
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

A D O C U M E N T - B A S E D F R A M E W O R K F O R
I N T E R N E T AP P L I C AT I O N C O N TR O L

William LeFebvre and Ken Craig

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Rapid Reverse DNS Lookups for Web Servers

William LeFebvre Ken Craig

Group Sys Consulting CNN Internet Technologies

Alpharetta, GA 30022 Atlanta, GA 30348

WNL@GroupSys.com Ken.Craig@CNN.com
b
s

000
in-
-
s

il-
to
is

ch
rver
t-
o-
ed
e
g-
s-

m
-
or
tar-
 to
p-
cy.
a

he
s
ry

eb
g
ice

d
sec-
Abstract

When a web server wants to learn the domain name of
one of its clients, it must perform a lookup in the
Domain Name System’s “reverse domain”, in-
addr.arpa. These lookups can take time and may have
an adverse impact on the web server’s response to its
clients. Rapid DNS is an intermediate client/server sys-
tem that operates between a web server and a DNS
server. It provides caching of the results and, more
importantly, limits web server lookups to the data con-
tained in the cache. This provides a significant improve-
ment in response time for situations in which knowledge
of the hostname is not critical to the web server’s opera-
tion. The Rapid DNS system was implemented for use
in the web farm that serves the collection of Cable News
Network (CNN) sites. Its design is presented, along with
measurements of its performance in the CNN environ-
ment.

1 Introduction

When a client connects to a server, the only information
about the client that is available to the server is the cli-
ent's IP address. In order to learn more about the client,
the server must perform a DNS lookup in the in-
addr.arpa domain, called a reverse lookup, to translate a
client's IP address in to a name [9]. On widely accessed
web servers, a high percentage of the reverse lookups
will involve name servers from distant networks. Conse-
quently, these lookups can take a long time.

Most high traffic web sites cannot afford to wait for the
completion of reverse lookups, as the delay in process-
ing these lookups would have a detrimental impact on
the site’s response time. Therefore, client tracking is
limited to just IP addresses. Any desired demographic
information must be generated off-line. Real-time deter-
mination of a visitor’s origins is not a reasonable possi-
bility due to the time required to perform a reverse
lookup.

The CNN web farm supports approximately 50 we
servers which provide content for sites known a
cnn.com, cnnfn.com, cnnsi.com, and many others. A sin-
gle web server in this farm can see as many as 20,
hits per minute. The farm was designed from the beg
ning for simplicity, reliability and speed in order to sup
port a web site that is the most heavily trafficked new
site on the internet. In addition to serving over 20 m
lion page views daily, the web farm must be able
withstand traffic spikes that are three times what
experienced on a normal day.

The farm consists of smaller, distributed servers whi
can be easily replaced or re-purposed. The web se
software is primarily off-the-shelf, and additional sof
ware, in the form of web-server plug-ins, must not intr
duce significant latency to routine requests. Specializ
functions are generally distributed off of the main-lin
servers to protect the basic service. A relatively homo
enous environment simplifies the process of re-purpo
ing hardware when the need arises.

Off-line DNS processing has provided the web far
team with useful information for analysis, but offers lit
tle benefit to advertisers; an important consideration f
an advertising-supported web site. Domain based ad
geting was one of the most highly requested features
be added to our advertising capabilities due to its su
posed simplicity and universal acceptance of accura
While architecturally simple, implementation of such
capability at scale requires a different solution.

As beneficial as such targeting may be, protecting t
reliability of the primary web serving functions alway
takes precedence. This is basis for the two prima
design requirements of any additions to the CNN W
Farm, including Rapid DNS; high performance durin
normal operations and graceful degradation of serv
under excessive traffic loads.

Even though it may be possible for a well-configure
name server to handle several hundred requests per

 of
ost
es.

fic
s
ur
l

id
s
was
d
at

 an
ith

e

the
 the
as
ar-
 If
nt
e-
still

ain
n:
es

wer
i-
me

eb
this

ice
me
b

 as
er
 via
ond, there will still be a problem with latency. The root
name servers are expected to sustain a minimum
response rate of 1,200 queries per second, but they also
disable recursion on all requests [7]. Server load may be
an issue, but far more critical is the need to provide a
quick response. A reverse lookup will need to consult
name servers throughout the world and can take several
seconds to complete. A server that receives over 300
requests per second cannot afford to have each request
delayed by a recursive lookup.

