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Abstract
This paper explores ways to provide improved consis-
tency for Internet applications that scale to millions of
clients. We make four contributions. First, we iden-
tify how workloads affect the scalability of cache consis-
tency algorithms. Second, we define two primitive mech-
anisms,split andjoin, for growing and shrinking consis-
tency hierarchies, and we present a simple mechanism
for implementing them. Third, we describe and evaluate
policies for using split and join to address the fault toler-
ance and performance challenges of consistency hierar-
chies. Fourth, using synthetic workload and trace-based
simulation, we compare various algorithms for maintain-
ing strong consistency in a range of hierarchy configura-
tions. Our results indicate that a promising configuration
for providing strong consistency in a WAN is a two-level
consistency hierarchy where servers and proxies work to
maintain consistency for data cached at clients. Specif-
ically, by adapting to clients’ access patterns, two-level
hierarchies reduce the read latency for demanding work-
loads without introducing excessive overhead for nonde-
manding workloads. Also, they can improve scalability
by orders of magnitude. Furthermore, this configuration
is easy to deploy by augmenting proxies, and it allows
invalidation messages to traverse firewalls.

1 Introduction
To improve performance and reduce bandwidth,

caching has become a ubiquitous Internet technology.
However, web caching introduces the problem of main-
taining consistency. With weak notions of consis-
tency users can observe confusing data, and innovative
web services—such as agents, robots, and distributed
databases—will likely produce incorrect results. Fur-
thermore, consistency polling can increase server load,
increase latency, and reduce the effectiveness of large-
scale caches [9, 5]. Thus, improved consistency will be-
come increasingly desirable.
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98-8911, and grants from Dell, Novell, and Sun. Dahlin and Alvisi
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Callback-based consistency can be used either to pro-
vide strong consistency—which guarantees that a client’s
read of an object returns the latest completed write of
that object—or best effort consistency—which attempts
to invalidate stale data when it changes and which can
limit the amount of time during which a client unknow-
ingly accesses stale data [20]. However, simple call-
backs are unacceptable for a WAN because servers may
be forced to delay their writes indefinitely when there are
client failures or network partitions.

In previous work, we show how to combine callbacks
with timely server writes by usingVolume Leases[20],
a generalization of the original notion ofleases[7]. By
coordinating per-volume and per-object leases, the Vol-
ume Leases algorithm presents a fundamental abstrac-
tion that provides a mechanism for enforcing strong con-
sistency semantics that is separate from the policy ques-
tion of when to renew volume leases. We focus on a
policy where clients fetch volume lease renewals on de-
mand when they access a volume; in the future we plan
to explore other policies such as prefetching or multicas-
ting lease renewals. Our earlier study uses trace-driven
simulations and shows that Volume Leases performs well
compared to object leases and polling.

The key questions that this paper answers are (1) how
large a system can Volume Leases accommodate, and
(2) what techniques can be used to scale to even larger
systems? To answer these questions, this paper explores
ways to accommodate popular web servers with millions
of clients by combining Volume Leases with hierarchies.

Adding hierarchy to callback-driven consistency can
yield three benefits. First, latency can be reduced if
clients can register callbacks or renew leases by going
to a nearby node in the consistency hierarchy rather than
to the server. Second, hierarchy can improve network ef-
ficiency by forming a multicast tree for sending invalida-
tion messages to caches and a reduction tree for gather-
ing their replies. Third, hierarchy improves server scal-
ability by distributing load and callback state across a
collection of nodes.

However, using hierarchy for scalable consistency in-
troduces its own challenges. Availability may suffer be-



cause hierarchical structures consist of multiple nodes
that can fail independently. Also, latency can increase
if the hierarchy must be traversed to satisfy requests. Fi-
nally, it is unclear how best to configure the hierarchy.

This paper develops solutions for hierarchical consis-
tency and addresses these issues. We make four contribu-
tions. First, we identify and quantify the ways in which
specific characteristics of data-access workloads affect
the scalability of cache consistency algorithms. Second,
we define two primitive mechanisms,split and join, for
growing and shrinking hierarchies, and we show how
these primitives can be implemented with a simple mech-
anism already present in the Volume Leases algorithms.
Third, we describe and evaluate policies for using split
and join to address the fault tolerance and performance
challenges of hierarchies. Fourth, we examine and com-
pare algorithms for maintaining consistency in a range of
hierarchy configurations.

We explore three configurations. First, ingeneric hi-
erarchy, consistency proxies can be placed anywhere in
the Internet. The second configuration,server-proxy-
client, is designed to exploit widely deployed web prox-
ies, which serve as gateways between enterprise LAN
and web servers to improve security and network effi-
ciency. In this configuration, web proxies are augmented
to serve as consistency proxies that forward invalidation
messages from web servers. This addresses the engineer-
ing challenge introduced by firewalls that generally pre-
vent external machines from sending invalidation mes-
sages directly to clients within the firewall. The third
configuration is theserver clusterconfiguration in which
hierarchy is introduced only within a LAN cluster of
servers to improve scalability.

We evaluate our algorithms using simulation. To study
scalability and to evaluate how the system is affected by
different workload characteristics, we first use a series of
synthetic workloads. To calibrate these results with re-
alistic workloads, we also examine some smaller trace-
based workloads. Overall, we find that even without hi-
erarchies, Volume Leases can scale to services with tens
of thousands of clients; with hierarchies, scalability be-
yond millions of clients appears feasible.

