source code), they can disable
optimization. Since reverse execution has a very large cost,
such flexibility to consider trade-offs is very important.

5.3 Overhead due to the Virtual Machine
In our reversible debugger, there are two main sources of

overhead, the generated code runs slower than the original
code (step (v) in section 4.1), and the cost of code genera-
tion (steps (i), (ii), (iii), (iv), and (vi) in section 4.1). We
call the former execution overhead and the latter translation
overhead. The main problem of the virtual machine based
approach compared to the static instrumentation approach
is the translation overhead. We can consider that the exe-
cution overhead is about the same as the entire overhead of
the static instrumentation approach, if the same trade-off is
chosen. So, the overhead due to the virtual machine based
approach itself is mainly caused by the translation overhead.
We consider the percentage that the total translation over-
head occupies within the entire execution time, assuming
that the total translation overhead is constant regardless of
the trade-off setting chosen.
We calculate the translation overhead by first considering

the entire execution time of our virtual machine when no
state saving is performed. This execution time consists of
the execution time of the generated code (the execution time
of the original code plus the execution overhead), and the
translation overhead. Since no state saving is performed
in the generated code, we can assume that the execution
time of the generated code is the same as the execution time
when execution is performed directly on the real CPU. Thus,
we can approximate the translation overhead by subtracting
the execution time when execution is performed directly on
the real CPU from the entire execution time of our virtual
machine when state saving is not performed.
Table 4 shows the percentage of the translation overhead

within the entire execution time for each trade-off setting.
As Table 4 shows, the percentages are low: under 5% when
lines are used as the units, and under 11% when procedures
are used as units 4. This is because our virtual machine
performs caching and linking of the translated fragments
[13] as described in section 4.1.1. They cache translated
fragments in the internal buffer, and link between translated
fragments directly by branch instructions. So, as execution
proceeds, the number of times steps (i), (ii), (iii), (iv) and
(vi) in section 4.1 happen is greatly reduced. Thus, their
contribution to the entire execution time becomes very small
as shown in the above results. Therefore, we can consider
that the overhead incurred by our virtual machine itself (the
translation overhead) to be unproblematic.

4Note that the percentages are higher when procedures are
used only because its entire execution time is smaller.

Table 4: Overhead of our VM [%]
Benchmark line/noopt line/opt proc/noopt proc/opt
CINT 3.8 4.5 7.5 10.7
CFP 1.1 1.3 3.2 3.7

6. CONCLUSIONS
We proposed a novel reversible debugger using the virtual

machine based approach. Our approach addressed the prob-
lems of (1) compatibility and (2) efficiency that existed in
previous works. We used native machine code as the target
of our reversible debugger and made use of dynamic trans-
lation. In addition, our approach provides two execution
modes: the native mode and the VM mode. This is made
possible by not destroying live registers or memory locations
in our virtual machine and keeping them “in the clear” for
the original execution.
Currently, our debugger provides four types of trade-off

settings (designated by unit and optimization) to consider
trade-offs between granularity, accuracy, overhead and mem-
ory requirement. The user can flexibly choose the appropri-
ate setting during debugging while considering the trade-offs
of the choices, without finishing and restarting the debuggee.
Future works include support of multi-threaded programs

as mentioned in section 4.3. Behaviors of multi-threaded
programs are much more complex than single-threaded pro-
grams. We believe that supporting multi-threaded programs
in reversible debuggers can be a great help to programmers.

7. ACKNOWLEDGMENTS
This study was supported by the Special Coordination

Funds of the Ministry of Education, Culture, Sports, Science
and Technology of the Japanese Government.

8. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An

execution-backtracking approach to debugging. IEEE
Software, 8(3):21–26, 1991.

[2] A. V. Aho, R. Sethi, and J. D. Ulman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[3] T. Akgul and V. J. Mooney. Instruction-level reverse
execution for debugging. In Proc. of Workshop on
Program Analysis for Software Tools and Engineering,
pages 18–25, 2002.

[4] T. Akgul, V. J. Mooney, and S. Pande. A fast
assembly level reverse execution method via dynamic
slicing. In Proc. of 26th International Conference on
Software Engineering, pages 522–531, 2004.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. In Proc. of

87

Conference on Programming Language Design and
Implementation, pages 1–12, 2000.

[6] S. Chen, W. K. Fuchs, and J. Chung. Reversible
debugging using program instrumentation. IEEE
Trans. on Software Engineering, 27(8):715–727, 2001.

[7] B. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling. In
Proc. of Conference on Measurement and Modeling of
Computer Systems, pages 128–137, 1994.

[8] J. J. Cook. Reverse execution of Java bytecode. The
Computer Journal, 45(6):608–619, 2002.

[9] C. Demetrescu and I. Finocchi. A portable virtual
machine for program debugging and directing. In
Proc. of Symposium on Applied Computing, pages
1524–1530, 2004.

[10] L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In Proc.
of Symposium on Principles of Programming
Languages, pages 297–302, 1984.

[11] H. Lieberman and C. Fly. Bridging the gulf between
code and behavior in programming. In Proc. of
Conference on Human Factors in Computing Systems,
pages 480–486, 1995.

[12] T. Moher. Provide: A process visualization and
debugging environment. IEEE Trans. on Software
Engineering, 14(6):849–857, 1988.

[13] K. Scott, N. S. Velusamy, B. Childers, J. Davidson,
and M. L. Soffa. Retargetable and reconfigurable
software dynamic translation. In Proc. of
International Symposium on Code Generation and
Optimization, pages 36–47, 2003.

[14] The Standard Performance Evaluation Corporation
(SPEC). http://www.specbench.org.

88