In section 2 we present related work. Section 3 lays the
foundational premise on which the entire system is built.
Section 4 describes details of the Rapid DNS client,
server, and protocol. Section 5 discusses management of
the cache used by the server. Section 6 explains the spe-
cialized way in which IP addresses are queued internally
for processing by DNS. Section 7 discusses the use of
negative caching in Rapid DNS. Section 8 presents per-
formance results for a variety of configurations. Section
9 discusses the results, and section 10 looks to the
future.

2 Related Work

Surprisingly little work has been done in this area. A
search of the published body of work has revealed no
documented efforts to provide rapid reverse lookups for
web servers.

Work has been done to utilize DNS for load balancing
requests across multiple web servers ([1], [6]) and for
integrating DNS lookups with HTTP redirection to
achieve load balancing [3]. Brisco discussed the viabil-
ity of using DNS as a general load balancing tool [2]
and Schemers developed a Perl tool for tailoring DNS
answers based on measured load [11]. A study of name
server traffic on the NSFNet was conducted by Danzig,
Obracza and Kumar [4], and they observed (among
other things) that negative caching of DNS responses by
servers would have little impact on the reduction of
DNS packets across a wide-area network.

3 Premise: “I don’t know” is acceptable

The desire for instant domain name information on the
CNN Web farm drove us to implement a mechanism for
rapid resolution. The foundational philosophy for Rapid
DNS is that the answer “I don't know” is acceptable. If a
name is not readily available when requested, then
Rapid DNS is free to answer “I don't know”. The web
server then proceeds as if it never performed the lookup.
This philosophy allows the implementation to uncouple
queries from the actual resolution of the name

Is it reasonable to accept non-answers for this sort
query? For our purposes the answer is yes. The h
name information is needed for two separate purpos
First, we want to be able to produce summary traf
information correlated by top level domain. This allow
us to calculate zone demographic information on o
audience: “35% of our traffic was from educationa
sites” for example. Before the deployment of Rap
DNS we performed name resolution off-line: traffic log
carried the IP address and the translation to name
done en masse overnight after the logs were extracte
from the web server. In this situation an address th
cannot be translated in to a name is just placed in
“unknown” category. Clearly the same can be done w
“I don’t know” answers. Although this will adversely
affect the demographic results, it will not hamper th
operation of the web server itself.

The second purpose for domain names is to drive
selection of advertisements presented on the page. If
web server knows the domain name of the client it h
the option to choose an advertisement specifically t
geted for an audience group implied by the domain.
the name information is missing then the advertiseme
selection can just draw from a generic pool of advertis
ments. We miss a chance to target an ad, but are
able to operate.

There is a situation in which the absence of a dom
name will have an impact on the server’s operatio
name-based authentication. If the server determin
accessibility based on the domain name then the ans
“I don't know” is not acceptable. A user who has legit
mate access may not receive that access if the na
lookup service can't provide an answer. The CNN w
servers do not use name-based authentication, so
was not a concern for our service.

4 Design of the Rapid DNS

Rapid DNS is implemented as an intermediate serv
placed between the web server and the DNS na
server (see Figure 1). A plug-in or module in the we
server acts as the Rapid DNS client and is invoked
part of normal page handling. The Rapid DNS serv
can be run on any host accessible to the web server

Figure 1: Inter-Server Relationship

Web

Plug-in

DNSRapid

TCP
DNS
UDP

Server DNS Server
Server

he
e

e

e
e
er

o

-
any
ent
e

as
e a
st
re

he
cy
r-
n-
p
er

 the

b
ss

 trio

cre-
ice
uni-
a-
ck

ers
is
u-
TCP, reading and responding to client requests. The
Rapid DNS server is the only component that actually
issues DNS queries. For the remainder of this paper,
unless otherwise indicated, we will use the term
“server” to refer to a Rapid DNS server and “client” to
refer to a Rapid DNS client, even though that client may
be part of a web server.

4.1 Client
The client we have developed for the Netscape Enter-
prise server uses a single persistent Rapid DNS connec-
tion to handle all requests in a given process, even
though that process may have many threads handling
HTTP requests

The design relies heavily on the multi-threaded capabili-
ties of the Netscape server provided through its applica-
tion programming interface (API) [10]. At initialization
time, the Rapid DNS client starts several background
threads. One thread, the writer, dispatches requests to
servers. Additional threads, the readers, are created to
read and process the servers’ responses (one thread per
server).