The thesis of this paper is not that all servers should
provide strong consistency, but rather that for Internet-
scale systems, strong consistency is feasible for a wide
range of applications. We envision flexible systems
where either servers or clients can specify the consis-
tency semantics for their data [10]. The algorithms
described here can also be used to providebest effort
consistencywhere servers make a best effort to notify
clients of changes to cached data, but servers do not de-
lay writes. We discuss best effort versions of Volume
Lease consistency algorithms in detail elsewhere [20].

The rest of this paper proceeds as follows. Section 2

discusses a few ideas that are needed to understand this
work. Section 3 describes our new algorithm whose per-
formance we evaluate in Section 4. We close by dis-
cussing related work and drawing conclusions.

2 Background
This section describes four concepts necessary to un-

derstand hierarchical consistency: callbacks, leases, the
Volume Leases algorithm, and reconnection under Vol-
ume Leases.

In server-driven consistency, a client registerscall-
backswith a server for objects that it caches [9, 15].
Before modifying an object, a server sends invalidation
messages to all clients that have registered interest in that
object. The advantage of this approach is that servers
have enough information to know exactly when cache
objects must be invalidated. By contrast, in client-driven
consistency schemes, such as those currently used in
NFS and HTTP, clients periodically ask the server if ob-
jects have been modified. This creates a dilemma for the
client. A short polling period increases both server load
and client latency, while a long polling period increases
the risk of reading stale cache data.

However, there are two challenges for server-driven
consistency in large distributed systems. First, scalabil-
ity is an issue, because large numbers of clients lead to
large server state and large bursts of load when popular
objects are modified. Second, performance in the face of
failures is an issue because servers cannot modify an ob-
ject until all clients have been notified that their cached
copies are no longer valid. Because of this requirement,
server writes can be delayed indefinitely while the server
waits for acknowledgments from unreachable clients.

These challenges can be addressed by introducing
leases[7]. When a client registers a lease with a server,
the lease specifies some timeT during which the server
will notify clients of updates. Leases improve scalability
because servers need to track only active clients, and they
improve fault tolerance because even if a client is un-
reachable, writes are delayed only until the client’s lease
expires. The lease lengthT presents a trade-off. Long
leases minimize the overhead of renewing leases, while
short leases reduce server state and improve failure-mode
write performance.

Leases do not perform well for web workloads be-
cause the interval between a client’s reads is typically
long, so object leases must be long to amortize the cost
of lease renewals across multiple reads [20]. TheVol-
ume Leasesalgorithm introduces the notion of a volume,
which is a collection of objects that reside on the same
server. The algorithm associates a lease with each vol-
ume as well as with each object. A client’s cached ob-
ject is valid only if both its object lease and correspond-
ing volume lease are valid. The Volume Leases algo-



rithm uses a combination of long object leases and short
volume leases to resolve the tradeoff with lease lengths.
Short volume leases allow servers to write quickly in the
face of client and network failures: since clients can’t
read an object when its corresponding volume lease is
invalid, in the worst case the server waits only for the
the short volume lease to expire before modifying an ob-
ject. While the cost of renewing short volume leases is
amortized across the number of objects that reside in the
same volume, long object leases minimize the overhead
of renewing object leases.

In the Volume Leases algorithm, a server maintains a
list of unreachable clients whose volume leases expired
while the server was attempting to invalidate an object
lease. We call this list theunreachable list. After an
unreachable client recovers or its network connection to
the server is restored, the next time that client tries to
renew its volume lease the algorithm uses a reconnection
protocol to restore consistency between the client’s and
server’s lists of current object leases.

Because the reconnection protocol is a key building
block for hierarchical caching, we describe it in detail.
Each server maintains anepoch number. Whenever a
server recovers from a crash, it increments the epoch
number and logs that number to stable storage before
proceeding with normal operations. All messages from
a server to its clients include the epoch number. When
a client receives a message from a server, it records
the server’s epoch number. When a client sends a vol-
ume lease request to a server, it always includes the last
known epoch number for that server. A server grants
a volume lease only if the epoch number in the request
matches its current epoch and if it has not marked client
unreachable. If the client’s epoch number does not match
or if the client is marked unreachable, the server sends
the client a reconnect request. In response to such a re-
quest, a client sends the server the list of objects it cur-
rently caches and theversion numbersof these objects.
The version number associated with an object is an in-
teger that the server increments whenever it modifies the
object. The server then compares the version numbers of
the cached objects and server’s objects and grants object
leases to all objects whose versions match. The server
invalidates all other cached objects then grants the vol-
ume lease. All these tasks can be accomplished with
one message from the server to the clients. When the
client finishes updating its object leases, it sends a con-
nect message back to the server, which then removes the
client from the unreachable list.

3 Algorithms
We first describe a naive algorithm based on a static

consistency hierarchy and discuss its performance and
fault tolerance properties. Next, we present two primitive

mechanisms, split and join, for reconfiguring the hierar-
chy. These mechanisms can be constructed with trivial
additions to the basic Volume Leases algorithm. We then
describe policies that use these mechanisms to enhance
the fault tolerance and performance of the basic static hi-
erarchy.

