
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

S T I N G : A T C P - B A S E D N E T W O R K
M E A S U R E M E N T T O O L

Stefan Savage

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Sting: a TCP-based Network Measurement Tool
Stefan Savage

Department of Computer Science and Engineering
University of Washington, Seattle

savage@cs.washington.edu

Abstract

Understanding wide-area network characteristics is crit-
ical for evaluating the performance of Internet applica-
tions. Unfortunately, measuring the end-to-end network
behavior between two hosts can be problematic. Tradi-
tional ICMP-based tools, such asping , are easy to use
and work universally, but produce results that are lim-
ited and inaccurate. Measurement infrastructures, such
as NIMI, can produce highly detailed and accurate re-
sults, but require specialized software to be deployed at
both the sender and the receiver. In this paper we ex-
plore using the TCP protocol to provide more accurate
network measurements than traditional tools, while still
preserving their near-universal applicability. Our first
prototype, a tool calledsting, is able to accurately mea-
sure the packet loss rate on both the forward and reverse
paths between a pair of hosts. We describe the techniques
used to accomplish this, how they were validated, and
present our preliminary experience measuring the packet
loss rates to and from a variety of Web servers.

1 Introduction

Measuring the behavior between Internet hosts is critical
for diagnosing current performance problems as well as
for designing future distributed services. Unfortunately,
the Internet architecture was not designed with perfor-
mance measurement as a primary goal and therefore has
few “built-in” services that support this need [Cla88].
Consequently, measurement tools must either “make do”
with the services provided by the Internet, or deploy
substantial new infrastructures geared towards measure-
ment.

In this paper, we argue that the behavior of the com-
monly deployed Transmission Control Protocol (TCP)
can be used as an implicit measurement service. We
present a new tool, calledsting, that uses TCP to measure
the packet loss rates between a source host and some tar-
get host. Unlike traditional loss measurement tools, sting
is able to precisely distinguish which losses occur in the
forward direction on the path to the target and which oc-
cur in the reverse direction from the target back to the
source. Moreover, the only requirement of the target host
is that it run some TCP-based service, such as a Web
server.

The remainder of this paper is organized as follows:
In section 2 we review the current state of practice for
measuring packet loss. Section 3 contains a descrip-
tion of the basic loss deduction algorithms used by sting,
followed by extensions for variable packet size and inter-
arrival times in section 4. We briefly discuss our imple-
mentation in section 5 and present some preliminary ex-
periences using the tool in section 6.

2 Measuring packet loss

The rate at which packets are lost can have a dramatic
impact on application performance. For example, it has
been shown that for moderate loss rates (less than 15 per-
cent) the bandwidth delivered by TCP is proportional to
1=
p
lossrate [MSM97]. Similarly, some streaming me-

dia applications only perform adequately under low loss
conditions [CB97]. Not surprisingly, there has always
been a long-standing operational need to measure packet
loss; the popularping tool was developed less than a
year after the creation of the Internet. In the remainder
of this section we' ll discuss two dominant methods for
measuring packet loss: tools based on the Internet Con-
trol Message Protocol (ICMP) [Pos81] and new measure-
ment infrastructures.

2.1 ICMP-based tools

Common ICMP-based tools, such asping and
traceroute , send probe packets to a host, and mea-
sure loss by observing whether or not response packets
arrive within some time period. There are two principle
problems with this approach:

� Loss asymmetry.The packet loss rate on the forward
path to a particular host is frequently quite different
from the packet loss rate on the reverse path from
that host. Without any additional information from
the receiver, it is impossible for an ICMP-based tool
to determine if its probe packet was lost or if the
response was lost. Consequently, the loss rate re-
ported by such tools is really:

1� ((1� lossfwd) � (1� lossrev))

Wherelossfwd is the loss rate the forward direc-
tion andlossrev is the loss rate in the reverse di-

rection. Loss asymmetry is important, because for
many protocols the relative importance of packets
flowing in each direction is different. In TCP, for
example, losses of acknowledgment packets are tol-
erated far better than losses of data packets. Sim-
ilarly, for many streaming media protocols, packet
losses in the opposite direction from the data stream
have little or no impact on overall performance. The
ability to measure loss asymmetry allows a network
engineering to more precisely locate important net-
work bottlenecks.