The Netscape server creates threads for handling HTTP
requests. When a request arrives it is dispatched to an
idle thread. While processing the HTTP request, the
Rapid DNS plug-in function will be invoked and will
place the peer’s IP address on a central queue for pro-
cessing. The writer thread takes a request off the queue,
dispatches it and moves it to a pending queue that is spe-
cific to the server used. As a reader thread processes a
response, it is matched up with the corresponding
request in the pending queue. One response may serve
to fill more than one request.

Request processing in the Netscape server is performed
in 6 phases: authorization, name translation, path check-
ing and modification, object typing, request servicing,
and logging. Server plug-in functions can be invoked
during any phase. Information is passed in to the func-
tions using parameter blocks, or pblocks. These are hash
tables that store name/value pairs and provide for easy
lookup and modification. All information about the
request is stored in a set of pblocks, and plug-in func-
tions affect processing of the request by modifying these
pblocks.

The Netscape API provides a function, session_maxdns,
that retrieves the domain name of the HTTP client host.
This function also stores the information in a pblock:
specifically in the session client pblock using the param-
eter name dns. Subsequent calls to session_maxdns will

use the information found there rather than perform t
DNS lookup again. If DNS lookups are turned off in th
Netscape server’s configuration, then session_maxdns
will not send any DNS queries, but it will still look in
the pblock for the name.

The Rapid DNS plug-in, rdns_lookup, takes advantage
of this behavior. When an answer arrives from th
server, rdns_lookup will place it in the client pblock as
the parameter dns. Subsequent calls to session_maxdns
will never use DNS directly but rely exclusively on th
information in the pblock, even if DNS lookups ar
turned off in the Netscape configuration. If the answ
received from Rapid DNS is “I don’t know” then no
information is placed in the pblock, and calls t
session_maxdns will return NULL. Beyond the change
to the pblock, rdns_lookup affects no aspect of process
ing a request. As a consequence, it can be used in
phase of request processing. The following C statem
illustrates how the name information is placed in th
pblock:

pblock_nvinsert("dns", name, sn->client);

The rdns_lookup function must be invoked before any
plug-ins that may need to utilize its information, such
advertisement scheduling software. CNN chose to us
configuration that invokes the client as the very la
object type function, so that it is run immediately befo
entering the request servicing phase.

The writer thread will always dispatch requests to t
server with the shortest pending queue. This poli
automatically compensates for malfunctioning or abno
mally slow servers. If a server fails, its persistent co
nection is severed and the client code will sto
dispatching requests to the server. Finally, a watch
thread monitors all the queues to ensure that none of
requests get stuck.

This client design provides good scalability for we
servers. In fact, we have Rapid DNS deployed acro
more than 60 web servers, and they all use the same
of servers.

4.2 Server
The server also uses a threaded design. A thread is
ated to handle each client connection, and other serv
threads handle various maintenance tasks and comm
cations with DNS servers. The server is logically sep
rated in to two components: the front end and the ba
end. The front end handles the task of providing answ
to clients, while communications with DNS servers
completely isolated to the back end. This total deco

er
acts

er-
ent
ugh
u-
 to
e

ver
ins
he

is
-
ion

al
ts.

IP
der
a-

ng
pling gives Rapid DNS the ability to provide quick
results without waiting on answers from DNS servers.

The front and back ends are tied together with a cache
and a stack. The cache, fed by the back end, contains all
the DNS answers that the server has received. The front
end reads from the cache to provide answers for client
requests. If the cache does not contain the answer, then
the front end answers “I don't know” and places the
address on the stack. The back end drains the stack by
sending questions to a DNS server. The stack is a fixed
size, called a “leaky bucket”, and will be discussed in
more detail in a later section.

The flow of data through the threads and data objects is
depicted in Figure 2. A request is read by one of the
question threads, which then performs a lookup for the
requested IP address in the cache. Any entry found in
the cache is used to answer the query: the IP address, its
name, and a pointer identifying the i/o stream is placed
on an answer queue. If no entry is found in the cache,
then a null string is used for the answer and the IP
address is placed in the DNS bucket. A fixed number of
answer threads drains the answer queue by composing
and sending out responses. The DNS question thread
drains the DNS bucket, composing queries that ask for
PTR records in the domain in-addr.arpa. These requests

are sent to a name server via UDP. The DNS answ
thread reads all DNS replies sent to the process, extr
the domain name and adds an entry to the cache.