Both the static and dynamic versions of the algorithm
assume that nodes participating in the consistency ser-
vice have been identified and organized into an initial
hierarchy. This study does not specify a particular mech-
anism for doing so. For some systems, constructing the
hierarchy manually suffices; for some, such as the server-
proxy-client configuration in Section 4.3, automatic con-
struction is trivial; for others, more sophisticated auto-
matic strategies such as those described by Plaxton et.
al [16] might be required. This hierarchy may be embed-
ded on current clients and proxies, it might be coincident
with a larger cache hierarchy [2] or it might be part of a
separate data-location-metadata hierarchy [6, 18].

3.1 Static hierarchy
Our consistency hierarchy is a tree structure of in-

terconnected nodes. We refer to the root as theorigin
server, to the leaves asclients, and to the intermediate
nodes asconsistency servers. Each node runs the stan-
dard Volume Leases algorithm; each intermediate node
acts both as a client and as a server, treating its parent
as its server and its children as its clients. Each node
thus satisfies lease requests from its children by return-
ing a valid lease if it has one cached, or—if it does not—
by requesting a lease from its parent, caching the lease,
and returning the lease to its child. Similarly, each node
passes to any children that have valid leases the invalida-
tion messages that it receives.

Such hierarchies have the potential to improve per-
formance by reducing both server load and the latency
of client lease renewals. In the Internet, a popular site
might serve millions of clients, and by using a hierar-
chy, a server tracks and communicates with only its im-
mediate children. This reduces memory state, average
load for lease renewals, and bursts of load when pop-
ular objects are modified. In essence, the consistency
hierarchy forms a multicast tree for sending invalidation
message and forms a reduction tree for gathering replies.
By the same token, if clients can renew leases by going
to nearby intermediate consistency servers rather than to
the root server, read latency and network load may be
reduced.

However, the use of leases in the hierarchy is not guar-
anteed to reduce either server load or latency. When vol-
umes are popular and frequently accessed, it is likely
that consistency servers will hold valid leases and will
respond to client requests without consulting their par-
ents, and it is likely that the hierarchical “multicast” will
achieve a large fan-out and significantly reduce server



load. However, for unpopular or infrequently accessed
volumes, the time between accesses to consistency nodes
is likely to be longer than the volume lease, so the cached
leases may often have expired when they are accessed.
In these cases, many messages would traverse the entire
hierarchy, increasing the average read latency without re-
ducing server load.

A second problem with a static hierarchy is reliability.
The hierarchy consists of a large number of nodes that
can fail independently, and one node failure can effec-
tively disconnect a subtree.

3.2 Join and split
The solution to both problems is to reconfigure

the consistency hierarchy dynamically without breaking
consistency guarantees. We propose a mechanism that
uses two primitives:join, which removes an intermedi-
ate node from the hierarchy, andsplit, which adds an in-
termediate node to the hierarchy. Both primitives work
on a per-volume basis—in our system different volumes
can use different hierarchies.

Join and split can be trivially implemented using
mechanisms already required by the Volume Leases al-
gorithm. Recall that join removes a node from the hi-
erarchy, connecting the children of the node directly to
the node’s parent. To implement join we augment the
volume epoch number to include the parent node’s iden-
tity. When a child initiates a join for a particular volume,
it simply begins using its former grandparent as a par-
ent. The volume epoch number held by the child will
not match its new parent, so the new parent initiates the
standard volume reconnection protocol to synchronize its
state with its new child. Thus, going to a new parent in
the hierarchical algorithm is no different than going to
a server that has crashed and lost a client’s state in the
original Volume Leases algorithm. Similarly, to split the
hierarchy, a child chooses a descendant of its parent and
starts using the new node as its parent, again using the
reconnection protocol to synchronize the state. For both
split and join, the decision to use a new parent can be
made by children at arbitrary times. The criteria for such
decisions are a matter of policy. Children can thus decide
to find new parents to improve fault tolerance or they can
be told to use new parents to improve performance.

3.3 Fault tolerant static hierarchy
Using join and split, an intermediate node failure is

handled as follows. If a nodeN cannot contact its parent
P to renew a lease, it sends the renewal message to one of
its ancestorsA, triggering the volume reconnection pro-
tocol betweenN andA. Note that ifA cannot send an
invalidation toP , it does not try to contactN , but instead
waits for the volume lease timeout; this means that par-
ents need to know only about their immediate children,
not their more distant descendents. Finally, when nodeP

recovers, it can send hints to its list of (former) children
suggesting that they split fromA and joinP instead.

3.4 Dynamic hierarchy configuration
For volumes with high read frequencies and many ac-

tive clients, a deep hierarchy can reduce read latency and
distribute load. However, for less popular objects, or
for popular objects with low read frequency, intermedi-
ate hops can increase read latency without significantly
reducing server load. Therefore, it is useful for differ-
ent volumes to construct different dynamic hierarchies.
These hierarchies can be constructed from the static hi-
erarchy using the split and join mechanisms in response
to changing workloads. Hence, a node can have different
children in the static and dynamic hierarchies: we refer
to the former asstatic children, and to the latter simply
aschildren.