� ICMP filtering. ICMP-based tools rely on the near-
universal deployment of theICMP Echoor ICMP
Time Exceededservices to coerce response packets
from a host [Bra89]. Unfortunately, malicious use
of ICMP services has led to mechanisms that re-
strict the efficacy of these tools. Several host op-
erating systems (e.g. Solaris) now limit the rate
of ICMP responses, thereby artificially inflating the
packet loss rate reported byping . For the same
reasons many networks (e.g. microsoft.com) filter
ICMP packets altogether. Some firewalls and load
balancers respond to ICMP requests on behalf of
the hosts they represent, a practice we callICMP
spoofing, thereby precluding real end-to-end mea-
surements. Finally, at least one network has started
to rate limit all ICMP traffic traversing it. It is in-
creasingly clear that ICMP's future usefulness as a
measurement protocol will be reduced [Rap98].

2.2 Measurement infrastructures

In contrast, wide-area measurement infrastructures, such
as NIMI and Surveyor, deploy measurement software at
both the sender and the receiver to correctly measure
one-way network characteristics [Pax96, PMAM98,
Alm97]. Such approaches are technically ideal for mea-
suring packet loss because they can precisely observe
the arrival and departure of packets in both directions.
The obvious drawback is that the measurement software
is not widely deployed and therefore measurements can
only be taken between a restricted set of hosts. Our work
does not eliminate the need for such infrastructures, but
allows us to extend their measurements to include parts
of the Internet that are not directly participating. For ex-
ample, access links to Web servers can be highly con-
gested, but they are not visible to current measurement
infrastructures.

Finally, there is some promising work that attempts
to derive per-link packet loss rates by correlating mea-
surements of multicast traffic among many different
hosts [CDH+99]. The principle benefit of this approach
is that it allows the measurement ofN2 paths withO(N)
messages. The slow deployment of wide-area multicast

routing currently limits the scope of this technique, but
this situation may change in the future. However, even
with universal multicast routing, multicast tools require
software to be deployed at many different hosts, so, like
other measurement infrastructures, there will likely still
be significant portions of the commercial Internet that
can not be measured with them.

Our approach is similar to ICMP-based tools in that
it only requires participation from the sender. However,
unlike these tools, we exploit features of the TCP proto-
col to deduce the direction in which a packet was lost.
In the next section we describe the algorithms used to
accomplish this.

3 Loss deduction algorithm

To measure the packet loss rate along a particular path, it
is necessary to know how many packets were sent from
the source and how many were received at the destina-
tion. From these values the one-way loss rate can be de-
rived as:

1� (packetsreceived=packetssent)

Unfortunately, from the standpoint of a single end-
point, we cannot observe both of these variables directly.
The source host can measure how many packets it has
sent to the target host, but it cannot know how many of
those packets are successfully received. Similarly, the
source host can observe the number of packets it has
received from the target, but it cannot know how many
more packets were originally sent. In the remainder of
this section we will explain how TCP's error control
mechanisms can be used to derive the unknown variable,
and hence the loss rate, in each direction.

3.1 TCP basics

Every TCP packet contains a 32 bit sequence number and
a 32 bit acknowledgment number. The sequence number
identifies the bytes in each packet so they may be or-
dered into a reliable data stream. The acknowledgment
number is used by the receiving host to indicate which
bytes it has received, and indirectly, which it has not.
When in-sequence data is received, the receiver sends an
acknowledgment specifying the next sequence number
that it expects and implicitly acknowledging all sequence
numbers preceding it. Since packets may be lost, or re-
ordered in flight, the acknowledgment number is only in-
cremented in response to the arrival of an in-sequence
packet. Consequently, out-of-order or lost packets will
cause a receiver to issue duplicate acknowledgments for
the packet it was expecting.

for i := 1 to n
send packet w/seq# i
dataSent++
wait for long time

for each ack received
ackReceived++

Figure 1:Data seeding phase of basic loss deduction algorithm.

lastAck := 0
while lastAck = 0

send packet w/seq# n+1

while lastAck < n + 1
dataLost++
retransPkt := lastAck
while lastAck = retransPkt

send packet w/seq# retransPkt

dataReceived := dataSent - dataLost
ackSent := dataReceived

for each ack received w/seq# j
lastAck = MAX(lastAck, j)

Figure 2:Hole filling phase of basic loss deduction algorithm.