A maintenance thread is run at periodic intervals to p
form two functions: cache maintenance and persist
storage. Cache maintenance consists of a sweep thro
the cache to look for entries that have expired. At reg
lar intervals the entire contents of the cache is written
a text file. This provides for a persistent record of th
information and allows the cached data to survive ser
restarts. This file has other uses as well, since it conta
address to host mappings of nearly all clients to visit t
site in the past several days.

4.3 Protocol
The protocol used between client and server
extremely simple. Although its specification is not sig
nificant to the results presented here, a brief descript
is provided.

The protocol runs over a TCP stream, and an individu
connection can handle an unlimited number of reques
A request (from client to server) consists of an
address represented by 4 octets in network byte or
(most significant byte first). Each IP address is sep
rated from the next in the data stream with a frami

Figure 2: Flow of Data through the Rapid DNS Server

question
threads

queue

...

answer
thread

cache

bucket

DNS
answer
thread

DNS
question

thread

DNS

query

response

UDP

UDP

TCP

TCP

stack

n
the
he
ket
ed
d

n-
an-
nt
es
.
ith
-

me
ri-
eps
 its
 is
ew
d
g
e
is

cy
 on
S

 a
a-
ys
y
ted
a-
in-
o

e
e
e

d
that
 to
ta-
ck
e
d to
d

n-
octet consisting of all 1’s. Should the server get out of
sync with the client, it will be able to resync within a
few requests.

A response (from server to client) consists of an IP
address followed by a null-terminated string. The IP
address is formatted as in the request: 4 octets in net-
work byte order. The string is the domain name associ-
ated with the IP address and ends with a zero octet. Each
response is separated from the next with a framing octet
consisting of all 1’s. Responses are not coupled with
requests: any number of requests can be sent between
responses from the server.

There are two peculiarities in this protocol. First, the
only identifying information in the response is the IP
address itself. This is considered sufficient to match
responses with requests, even though it is not unique per
request. Second, there is no explicit length given for the
variable length response. The client is expected to read
until seeing the null octet, and the framing octet is used
to ensure that client and server do not get out of sync.

5 Cache Management

The main cache holds answers received from DNS serv-
ers. As queries arrive from clients, the answers are
served directly out of the cache. As more information is
retained in the cache, the likelihood of a cache hit for a
given request will increase. But the size of the cache
cannot grow without bound due to system memory con-
straints. A variety of cache management techniques can
be used to provide a trade-off between information
retention and memory utilization. When we first began
this project, we anticipated very high memory utiliza-
tion on the part of the cache and sized our server system
accordingly.

In the current implementation of Rapid DNS, the cache
is implemented as a bucket hash keyed on IP address.
The number of buckets is fixed throughout the lifetime
of the server process, but can be configured at start-up
time. The current configuration at CNN uses 400,009
buckets. Each bucket contains a linked list of items
which is hashed to the bucket, and there is no limit on
the length of each list. Since multiple threads of execu-
tion need to access the cache simultaneously, mutex
locks are necessary to preserve the integrity of the data
structure. Figure 2 clearly shows that only one thread
adds data to the cache while multiple threads may be
reading information from the cache. To optimize perfor-
mance, read/write locks[8] were utilized within the
cache with one lock being assigned to each bucket in the
hash table. Any number of question threads can be read-

ing information from the cache simultaneously. Whe
the DNS answer thread needs to add an entry to
cache, it must first determine the target bucket in t
hash table, then it must obtain a write lock on the buc
before inserting the new datum on to the bucket’s link
list. A write lock on the bucket must also be obtaine
before any datum in the bucket is altered or removed.