In the dynamic configuration algorithm a nodeN
monitors the number of lease requests it receives from
its children and the fraction of these requests that it can
satisfy locally during time intervals of lengthT . Using
this data,N instructs its children to join with its parent
if (1) the load from its children would not cause the load
on its parent to exceed a threshold value and (2) its chil-
dren would receive better read latency by skippingN and
going directly to the parent.N performs the latency cal-
culation as follows.

Let RenewCost(N) be the cost for a child ofN to
renew a lease cached atN , and letRenewCost(P ) be
the cost forN to renew a lease cached at its parent. If the
fraction of renewals thatN satisfies locally isF , then
the expected latency that a child ofN pays to renew a
lease isRenewCost(N)+(1�F )RenewCost(P ). As-
suming that the cost of accessingN ’s parent is about the
same for bothN andN ’s child, the expected cost af-
ter a join isRenewCost(P ). WhenRenewCost(N) +
(1�F )RenewCost(P ) is greater thanRenewCost(P )
by some threshold,N instructs its children to perform a
join unless doing so would raise the load of the parent to
an unacceptable level.

Similarly, to determine when to initiate a split, a node
monitors the requests from its children and initiates a
split if (1) its local load exceeds some threshold or (2)
connecting a set of children to a skipped node would re-
duce their expected read latency by some threshold.

A nodeN performs this read latency calculation by
simulating the performance of its skipped children as fol-
lows. For each static childS, N maintains a simulated
request countReqCount(S), hit countHitCount(S),
and volume lease expiration timeV olExp(S). When
a child C of N contactsN to renew a lease,N up-
dates the statistics for the skipped childS that is a
static ancestor ofC by (1) incrementingReqCount(S),
(2) incrementingHitCount(S) if the current time is
before V olExp(S), and (3) settingV olExp(S) to



the current time plus the volume lease length. Let
RenewCost(N) be the cost forC to renew its lease
at N andRenewCost(S) be the cost forC to renew
its lease from the skipped childS instead. N tells C
and its siblings to split fromN and instead useS as
their parent ifRenewCost(S) + (1 �

HitCount(S)
ReqCount(S) ) �

RenewCost(N) < RenewCost(N)� threshold.

4 Evaluation
We evaluate hierarchical consistency in three different

deployment configurations. First, we examine an aggres-
sive deployment model,generic hierarchy, to character-
ize the factors that affect the behavior of the core algo-
rithms and to determine the performance limits of our
approach. Second, we examine a simpleclustered-server
configuration in which the hierarchy is used to distribute
the algorithm across a LAN cluster in order to improve
scalability but not latency. This configuration might
be used if a service wishes to provide strong consis-
tency for its data without relying on having consistency-
enabled intermediate proxies deployed across the WAN.
Third, we examine aserver-proxy-clientconfiguration
that maps well to infrastructure that is common today.

We evaluate these algorithms using simulations. To
study scalability and to evaluate how different aspects of
workloads impact scalability, we first use a series of syn-
thetic workloads. We run each of these experiments five
times using different random seeds for workload genera-
tion and show the 90% confidence interval for each point.
Then, to calibrate these results, we examine a smaller,
trace-based workload in the context of the server-proxy-
client configuration.

Based on these experiments, we reach the following
conclusions:

� For the aggressive deployment scenario with flexi-
ble hierarchy configurations, static hierarchies can
reduce latency compared to the flat Volume Leases
algorithm for high request-rate services, but they
can increase latency for low request-rate services.
In contrast, the dynamic version always performs as
well as the flat algorithm for low request rates and
as well as the static hierarchy for high request rates.

� For workloads with modest request rates in the
range of many current web services, the flat Volume
Leases algorithm with a single server can scale to
client populations in the tens or hundreds of thou-
sands of nodes; distributing the consistency algo-
rithm across a group of nodes—either in a cluster
or across a WAN—via hierarchies can provide scal-
ability to millions of clients even under aggressive
workloads.

� In the server-proxy-client configuration, the sim-
ple static hierarchy performs well for our web trace
workload; this configuration has the added benefit
that it might also provide a controlled way to tra-
verse firewalls in order to deliver consistency sig-
nals. The synthetic workload suggests that there
may be other workloads for which the dynamic al-
gorithm’s flexibility is desirable.

Our methodology makes several significant assump-
tions and simplifications. For our latency estimates, we
do not simulate network or server contention. We use a
simple network topology and delay model to make our
analysis tractable. Finally, our default synthetic work-
loads simulate one object per volume. This may under-
state the apparent benefit of hierarchies because long-
lived object leases are much easier to cache in the hi-
erarchy than short volume leases; furthermore, the small
number of objects per volume may also hurt the relative
performance of the static algorithm.

4.1 Generic hierarchy
Our Generic Hierarchy configuration represents a sys-

tem with few constraints on deployment. We examine
this configuration to understand the behavior of the core
algorithms as we vary several key parameters. This con-
figuration also models an aggressive deployment strategy
such as might be employed within a large cache service
or in a system where collections of servers and cache sys-
tems coordinate to provide consistency.