3.2 Forward loss

Deriving the loss rate in the forward direction, from
source to target, is straightforward. The source host can
observe how many data packets it has sent, and then can
use TCP's error control mechanisms to query the target
host about which packets were received. Accordingly,
we divide our algorithm into two phases:

� Data-seeding.During this phase, the source host
sends a series of in-sequence TCP data packets to
the target. Each packet sent represents a binary sam-
ple of the loss rate, although the value of each sam-
ple is not known at this point. At the end of the
data-seeding phase, the measurement period is con-
cluded and any packets lost after this point are not
counted in the loss measurement.

� Hole-filling. The hole-filling phase is about discov-
ering which of the packets sent in the previous phase
have been lost. This phase starts by sending a TCP
data packet with a sequence numberone greater
than the last packet sent in the data-seeding phase.
If the target responds by acknowledging this packet,
then no packets have been lost. However, if any
packets have been lost there there will be a “hole”
in the sequence space and the target will respond
with an acknowledgment indicating exactly where
the hole is. For each such acknowledgment, the
source host retransmits the corresponding packet,

thereby “filling the hole”, and records that a packet
was lost. We repeat this procedure until the last
packet sent in the data-seeding phase has been ac-
knowledged. Unlike data-seeding, hole-filling must
be reliable and so the implementation must timeout
and retransmit its packets when expected acknowl-
edgments do not arrive.

3.3 Reverse Loss

Deriving the loss rate in the reverse direction, from tar-
get to source, is somewhat more problematic. While the
source host can count the number of acknowledgments it
receives, it is difficult to be certain how many acknowl-
edgments were sent. The ideal condition, which we refer
to asack parityis that the target sends a single acknowl-
edgment for every data packet it receives. Unfortunately,
most TCP implementations use adelayed acknowledg-
mentscheme that does not provide this guarantee. In
these implementations, the receiver of a data packet does
not respond immediately, but instead waits for an addi-
tional packet in the hopes that the cost of sending an ac-
knowledgment can be amortized [Bra89]. If a second
packet has not arrived within some small timeout (the
standard limits this delay to 500ms, but 100-200ms is a
common value) then the receiver will issue an acknowl-
edgment. If a second packet does arrive before the time-
out, then the receiver will issue an acknowledgment im-
mediately. Consequently, the source host cannot reliably

Hole fillingData seeding

dataSent = 3
ackReceived = 1

dataLost = 1

1

22

3

2

4

2
2

5

Figure 3:Example of basic loss deduction algorithm. In each
time-line the left-hand side represents the source host and the
right-hand side represents the target host. Right-pointing ar-
rows are labeled with their sequence number and left-pointing
arrows with their acknowledgment number.

differentiate between acknowledgments that are lost and
those which are simply suppressed by this mechanism.

An obvious method for guaranteeing ack parity is to
to insert a long delay after each data packet sent. This
will ensure that a second data packet never arrives before
the delayed ack timer forces an acknowledgment to be
sent. If the delay is long enough, then this approach is
quite robust. However, the same delay limits the tech-
nique to measuring packet losses over long time scales.
If we wish to investigate shorter time scales, or the corre-
lation between the sending rate and observed losses, then
this mechanism is insufficient. We will discuss alterna-
tive mechanisms for enforcing ack parity in section 4.

3.4 Putting it all together

Figures 1 and 2 contain simplified pseudo-code for the
algorithm as we've described it. Without loss of gen-
erality, we assume that the sequence space for the TCP
connection starts at 0, each data packet contains a single
byte (and therefore consumes a single sequence number),
and data packets are sent according to a periodic distri-
bution. When the algorithm completes, we can calculate
the packet loss rate in each direction as follows:

Lossfwd = 1� (dataReceived=dataSent)

Lossrev = 1� (ackReceived=ackSent)

Figure 3 illustrates a simple example. Here, the first
data packet is received, but its acknowledgment is lost.
Subsequently, the second data packet is lost. When the
third data packet is successfully received, the target re-
sponds with an acknowledgment indicating that it is still

waiting to receive packet number two. At the end of the
data seeding phase, we know that we've sent three data
packets and received one acknowledgment.