Although the number of buckets for the cache is co
stant, the cache is not of a fixed size and a cache m
agement algorithm must be employed to preve
unbounded growth. The current implementation utiliz
a first-in first-out (FIFO) algorithm bounded by time
When an entry is added to the cache, it is stamped w
an expiration time x seconds in to the future. The config
urable value x is the “time to live” and is typically set
between three and seven days. Lower settings for ti
to live result in a smaller run-time cache size. At pe
odic intervals, a maintenance thread is run that swe
through the cache and removes any entry beyond
expiration time. The memory used by those entries
returned to the free pool so that it can be used for n
entries. In the current implementation the configure
time to live is the only value consulted when calculatin
the expiration time of an entry. The time to live valu
contained in the response from the DNS server
ignored. Although this policy may degrade the accura
of the answer, it does reduce the server’s dependency
data not under our direct control. If the server used DN
time to live values, then remote servers would have
direct influence on the cache hit ratio. In this applic
tion, we prefer an answer that is potentially a few da
out of date over no answer at all. Although this polic
may have an affect on the statistical results presen
below, it certainly has no influence on the implement
tion. The server could easily be changed to take the m
imum of the configured time to live and the DNS time t
live when creating the cache entry.

The choice of a strict FIFO cache policy is primarily du
to performance concerns. A policy that is tied to th
entry creation time does not require modification of th
entry at any point during its lifetime. Any policy base
on use would require such usage to be tracked, and
question threads modify the entries they were reading
stamp them with a last use time. Such an implemen
tion would require that these threads obtain a write lo
before modifying the entry. With a FIFO policy, only th
DNS answer thread and the maintenance thread nee
obtain write locks. If all the question threads performe
write locks, the lock contention would have a detrime
tal impact on performance.

p-

ate
xist
e-
is
e
ee
e
we
n.

he
e

that

re
he
-
e

od
ure
a-
lted
e
ress
s.
tial
is
uld
an

ly
the
pe
s to
ver

ity
nt
he
 is a
rs
g-
es

s
d-
6 DNS Request Bucket

When a cache miss occurs, the question thread inserts
the missing IP address in to a stack. The back end DNS
question thread pops addresses off this stack and com-
poses DNS queries for the corresponding PTR records.
This data structure is not implemented as a FIFO queue,
but as a LIFO stack of bounded size. If a new request
fills the stack, then requests at the bottom of the stack
are dropped. This “leaky bucket” method prevents an
ever increasing backlog of requests while avoiding
swamped DNS servers.

Consecutive DNS requests are spaced with a config-
urable delay to avoid flooding the DNS server. The
LIFO implementation intentionally gives priority to
most recently received requests. It is expected that web
page requests will have a high locality of reference but
only for a brief period of time. This is due to two obser-
vations. First, the typical web page “view” consists of
many embedded images, each of which will generate a
separate HTTP request from the same client. Second, it
is expected (hoped) that upon seeing the first page the
user will be drawn in to the site and request additional
pages. So we expect that the longer it has been since
we’ve heard from a client the less likely it is that we will
hear from it again in the near future.

The fixed size insures that the stack will not grow with-
out bound. As newer requests enter the bucket, older
ones are forced to wait. With each new request the like-
lihood that the request at the bottom of the bucket will
get serviced decreases. Since requests at the bottom of
the stack are least likely to ever get serviced they might
as well be discarded. The impact of discarding a request
in the bucket is that a future request may miss in the
cache lookup rather than hit. The result is an “I don’t
know” answer, which is not a serious concern. As a con-
sequence, however, the IP address will once again be
entered at the top of the stack and will have another
chance at getting serviced.

A request that misses in the cache will cause an entry to
be placed in the bucket, but it might be some time before
that request is filled by DNS. During that period of time
many more requests for the same address may arrive. To
help suppress duplicates in the bucket, the back end will
create an empty entry in the cache for the address, giv-
ing it two minutes to live. When the back end receives
the DNS answer, it simply replaces the null cache entry
with the actual data and adjusts the TTL. If the back end
sees a request in the bucket for an address that is already
in the cache (even if the cache entry is empty), it will not
send out a DNS query and instead log the event as a

“back end cache hit”. Collectively, this technique su
presses the creation of duplicate DNS queries.

7 Negative Caching

A good percentage of the responses from DNS indic
that the requested reverse domain does not e
(response code NXDOMAIN). Consider the cons
quences of this result on the Rapid DNS server if th
result is ignored. After two minutes the blank cach
entry which was inserted for duplicate suppression (s
Section 6) will expire and additional requests for th
address will generate another DNS query. Therefore
considered it prudent to cache this negative informatio
A response of “no such domain” is represented in t
cache with a null entry, and its time to live is set to b
the same as regular entries. Further requests for
entry will generate an “I don’t know” answer. In this
particular case, however, we actually do know that the
is no name for this number. From the perspective of t
client, the distinction between “not known” and “nonex
istent” is unimportant, as they would be logged th
same.