The consistency hierarchy is a tree with one server at
its root,C clients at its leaves, andl � 1 levels of inter-
mediate nodes. We designate the server to be the level 0
node of the consistency hierarchy. For simplicity, we as-
sume that at all levels of the tree the degreed is the same,
with dl = C. We defer the evaluation of hierarchies
with different fan-out at different levels for future work.
We use a simple cost model for accessing consistency
servers. First, we assume that all leaf nodes and internal
nodes within a subtree experience the same latency when
they renew a lease with the root of that subtree. Second,
we assume that the latency experienced within a subtree
increases with the number of leaves in the subtree as fol-
lows: subtrees with 100 or fewer leaves have a latency
of 30 ms, subtrees with 10,000 leaves have a latency
of 100 ms, and subtrees with more than 100,000 leaves
have a latency of 400 ms; latencies for subtrees with 100-
10,000 nodes and 10,000 to 100,000 nodes are estimated
through interpolation. These latencies are meant to be
suggestive of department-, enterprise-, and Internet-scale
delays, but do not represent any specific system.

We use a synthetic workload and compute the aver-
age read latency and server load when we simulate the
accesses of a collection of clients to a single volume.
Out of Ntotal clients, we choose a subset of clients of
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Figure 1: Average read latency as the per-client read frequency is varied for a hierarchy of one million clients, of which 200,000
access the volume in question.
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Figure 2: Average read latency as the number of active clients varies for a hierarchy of one million clients, each issuing requests
to a volume at a rate of 0.1 requests per volume lease period.

sizeNactive that access the volume with per-client inter-
access times determined using an exponential distribu-
tion around an average valuetread, which is expressed
as a ratio of the average inter-access time to the volume
lease renewal time. In our initial experiment, each vol-
ume contains a single object; we relax this assumption
later in this section.

Read Frequency A server’s read frequency has a large
impact on the performance of hierarchical consistency.
The higher the collective read frequency of the clients
below a proxy, the more often the proxy holds the lease.
Hence, if the read frequency is high the lease hit ratio
will be high and the proxy can reduce read latency. Oth-
erwise, if the collective read frequency is low, then the
lease hit ratio will be low.

Figure 1 shows the average lease renewal latency as
the per-client read frequency is varied. Figure 2 shows
lease renewal latency as the fraction of clients that access
the volume in question is varied. The graphs compare the
performance of a flat, 2-level, 3-level, and 4-level consis-

tency hierarchy with part (a) of each figure showing per-
formance for the static algorithm and part (b) showing
performance for the dynamic algorithm. Figures 1 and 2
have the same general shape because as one moves to the
right along the x axis the total request rate increases in
both sets of graphs. But, these graphs represent different
dimensions of the design space. Read latency generally
decreases as read frequency increases. For high request
rates, the read latency falls even for the flat configuration
because a client issues multiple reads within the period
the client’s volume lease is valid.

To interpret these graphs it is helpful to consider where
different classes of services might lie or where a single
service might lie under different workloads. For exam-
ple, a weather service that is visited by an average client
once a day for one minute and that uses a 10-second lease
period would correspond to a read frequency of less than
0.001 reads per volume lease period per client. Simi-
larly, a news service whose typical users visit for 5 min-
utes during the 8-hour working day would correspond to
a volume renewal frequency near 0.01 per volume lease
period per client. The read frequency of that same ser-
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Figure 4: Average server load for handling renewal requests as the per-client read frequency is varied for a hierarchy of one
million clients, of which 200,000 access the volume in question.

vice might jump above 0.1 or even near 1 for periods of
time during news events of widespread interest as clients
constantly monitor the news for new developments. Sim-
ilarly, emerging program-driven applications might span
a wide range of the parameter space.

With respect to lease renewal latency as a function of
read frequency, the main observations are as follows:

� Hierarchies can significantly reduce latency for ac-
tive and popular services.

� The dynamic hierarchy succeeds in matching the la-
tency of the flat Volume Leases algorithm for less
active or less popular services while matching the
performance of the static hierarchy for busier ser-
vices. Relative to flat Volume Leases, the static hier-
archy can hurt latency for less active or less popular
services but can help latency for active and popular
services.

� The dynamic hierarchy appears to be a good default
choice for this configuration. If a service’s access
patterns are known and if these access patterns do

not change much, then either flat Volume Leases or
a static hierarchy may be reasonable, depending on
the workload.

Finally, note that the variations among different depths
of underlying static trees depend both on interactions be-
tween the number of clients under each level of a sub-
tree and on our assumptions on the network distances
between subtrees as a function of subtree size. Hence,
this experiment should not be used for general compar-
isons between the number of levels that should be used
in the underlying hierarchy.

Figure 3 shows similar experiments but with 100,000
total clients (20,000 of them active) rather than
1,000,000. Comparing these results to those with more
clients provides intuition about the effects of scaling the
client population, which may help predict system behav-
ior for populations larger than the 1,000,000 that we are
able to simulate.

� As expected, increasing (decreasing) the total num-
ber of clients decreases (increases) the per-client re-
quest rate for which hierarchies begin to pay off rel-
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Figure 6: Same as Figure 5, except that the read frequency is
0.1 read per client per volume lease period.

ative to the flat Volume Leases configuration. We
observe similar results when we vary the number of
active clients (graph omitted).

Figure 4 shows how server load varies with client re-
quest rate hierarchies spanning one million clients. (Re-
sults for varying the number of active clients or simu-
lating a universe of 100,000 clients are omitted, but are
qualitatively similar). Assuming that a server can han-
dle a few thousand requests per volume lease period, we
conclude:

� The flat Volume Leases algorithm scales to tens of
thousands of clients under workloads corresponding
to a range of reasonable web access patterns.