In the hole filling phase, we send a fourth packet and
receive an acknowledgment indicating that the second
packet was lost. We record the loss and then retransmit
the missing packet. The subsequent acknowledgment for
our fourth packet indicates that the other two data pack-
ets were successfully received.

Lossfwd = 1� (2=3) = 33%

Lossrev = 1� (1=2) = 50%

4 Extending the algorithm

The algorithm we described is fully functional, however
it has several unfortunate limitations, which we now rem-
edy.

4.1 Fast ack parity

First, the long timeout used to guarantee ack parity re-
stricts the tool to examining background packet loss over
relatively large time scales. If we are interested in exam-
ining losses over shorter time scales, or exploring cor-
relations between packet losses and packet bursts sent
from the source, then we must eliminate the long delay
requirement.

An alternative technique for forcing ack parity is to
take advantage of thefast retransmitalgorithm contained
in most modern TCP implementations [Ste94]. This al-
gorithm is based on the premise that since TCP always
acknowledges the last in-sequence packet it has received,
a sender can infer a packet loss by observing duplicate
acknowledgments. To make this algorithm efficient, the
delayed acknowledgment mechanism issuspendedwhen
an out-of-sequence packet arrives. This rule leads to a
simple mechanism for guaranteeing ack parity: during
the data seeding phase we skip the first sequence number
and thereby ensure that all data packets are sent, and re-
ceived, out-of-sequence. Consequently, the receiver will
immediately respond with an acknowledgment for each
data packet received. The hole filling phase is then mod-
ified to transmit this first sequence number instead of the
next in-sequence packet.

4.2 Sending data bursts

The second limitation is that we cannot send large pack-
ets. The reason for this is that the amount of buffer
space provided by the receiver is limited. Many TCP
implementations default to 8KB receiver buffers. Conse-
quently, the receiver can accommodate no more than five

1500 bytes
1500 bytes
1500 bytes
1500 bytes
1500 bytes

Sequence
space

1500

1504

1

5 packets sent
(7500 bytes)

1504 bytes of buffer used

Figure 4: Mapping packets into sequence numbers by over-
lapping sequence numbers.

1500 byte packets, a number far too small to be statis-
tically significant. While we could simply create a new
connection and restart the tool, this limitation prevents
us from exploring larger packet bursts.

Luckily, we observe that TCP implementationstrim
packets that overlap the sequence space that has already
been received. Consequently, if a packet arrives that
overlaps a previously received packet, then the receiver
will only buffer the portion that occupies “new” sequence
space. By explicitly overlapping the sequence numbers
of our probe packets we can map each large packet into
a single byte of sequence space, and hence only a single
byte of buffer at the receiver.

Figure 4 illustrates this technique. The first 1500 byte
packet is sent with sequence number 1500, and when
it arrives at the target it occupies 1500 bytes of buffer
space. However, the next 1500 byte packet is sent with
sequence number 1501. The target will note that the first
1499 bytes of this packet have already be received, and
will only use a single byte of buffer space. Using this
technique we can map every additional packet into a sin-
gle sequence number, eliminating much of the buffering
limitation. This technique only allows us to send bursts
of data in one direction – towards the target host. Coerc-
ing the target host to send arbitrarily sized bursts of data
back to the source is more problematic since TCP's con-
gestion control mechanisms normally control the rate at
which the target may send data. We have investigated
techniques to remotely bypass TCP's congestion con-
trol [SCWA99] but we believe they represent a security
risk and aren' t suited for common measurement tasks.

4.3 Delaying connection termination

One final problem is that some TCP servers do not close
their connections in a graceful fashion. TCP connections
are full-duplex – data flows along a connection in both
directions. Under normal conditions, each “half” of the
connection may only be closed by the sending side (by
sending a FIN packet). Our algorithms implicitly assume
this is true, since it is necessary that the target host re-
spond with acknowledgments until the testing period is
complete. While most TCP-based servers follow this ter-
mination protocol, we've found that some Web servers
simply terminate the entire connection by sending a RST
packet – sometimes called anabortive release. Once the
connection has been reset, the sender discards any related
state so any further probing is useless and our measure-
ment algorithms will fail.