During production operation we have noted that a go
percentage of the DNS requests generate a fail
(response code SERVFAIL). In a typical week we me
sured that an average 12% of the DNS queries resu
in a SERVFAIL, with a peak at 19.4%. Currently w
ignore such responses, and consequently the add
that failed will be re-queried in as little as two minute
The high percentage of such answers implies a poten
performance benefit from caching them. Since this
considered to be a transient error, such entries wo
have to be cached with a much lower time to live th
negative answers.

8 Performance Results

Each Rapid DNS server in the CNN web farm routine
handles 250 client connections. Many web servers in
CNN farm are configured to create multiple Netsca
processes (or “instances”), and each process need
open a separate connection. So although there are o
250 client connections on a Rapid DNS server, in real
it may only be serving 50 to 70 machines. The curre
installation utilizes three Rapid DNS servers, and t
clients load balance across the servers. Each server
Sun SPARC Ultra 2200 with two 200 MHz processo
and 1 gigabyte of physical memory. Clients are confi
ured to perform Rapid DNS queries only for http pag
(image retrieval does not generate a query).

The cache carries approximately 2.5 million entrie
(negative information excluded) while the correspon

en
nd
o-
e

illi-
11
 we
nt
ly

ion
of
ing
 of
hits,
 of
ual
 of

the
se-
 60
ge

ne
ay
is

eg-
d.
 of

ig-
ct
trol
 hit
ol
%.
7.
ies
 of
ng
ect
the

of
be
nt,
ing executable consumes 260 megabytes of virtual
memory. Due to the generous server configuration and
Unix paging policies, all of the virtual memory typically
remains resident. Round trip times for client requests
average 2 milliseconds even during heavily loaded peri-
ods of the day. Measurements have shown request rates
as high as 1,611,180 requests per hour. This corresponds
to an average of 26,853 requests per minute or 447 per
second.*

8.1 One Week with Standard Configuration
The standard configuration for Rapid DNS servers in
the CNN Web Farm uses a hash table with 400,009
slots, a request bucket size of 4096, a 7-day time to live
for cache entries, and a DNS query interval of 50 milli-
seconds. Negative caching is enabled in the standard
configuration

Over the course of a one week measuring period with
measurements taken hourly, the Rapid DNS server
served an average of 5902 requests per minute (98 per
second). The peak hourly rate was 862,500 requests,
equivalent to 14,375 requests per minute (240 requests
per second). During the same measuring period the
cache hit ratio ranged from 86.5% to 94.5% with an
average ratio of 92.4% and a standard deviation of
1.5%. The measuring period also saw no bucket leaks,
except for those caused by a server restart in the middle
of the week.

Hourly performance measurements are presented in
Figure 3, where the top line shows requests and the
lightly shaded area represents cache hits. The diurnal
access behavior observed by Gribble and Brewer [5] is
evident in these measurements: peak access times for
the web servers are reflected in the quantity of Rapid
DNS requests.

8.2 Varying the Query Interval
The rate at which the server sends out DNS queries, the
query interval, can be tuned to avoid swamping the DNS
server during peak loads. Initially this interval was set to
80 milliseconds, but it was discovered that this setting
would cause bucket leaks during normal daytime load-
ing.

The query interval defines the rate at which requests in
the bucket are processed. If it is too slow the server will
be forced to let requests leak out of the bucket. Smaller
intervals may send too many requests to the DNS server

with the result that some will never get answered. Giv
a query interval, one can easily compute an upper bou
on the frequency of DNS queries that can be accomm
dated without the risk of leaks. This rate is simply th
reciprocal of the frequency:

Measurements show the expected behavior: a 90 m
second delay results in a maximum rate of 11.
requests per second. Given a cache hit ratio of 90%
would expect to see this rate when the number of clie
requests is approximately 111, a figure that is routine
exceeded during the day. As predicted, a configurat
using 90 milliseconds saw a substantial number
bucket leaks. Figure 4 shows an average day runn
with a 90 ms interval. The top line depicts the number
requests, the lightly shaded area shows the cache
and the dark shading indicates the resulting number
bucket leaks. Figure 5 compares the number of act
DNS requests against the leaks for the same period
time. The ceiling on the request rate is evident, and
corresponding leaks show the expected behavior. Sub
quent measurements using query intervals between
and 80 ms showed negligible leaks during an avera
week with an acceptable load on the DNS server.