� The addition of hierarchies supports scalability to
many millions of clients under nearly arbitrary
workloads because it bounds the rate of requests at
the root to one request per volume lease period per
immediate child of the root.

Writes to multiple-object volumes To make simulat-
ing a large scale hierarchy feasible, we have so far con-
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Figure 7: Average server messages per volume lease period
under the dynamic algorithm as the write frequency for 10 ob-
jects in a server volume is varied. Average read frequency per
client is fixed at 0.01 read per client per volume lease period.
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Figure 8: Same as Figure 7, except that the read frequency
per client is 0.1 read per client per volume lease period.

sidered only the cost of renewing volume leases. We
have not examined the cost of renewing or invalidating
object leases. This simplification affects our results in
two ways. First, it causes us to understate average read
time because in reality clients will sometimes have valid
volume leases but still need to fetch object leases. This
effect should be modest because object leases are much
longer than volume leases. Second, this simplification
may cause us to understate the benefit of consistency
proxies, particularly when read frequency is low, because
consistency proxies can cache long object leases more
effectively than short volume leases. To calibrate the ef-
fect of object leases for popular servers, we run several
simulations with multiple object leases per volume. The
results are illustrated in Figures 5 to 10. Due to space
constraints, we show the graphs for the dynamic hierar-
chy algorithm and omit those for the static algorithm; the
static results differ little from the dynamic ones.

In these experiments, the server volume contains 10
objects. Each object is modified independently with av-
erage write frequency varying from 0.1 writes to 1000
writes per client read. We illustrate performance for
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fixed at 0.01 read per client per volume lease period.
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Figure 10: Same as Figure 9, except that the read frequency
per client is 0.1 read per client per volume lease period.

servers that have average 0.01 read and 0.1 read per vol-
ume lease per client. For example, a system with 30 sec-
ond volume leases, 3000 seconds between client reads,
and 300 seconds between writes would correspond to the
Write Frequency = 10point in Figure 5.

Figure 5 shows the average read latency as the write
frequency changes. Each client issues an average of
0.01 reads per volume lease period. When write fre-
quency is between 0.1 to 10 writes per client read, the
results closely match our simplified experiment. Only af-
ter write frequency gets higher than 10 writes per client
read does the read latency increase become noticeable.
Figure 6 is similar to Figure 5, except the read frequency
is set to 0.1 reads per volume lease period instead of 0.01.
Figures 7 and 8 show the average server load under the
same workload as Figures 5 and 6.

Figures 9 and 10 show the average write latency as
the write frequency changes. We calculate the write
latency by finding the critical path from when the
server sends its first invalidation until it receives the
final reply. At each node,N , of the hierarchy, we
charge writeCost(N) = nV alidChildren(N) �
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Figure 11: Server lease renewal load as the per-client read
frequency is varied for a static server cluster hierarchy serv-
ing one million clients, of which 200,000 access the volume in
question.

costPerChild + latencyToChild(N) +
max8cjc2children(N)(writeCost(c)) where
nV alidChildren(N) is the number ofN ’s direct
children that have valid volume leases. Note that
by using thedelayed invalidationoptimization [20],
the sending of invalidation messages to nodes whose
volume leases have expired can be removed from the
critical path. The latency to a child is determined by the
topology according to our standard formula, and the cost
per child is set to 1 ms.

The data indicate three main effects:

� When write frequency increases, the benefit of hier-
archy for reads is eroded.

� As write frequency decreases, the write latency in-
creases. This is because the number of valid leases
that accumulate between writes, and thus must be
invalidated, increases.

� For a frequently accessed popular server, flat vol-
ume leases can introduce significant write delays,
but hierarchies can remedy this problem.

4.2 Server cluster
The hierarchical consistency mechanisms can be used

not only to distribute consistency algorithms across a
WAN, but also to split a consistency service across a
clustered web server on a local area network (LAN) or
system area network (SAN). Although an algorithm op-
timized for splitting consistency state and load across a
cluster with a fast network might marginally outperform
our more general mechanisms, such an algorithm must
solve the same basic problems of fault tolerance, dis-
tributing invalidations, gathering acknowledgments, and
partitioning state that our algorithm handles, so the sim-
plicity of using a single framework for both LAN and
WAN distribution appears attractive.



Figure 11 shows the load on the server in the server
cluster hierarchy where the server and all of the inter-
nal nodes of the consistency hierarchy are located in
a tightly-coupled cluster, and the lowest internal nodes
in the hierarchy communicate across a WAN with the
clients. This configuration is not designed to improve
latency, just load-scalability. As a result, read latency
cannot be affected significantly by modifying the con-
sistency structure. Hence, it is not necessary to build a
dynamic hierarchy in this circumstance.

Based on this experiment, we conclude:

� For the server-cluster configuration, the static hier-
archy (with split and join for fault tolerance) pro-
vides a simple mechanism to scale the flat volume
leases algorithm by distributing it across a group of
nodes in a cluster; dynamic configuration to mini-
mize latency is not required.