To ensure that our algorithms have sufficient time to
execute, we've developed two ad hoc techniques for de-
laying premature connection termination. First, we en-
sure that the data sent during the data seeding phase con-
tains a valid HTTP request. Some Web servers (and even
some “smart” firewalls and load balancers) will reset the
connection as soon as the HTTP parser fails. Second, we
use TCP'sflow controlprotocol to prevent the target from
actually delivering its HTTP response back to the source.
TCP receivers implement flow control by advertising the
number of bytes they have available for buffering new
data (called thereceiver window). A TCP sender is for-
bidden from sending more data than the receiver claims
it can buffer. By setting the source's receiver window
to zero bytes we can keep the HTTP response “trapped”
at the target host until we have completed our measure-
ments. The target will not reset the connection until its
response has been sent, so this technique allows us to
inter-operate with such “ill-behaved” servers.

5 Implementation

In principle, it should be straightforward to implement
the loss deduction algorithms we have described. How-
ever, in most systems it is quite difficult to do so with-
out modifying the kernel and developing a portable
application-level solution is quite a challenge. We ob-
serve that the same problem is true for any user-level im-
plementation of TCP. The principle difficulty is that most
operating systems do not provide a mechanism for redi-
recting packets to a user application and consequently
the application is forced to coordinate its actions with
the host operating system's TCP implementation. In this
section we will briefly describe the implementation diffi-
culties and explain how our current prototype functions.

5.1 Building a user-level TCP

Most operating systems provide two mechanisms for
low-level network access:raw socketsandpacket filters.
A raw socket allows an application to directly format
and send packets with few modifications by the under-
lying system. Using raw sockets it is possible to create
our own TCP segments and send them into the network.
Packet filters allow an application to acquirecopiesof
raw network packets as they arrive in the system. This
mechanism can be used to receive acknowledgments and
other control messages from the network. Unfortunately,
another copy of each packet is also relayed to the TCP
stack of the host operating system; this can cause some
difficulties. For example, if sting sends a TCP SYN re-
quest to the target, the target responds with a SYN of its
own. When the host operating system receives this SYN
it will respond with a RST because it is unaware that a
TCP connection is in progress.

An alternative implementation would be to use a sec-
ondary IP address for the sting application, and imple-
ment a user-level proxy ARP service. This would be
simple and straightforward, but has the disadvantage that
users of sting would need to request a second IP address
from their network administrator. For this reason, we
have resisted this approach.

Finally, many operating systems are starting to provide
proprietary firewall interfaces (e.g. Linux, FreeBSD) that
allow the user to filter outgoing or incoming packets. The
former ability could be used to intercept packets arriving
from the target host, while the later ability could be used
to suppress the responses of the host operating system.
We are investigating this approach for a future version.

5.2 The Sting prototype

Our current implementation is based on raw sockets
and packet filters running on FreeBSD 3.x and Digital
Unix 3.2. As a work-around to the SYN/RST prob-
lem mentioned previously, we use the standard Unix
connect() service to create the connection, and then
hijack the session in progress using the packet filter and
raw socket mechanisms. Unfortunately, this solution is
not always sufficient as the host system can also become
confused by acknowledgments for packets it has never
sent. In our current implementation we have been forced
to change one line in the kernel to control such unwanted
interactions.1 We are currently unsure if a completely
portable user-level implementation is possible on today's
Unix systems.

Figure 5 shows the output presented by sting. From
the command line the user can select the inter-arrival dis-

1We modify the ACK processing in tcpinput.c so the response to an
acknowledgment entirely above sndmax is to drop the packet instead
of acknowledging it.

sting www.audiofind.com

Source = 128.95.2.93
Target = 207.138.37.3:80
dataSent = 100
dataReceived = 98
acksSent = 98
acksReceived = 97
Forward drop rate = 0.020000
Reverse drop rate = 0.010204

Figure 5:Sample output from the sting tool. By default, sting
sends 100 probe packets according to a uniform inter-arrival
distribution with a mean of 100ms.

tribution between probe packets (periodic, uniform, or
exponential), the distribution mean, the number of total
packets sent, as well as the target host and port. Our im-
plementation verifies that the wire time distribution con-
forms to the expected distribution according to the tests
provided in [PAMM98].