8.3 Effects of Negative caching

To show the benefits of negative caching, we ran o
server with negative caching disabled for a one-d
period. Figure 6 shows a comparison between th
server (the subject) and one which was still caching n
ative information (the control) for the same time perio
Both servers were configured to use a query interval
50 milliseconds.

It is immediately noticeable that the cache hit rate is s
nificantly lower without negative caching. The subje
machine had an average rate of 78.9% while the con
saw 90.45%. The subject never exceeded a cache
rate of 89% and saw a low of 61.2%, while the contr
had a much more compact range from 84.4% to 93.1
A comparison of the cache hit rates is given in Figure
Because of the lower cache hit rate, more DNS quer
enter the bucket and the configuration cannot get all
them out. Consequently there is a correspondi
increase in the number of bucket leaks. The subj
server peaked at 175,906 leaks in an hour where
control server experienced 75,309 in its worst hour.

Also of interest is the fact that the peak in number
requests for the subject is noticeably lower. This can
attributed to the load balancing code used in the clie

* During early development we ran with only two Rapid DNS serv-
ers, and it was common to see hourly rates between 1.5 and 1.6
million.

r f() 1
f
---=

Figure 3: Rapid DNS Server Performance for One Week

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

08
22

.0
0

08
22

.1
2

08
23

.0
0

08
23

.1
2

08
24

.0
0

08
24

.1
2

08
25

.0
0

08
25

.1
2

08
26

.0
0

08
26

.1
2

08
27

.0
0

08
27

.1
2

08
28

.0
0

08
28

.1
2

Date and Hour

O
pe

ra
tio

ns
 p

er
 H

ou
r

Requests

Cache Hits

Figure 4: Performance with 90 ms Query Interval

0

100000

200000

300000

400000

500000

600000

700000

800000

08
02

.0
0

08
02

.0
6

08
02

.1
2

08
02

.1
8

08
03

.0
0

Date and Hour

O
pe

ra
tio

ns
 p

er
 H

ou
r

Requests Cache Hits Leaks

Figure 5: DNS Questions with 90 ms Query Interval

0

10000

20000

30000

40000

50000

60000
08

02
.0

0

08
02

.0
6

08
02

.1
2

08
02

.1
8

08
03

.0
0

Date and Hour

O
pe

ra
tio

ns
 p

er
 H

ou
r

Leaks Questions

te
of
at
 as

in
ions
b
er-
nd
its

the

 on

the
e

rs
per

 a
r-
which would imply that the average round trip time for
the server without negative caching was higher. A
higher round trip time would lead to a larger backlog of
requests in the client, which in turn would schedule
around the backlog and allocate fewer requests to the
slower server. The implication is that the added work-
load caused by processing additional DNS queries and
responses had an impact on its ability to provide timely
answers to queries.

9 Conclusions

Rapid DNS has provided the CNN Web Farm with a
viable mechanism for obtaining client domain names.

This ability has enabled it to provide more accura
demographic information and to enable targeting
advertisements by domain name. It is unlikely th
direct use of the DNS name servers would have been
effective, given the latency inherent in any doma
lookup. The system has met and exceeded expectat
since its deployment in March of 1999. One or two we
server outages were attributed to the Rapid DNS s
vice, but were caused by simple programming bugs a
not by flaws in the design. The system has proven
viability over the course of six months.

Some observations have come out of analysis of
server data.

• The use of negative caching has a marked impact
performance of this particular application.

• Very high cache hit rates have been realized by
system, minimizing direct load on the DNS nam
servers.

• Even with over 250 client connections, the serve
are able to sustain in excess of 400 operations
second.

• A built-in mechanism for throttling outgoing DNS
queries controls the load on the name server with
negligible loss of data, especially using query inte
vals of 80 ms and lower.