4.3 Server-proxy-client

Figures 12 and 13 show the latency and load mea-
surements when the hierarchy algorithms are run on the
server-proxy-client underlying hierarchy with one mil-
lion clients grouped into 100 proxy-groups of 10,000
clients per group. This experiment suggests two points:

� For low read frequencies, the dynamic hierarchy
where clients may contact servers directly has a
modest advantage over the static hierarchy.

� At high read frequencies both the static and dy-
namic configurations significantly outperform the
flat configuration.

Figure 14 shows latency for several selected volumes
under a trace workload. The workload is the DEC
trace [4], and we configure the system with all clients
under a single proxy. We map each server in the trace
to a different volume. We present results for 8 selected
servers: the 4 most popular ones and 4 of medium popu-
larity.

� The trace workloads include multiple objects per
volume, and long object leases are easier to cache
in a hierarchy. As a result, the static hierarchy be-
gins to pay dividends even with relatively low ac-
cess rates.

This suggests that for many current web workloads,
the simple static hierarchy using the simple server-proxy-
client hierarchy may be a reasonable deployment option.
This configuration might also provide a practical way to
traverse firewalls to deliver consistency signals.

5 Related work
In previous work, we compared non-hierarchical con-

sistency algorithms based on volume leases to traditional
callback and polling algorithms. We found that algo-
rithms based on volume leases could both (i) signifi-
cantly outperform traditional callback or object lease al-
gorithms for a given maximum tolerable server write de-
lay; and (ii) could provide stronger consistency guaran-
tees with performance competitive with callback-based
algorithms. Earlier studies by Gwertzman and Seltzer [8]
and by Liu and Cao [13] also compare callbacks to
polling. Liu and Cao find the performance of the two
approaches to be competitive. Gwertzman and Seltzer
find that polling with adaptive timeouts can outperform
callbacks, but that to gain this advantage the polling al-
gorithm may return stale data more than 4% of the time.

Worrell [19] compares callback and polling protocols
in a hierarchical caching system and concludes that the
callback algorithms have performance competitive with
polling for reasonable time-out values.

Yu et. al [21] independently develop a consistency
scheme based on hierarchy, leases, and volumes; this
proposal shares many properties with ours, but it differs
from ours in three main ways. First, it places a bound
on object staleness, whereas our algorithm can be used
either to provide strong consistency or to bound stale-
ness [20]. Second, its reconnection protocol requires a
client that becomes disconnected to discard all volume
and object leases and renew them individually. Third, its
consistency servers periodically multicast volume lease
renewals and recent object invalidations to their children.
Compared to client-initiated volume lease renewal, their
approach “pushes” renewals to clients that are not cur-
rently accessing a volume; it may thus improve read la-
tency while increasing network traffic and client over-
heads. Beyond these algorithmic differences, the exper-
imental focus of the study complements ours. Yu et. al
primarily focus on comparing the performance of hierar-
chical invalidation to polling, whereas we focus on un-
derstanding the scalability properties of hierarchies.

Cohen et. al [3] study the use of volumes for prefetch-
ing and consistency. The consistency algorithms they ex-
amine are best-effort algorithms based on client polling.
Some of their prefetching techniques might also be use-
ful for “prefetching” volume lease renewals in our sys-
tem. We speculate that adding such prefetching to our
system would reduce the read latency cost of hierarchies
but magnify the value of hierarchies in reducing server
load. Exploring this combination appears to be an inter-
esting area for further study.

Krishnamurthy and Wills [12] examine ways to im-
prove polling-based consistency by piggy-backing op-
tional invalidation messages on other traffic between a
client and server. Our volume-based approach allowsde-
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Figure 12: Average read latency as the per-client read frequency is varied for a server-proxy-client hierarchy of one million
clients, of which 200,000 access the volume in question. In the server-proxy-client hierarchy the internal nodes in the consistency
hierarchy are all proxies serving 10,000 clients each.
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Figure 13: Server lease renewal load as the per-client read frequency is varied for a server-proxy-client hierarchy serving one
million clients, of which 200,000 access the volume in question.

Med 1 Med 2 Med 3 Med 4
flat static dyn flat static dyn flat static dyn flat static dyn

Latency (ms) 160.5 129.4 135.4 99.0 89.5 92.1 55.6 61.2 57.3 276.3 297.0 279.7
Load (server msgs/read) 0.41 0.23 0.27 0.25 0.16 0.20 0.14 0.12 0.14 0.69 0.57 0.64

(a) Trace results for four medium-loaded volumes.

Large 1 Large 2 Large 3 Large 4
flat static dyn flat static dyn flat static dyn flat static dyn

Latency (ms) 84.1 30.8 30.7 123.2 51.1 51.2 133.0 46.7 46.7 68.9 39.3 39.6
Load (server msgs/read) 0.21 0.03 0.03 0.31 0.05 0.05 0.33 0.03 0.03 0.18 0.06 0.07

(b) Trace results for four heavily-loaded volumes.

Figure 14: Average read latency and fraction of renewal requests sent to the server for the four medium-loaded and four heavily-
loaded volumes from the DEC trace workload under a server/proxy/client hierarchy in which the internal node in the consistency
hierarchy is the proxy serving the DEC clients.



layed invalidations[20] where servers delay object in-
validation messages to clients whose volume leases have
expired. Combining delayed invalidations with piggy-
backing may be another useful optimization.