We have tested our implementation in several ways.
First, we have synthetically dropped packets in the tool
and using an emulated network [Riz97] and verified that
sting reports the correct loss rate. Second, we have com-
pared the results of sting to results obtained fromping .
Using the derivation forping 's loss rate presented in
section 2 we have verified that the the results returned by
each tool are compatible. Finally, we have tested sting
with a large number of different host operating systems,
including Windows 95, Windows NT, Solaris, Linux,
FreeBSD, NetBSD, AIX, IRIX, Digital Unix, and Ma-
cOS. While we occasionally encounter problems with
very poor TCP implementations (e.g. laser printers) and
Network Address Translation boxes, the tool is generally
quite stable.

6 Experiences

Anecdotally, our experience in using sting has been very
positive. We've had considerable luck using it to de-
bug network performance problems on asymmetric ac-
cess technologies (e.g. cable modems). We've also used
it as a day-to-day diagnostic tool to understand the source
of Web latency. In the remainder of this section we
present some preliminary results from a broad experi-
ment to quantify the character of the loss seen from our
site to the rest of the Internet.

For a twenty four hour period, we used sting to record
loss rates from the University of Washington to a collec-
tion of 50 remote web servers. Choosing a reasonably-
sized, yet representative, set of server sites is a difficult
task due to the diversity of connectivity and load expe-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0:00 6:00 12:00 18:00 0:00

Time of day

L
o

ss
 r

at
e

Figure 6:Forward loss measured across a twenty four hour pe-
riod. Each point on this scatter-plot represents a measurement
to one of 50 Web servers.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0:00 6:00 12:00 18:00 0:00

Time of day

L
o

ss
 r

at
e

Figure 7:Reverse loss measured across a twenty four hour pe-
riod. Each point on this scatter-plot represents a measurement
to one of 50 Web servers.

rienced at different points in the Internet. However, it
is well established that the distribution of Web accesses
is heavy-tailed; a small number of popular sites consti-
tute a large fraction of overall requests, but the remainder
of requests are distributed among a very large number
of sites [BCF+99]. Consequently, we have constructed
our target set to mirror this structural property – popu-
lar servers and random servers. Half of the 50 servers in
our set are chosen from a list of the top 100 Web sites
as advertised bywww.top100.com in May of 1999.
This list is generated from a collection of proxy logs and
trace files. The remaining 25 servers were selected ran-
domly using an interface provided by Yahoo! Inc. to
select pages at random from its on-line database [Yah].

For our experiment we used a single centralized data
collection machine, a 200Mhz Pentium Pro running
FreeBSD 3.1. We probed each server roughly once every
10 minutes.

Figures 6 and 7 are scatter-plots showing the over-
all distribution of loss rates, forward and reverse re-

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 0.05 0.1 0.15 0.2 0.25 0.3

Loss rate

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

Forward loss rate

Reverse loss rate

Figure 8:CDF of the loss rates measured to and from a set of
25 popular Web servers across a twenty-four hour period.

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 0.05 0.1 0.15 0.2 0.25 0.3

Loss rate

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

Forward loss rate

Reverse loss rate

Figure 9:CDF of the loss rates measured to and from a set of
25 random Web servers across a twenty-four hour period.

spectively, during our measurement period. Not surpris-
ingly, overall loss rates increase during business hours
and wane during off-peak hours. However, it is also quite
clear that forward and reverse loss rates vary indepen-
dently. Overall the average reverse loss rate (1.5%) is
more than twice the forward loss rate (0.7%) and at many
times of the day this ratio is significantly larger.

This reverse-dominant loss asymmetry is particularly
prevalent among the popular Web servers. Figure 8
graphs a discrete cumulative distribution function (CDF)
of the loss rates measured to and from the 25 popular
servers. Here we can see that less than 2 percent of
of the measurements to these servers ever record a lost
packet in the forward direction. In contrast, 5 percent of
the measurements see a reverse loss rate of 5 percent or
more, and almost 3 percent of measurements lose more
than a tenth of these packets. On average, the reverse
loss rate is more than 10 times greater than the forward
loss rate in this population. One explanation for this phe-
nomenon is that Web servers generally send much more
traffic than they receive, yet bandwidth is provisioned
in a full-duplex fashion. Consequently, bottlenecks are
much more likely to form on paths leaving popular Web

servers and packets are much more likely to be dropped
in this direction.