Figure 6: Impact of Negative Caching on Server Performance

With Negative Caching

0

100000

200000

300000

400000

500000

600000

700000

800000

08
03

.0
0

08
03

.0
6

08
03

.1
2

08
03

.1
8

08
04

.0
0

Date and Hour

O
pe

ra
tio

ns
 p

er
 H

ou
r

No Negative Caching

0

100000

200000

300000

400000

500000

600000

700000

800000

08
03

.0
0

08
03

.0
6

08
03

.1
2

08
03

.1
8

08
04

.0
0

Date and Hour

O
pe

ra
tio

ns
 p

er
 H

ou
r

Figure 7: Negative Caching Effects on Cache Hits

65%

70%

75%

80%

85%

90%

95%

08
03

.0
0

08
03

.0
6

08
03

.1
2

08
03

.1
8

08
04

.0
0

Date and Hour

C
ac

he
 H

it
R

at
e

or
a

ys-

-

r

-
r

e
s

10 Further Work

There are several areas that can benefit from further
study. The justification for using a FIFO bucket to queue
DNS queries should be tested by comparing the perfor-
mance of different queueing policies. We suspect there
would be a measurable improvement in the cache it ratio
if SERVFAIL responses (Section 7) were cached, and a
study to determine this would be beneficial. Ignoring the
time to live field in the DNS reply (Section 5) sacrifices
some accuracy to improve performance. The extent of
the inaccurate information is not known, but could be
easily measured. The very high cache hit ratios seen by
this study imply a high locality of reference for web cli-
ents. It would be interesting to know if this is a phenom-
enon peculiar to CNN or if and to what extent this
pattern is present at other sites.

Availability

The code for this project was developed under contract
with Cable News Network and remains proprietary. It is
not available for public distribution.

Acknowledgements

The authors would like to thank Steve Brunton for doing
much of the dirty work in installing, baby sitting, and
troubleshooting the servers. He performed every soft-
ware and configuration change we requested without a
word of complaint. Thanks are also extended to Paul
Holbrook for inspiring us to submit the work. Many of
the ideas that went in to Rapid DNS, especially the
leaky bucket, are due to Monty Mullig and Sam Gassel.

Bibliography

[1] D. Andresen, T. Yang, V. Holmedahl, O. H.
Ibarra, “SWEB: Toward a Scalable World Wide
Web Server on Multicomputers,” Proceedings of
the 10th International Symposium on Parallel
Processing, pp. 850-856, April 1996.

[2] T. Brisco, “DNS Support for Load Balancing,”
RFC 1794, April 1995.

[3] V. Cardellini, M. Colajanni, P. Yu, “Redirection
Algorithms for Load Sharing in Distributed Web-
server Systems,” Proceedings of the 19th IEEE
International Conference on Distributed Comput-
ing Systems, 1999.

[4] P. Danzig, K. Obracza, A. Kumar, “An Analysis
of Wide-Area Name Server Traffic,” SIGCOMM
‘92 Conference Proceedings: Communications,

Architectures and Protocols, pp. 281-292, August
1992.

[5] S. Gribble, E. Brewer, “System Design Issues f
Internet Middleware Services: Deductions from
Large Client Trace,” Proceedings of the USENIX
Symposium on Internet Technologies and S
tems, Monterey, California, December 1997.

[6] T. T. Kwan, R. McGrath, D. Reed, “NCSA’s
World Wide Web Server: Design and Perfor
mance,” Computer, 28(11), pp. 68-74, November
1995.

[7] P. Manning, P. Vixie, “Operational Criteria for
Root Name Servers,” RFC 2010, October 1996.

[8] P. McKenney, “Selecting Locking Primatives fo
Parallel Programming,” Communications of the
ACM, 39 (10), pp. 75-82, October 1996.

[9] P. Mockapetris, “Domain Names – Implementa
tion and Specification,” RFC 1035, Novembe
1987.

[10] Netscape Communications Corporation, Netscape
Enterprise Server Programmers Guide for Unix,
1996.

[11] R. Schemers, “lbnamed: A Load Balancing Nam
Server in Perl,” Proceedings of the Ninth System
Administration Conference, pp. 1-11, September
1995.

	Abstract
	1 Introduction
	2 Related Work
	3 Premise: “I don’t know” is acceptable
	Figure 1: Inter-Server Relationship

	4 Design of the Rapid DNS
	Figure 2: Flow of Data through the Rapid DNS Server

	5 Cache Management
	6 DNS Request Bucket
	7 Negative Caching
	8 Performance Results
	Figure 3: Rapid DNS Server Performance for One Week
	Figure 4: Performance with 90 ms Query Interval
	Figure 5: DNS Questions with 90 ms Query Interval
	Figure 6: Impact of Negative Caching on Server Performance
	Figure 7: Negative Caching Effects on Cache Hits

	9 Conclusions
	10 Further Work
	Availability
	Acknowledgements
	Bibliography