Cache consistency protocols have long been studied
for distributed file systems [9, 15, 17]. Several aspects
of Coda’s [11] consistency protocol are reflected in our
algorithms. In particular, our notion of a volume is sim-
ilar to that used in Coda [14]. However, ours differ in
two key respects. First, Coda does not associate vol-
umes with leases, and relies instead on other methods
to determine when servers and clients become discon-
nected. Second, because Coda is designed for different
workloads, its design trade-offs are different. For exam-
ple, because Coda expects clients to communicate with a
small number of servers and it regards disconnection as
a common occurrence, Coda aggressively attempts to set
up volume callbacks to all servers on each hoard walk.

Our reconnection protocol in which clients help
servers recover the state they need is based on the server
crash recovery protocol in Sprite [1].

Finally, we note that Volume Leases on the set of all
objects provided by a server can be thought of as pro-
viding a framework for the “heartbeat” messages used in
many distributed state systems.

6 Conclusions
In this paper we have shown that the Volume Leases

algorithm can provide strong consistency for Internet ser-
vices with hundreds of thousands of clients. We have
also shown how the Volume Leases can be applied to
hierarchical caches to perform well for workloads with
millions of clients. The key mechanisms, join and split,
can be implemented using a simple extension of the
Volume Leases algorithm. Finally, we have evaluated
a number of hierarchy configurations, and our results
show that a dynamically configurable hierarchy provides
tremendous amounts of scalability.

Acknowledgements
We thank the anonymous USITS reviewers and our

shepherd, Peter Honeyman, for their valuable feedback
on earlier drafts of this work.

References
[1] M. Baker. Fast Crash Recovery in Distributed File Sys-

tems. PhD thesis, University of California at Berkeley,
1994.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz,
and K. Worrell. A Hierarchical Internet Object Cache. In
Proc. of the 1996 USENIX Technical Conf., January 1996.

[3] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving
End-to-End Performance of the Web Using Server Vol-
umes and Proxy Filters. InProc. of the ACM SIGCOMM
’98 Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communication, 1998.

[4] Digital Equipment Corporation. Digital’s Web Proxy
Traces. ftp://ftp.digital.com/pub/DEC/
traces/proxy/webtraces.html , September
1996.

[5] B. Duska, D. Marwood, and M. Feeley. The Measured
Access Characteristics of World-Wide-Web Client Proxy
Caches. InProc. of the USENIX Symposium on Internet
Technologies and Systems, December 1997.

[6] S. Gadde, J. Chase, and M. Rabinovich. Directory Struc-
tures for Scalable Internet Caches. Technical Report CS-
1997-18, Duke University Department of Computer Sci-
ence, November 1997.

[7] C. Gray and D. Cheriton. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consis-
tency. InProc. of the 12th ACM Symposium on Operating
Systems Principles, pages 202–210, 1989.

[8] J. Gwertzman and M. Seltzer. World-Wide Web Cache
Consistency. InProc. of the 1996 USENIX Technical
Conf., January 1996.

[9] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System.ACM Trans. on
Computer Systems, 6(1):51–81, February 1988.

[10] Kermarrec, Kuz, van Steen, and Tanenbaum. A Frame-
work for Consistent, Replicated Web Objects. InProc.
of the 18th Intl. Conf. on Distributed Computing Systems,
1998.

[11] J. Kistler and M. Satyanarayanan. Disconnected Opera-
tion in the Coda File System.ACM Trans. on Computer
Systems, 10(1):3–25, February 1992.

[12] B. Krishnamurthy and C. Wills. Piggyback Server Inval-
idation for Proxy Cache Coherency. InProc. of the 7th
Intl. World Wide Web Conf., 1998.

[13] C. Liu and P. Cao. Maintaining Strong Cache Consistency
in the World-Wide Web. InProc. of the Seventeenth Intl.
Conf. on Distributed Computing Systems, May 1997.

[14] L. Mummert and M. Satyanarayanan. Large Granularity
Cache Coherence for Intermittent Connectivity. InProc.
of the Summer 1994 USENIX Conf., June 1994.

[15] M. Nelson, B. Welch, and J. Ousterhout. Caching in the
Sprite Network File System.ACM Trans. on Computer
Systems, 6(1), February 1988.

[16] C. Plaxton, R. Rajaram, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment.
In Proc. of the 9th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 311–320, June 1997.

[17] V. Srinivasan and J. Mogul. Spritely NFS: Experiments
with Cache Consistency Protocols. InProc. of the 12th
ACM Symposium on Operating Systems Principles, pages
45–57, December 1989.

[18] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Consid-
erations for Distributed Caching on the Internet. InProc.
of the 19th Intl. Conf. on Distributed Computing Systems,
May 1999.

[19] K. Worrell. Invalidation in Large Scale Network Object
Caches. Master’s thesis, University of Colorado, Boulder,
1994.

[20] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using Leases to
Support Server-Driven Consistency in Large-Scale Sys-
tems. InProc. of the 18th Intl. Conf. on Distributed Com-
puting Systems, May 1998.

[21] H. Yu, L. Breslau, and S. Schenker. A Scalable Web
Cache Consistency Architecture. InProc. of the ACM
SIGCOMM ’98 Conf. on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication,
September 1999.