We see similar, although somewhat different results
when we examine the random server population. Fig-
ure 8 graphs the corresponding CDF for these servers.
Overall the loss rate is increased in both directions, but
the forward loss rate has increased disproportionately.
We suspect that this effect is strongly related to the
lack of dedicated network infrastructure at these sites.
Many of the random servers obtain network access from
third-tier ISP's that serve large user populations. Conse-
quently, unrelated Web traffic being delivered to other
ISP customers directly competes with the packets we
send to these servers.

7 Conclusion

In this paper, we have described techniques for mea-
suring packet loss using TCP. Using these methods the
sting tool can separately derive measures for packet loss
along the forward and reverse paths to a host, and can
be used to probe any TCP-based server. In the future
we plan to develop TCP-based techniques for estimating
bandwidth [LB99], and round-trip time, and for deriving
queue length distributions.

Acknowledgments

We would like to thank a number of people for their con-
tributions to this project. Neal Cardwell, Geoff Voelker,
Alec Wolman, Matt Zekauskas, David Wetherall and
Tom Anderson delivered valuable feedback on this paper
and on the development of sting. Vern Paxson provided
the impetus for this project by suggesting that it would be
hard to do. USENIX has graciously provided a student
research grant to fund ongoing work in this area. Finally,
Tami Roberts was exceptionally generous and accommo-
dating in supporting the author during the paper submis-
sion process.

References

[Alm97] Guy Almes. Metrics and In-
frastructure for IP Performance.
http://www.advanced.org/
surveyor/presentations.html ,
1997.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham
Phillips, and Scott Shenker. Web Caching
and Zipf-like Distributions: Evidence and
Implications. InProceedings of the IEEE
INFOCOM '99, March 1999.

[Bra89] R. Braden. Requirements for Internet Hosts
– Communication Layers. RFC-1122, Oc-
tober 1989.

[CB97] Georg Carle and Ernst W. Biersack. Survey
of Error Recovery Techniques for IP-Based
Audio-Visual Multicast Applications.IEEE
Network Magazine, 11(6):24–36, Novem-
ber 1997.

[CDH+99] R. Caceres, N.G. Duffield, J. Horowitz,
D. Towsley, and T. Bu. Multicast-Based
Inference of Network-Internal Characteris-
tics: Accuracy of Packet Loss Estimation.
In Proceedings of the IEEE INFOCOM '99,
New York, NY, March 1999.

[Cla88] D. Clark. The Design Philosophy of the
DARPA Internet Protocols. InProceedings
of the ACM SIGCOMM '88, pages 106–
114, Palo Alto, CA, September 1988.

[LB99] Kevin Lai and Mary Baker. Measuring
Bandwidth. InProceedings of the IEEE IN-
FOCOM '99, New York, NY, March 1999.

[MSM97] Matthew Mathis, Jeffrey Semke, and
Jamshid Mahdavi. The Macroscopic Be-
havior of the TCP Congestion Avoidance
Algorithm. ACM Computer Communica-
tions Review, 27(3):67–82, July 1997.

[PAMM98] V. Paxson, G. Almes, J. Mahdavi, and
M. Mathis. Framework for IP performance
metrics. RFC-2230, May 1998.

[Pax96] Vern Paxson. End-to-End Routing Behav-
ior in the Internet. InProceedings of the
ACM SIGCOMM '96, pages 25–38, Stan-
ford, CA, August 1996.

[PMAM98] Vern Paxson, Jamshid Mahdavi, Andrew
Adams, and Matthew Mathis. An Architec-
ture for Large-Scale Internet Measurement.
IEEE Communications, 36(8):48–54, Au-
gust 1998.

[Pos81] J. Postel. Internet Control Message Proto-
col. RFC-792, September 1981.

[Rap98] Chris Rapier. ICMP and fu-
ture testing (IPPM mailing list).
http://www.advanced.org/
IPPM/archive/0606.html , Decem-
ber 1998.

[Riz97] L. Rizzo. Dummynet: A Simple Approach
to the Evaluation of Network Protocols.

ACM Computer Communications Review,
27(1), January 1997.

[SCWA99] Stefan Savage, Neal Cardwell, David
Wetherall, and Tom Anderson. TCP Con-
gestion Control with a Misbehaving Re-
ceiver. Draft, in review, 1999.

[Ste94] W. Richard Stevens.TCP/IP Illustrated,
volume 1. Addison Wesley, 1994.

[Yah] Yahoo! Inc. Random yahoo! link
url. http://random.yahoo.com/
bin/ryl .

